首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The enterobacterium Erwinia chrysanthemi causes soft-rot diseases involving extensive tissue maceration in a wide variety of plants and secretes multiple pectic enzymes that degrade plant cell walls and middle lamellae. An E. chrysanthemi mutant with directed deletions or insertions in genes pehX, pelX, pelA, pelB, pelC, and pelE, which encode exo-poly-alpha-d-galacturonosidase, exopolygalacturonate lyase, and four isozymes of pectate lyase, respectively, was constructed by the marker exchange of a cloned pehX::TnphoA fragment into E. chrysanthemi CUCPB5010, a Delta(pelA pelE) Delta(pelB pelC)::28bp Delta(pelX)Delta4bp derivative of strain EC16. This mutant, E. chrysanthemi CUCPB5012, no longer caused pitting in a standard pectate semisolid agar medium used to detect pectolytic activity in bacteria. Nevertheless, the mutant still macerated leaves of chrysanthemum (Chrysanthemum morifolium), although with reduced virulence. The mutant was found to produce significant pectate lyase activity in rotting chrysanthemum tissue and in minimal media containing chrysanthemum extracts or cell walls as the sole carbon source. Activity-stained, ultra-thin-layer isoelectric focusing gels revealed the presence in these preparations of several pectate lyase isozymes with pIs ranging from highly acidic to highly alkaline. Sterile culture fluids containing these isozymes were able to macerate chrysanthemum leaf tissue. Unlike the products of the pelA, pelB, pelC, and pelE genes in E. chrysanthemi EC16, these plant-inducible pectate lyase isozymes were not produced in minimal medium containing pectate. The results suggest that E. chrysanthemi produces two sets of independently regulated pectate lyase isozymes that are capable of macerating plant tissues.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
The pelB gene encodes pectate lyase B, one of three pectate lyases identified in Erwinia carotovora EC. Pectate lyase B was purified from Escherichia coli containing the pelB gene on a recombinant plasmid. The activity of the protein was optimal at a pH of 8.3. The amino acid composition, N-terminal amino acid sequence, and C-terminal peptide sequence were determined and compared with the polypeptide sequence deduced from the DNA sequence of pelB. Purified pectate lyase B started at amino acid 23 of the predicted sequence, suggesting that a 22-amino-acid leader peptide had been removed. Pectate lyase B of E. carotovora EC and pectate lyase B of E. chrysanthemi EC16 contain 352 and 353 amino acids, respectively (N. T. Keen, S. Tanaki, W. Belser, D. Dahlbeck, and B. Staskawicz, J. Bacteriol. 168:595-606, 1986). The two proteins are 72% homologous on the basis of DNA sequence data, and 75% of the amino acids are identical.  相似文献   

10.
The plant pathogenic enterobacterium Erwinia chrysanthemi EC16 secretes several extracellular, plant cell wall-degrading enzymes, including pectate lyase isozyme PelE. Secretion kinetics of 35S-labeled PelE indicated that the precursor of PelE was rapidly processed by the removal of the amino-terminal signal peptide and that the resulting mature PelE remained cell bound for less than 60 s before being secreted to the bacterial medium. PelE-PhoA (alkaline phosphatase) hybrid proteins generated in vivo by TnphoA insertions were mostly localized in the periplasm of E. chrysanthemi, and one hybrid protein was observed to be associated with the outer membrane of E. chrysanthemi in an out gene-dependent manner. A gene fusion resulting in the substitution of the beta-lactamase signal peptide for the first six amino acids of the PelE signal peptide did not prevent processing or secretion of PelE in E. chrysanthemi. When pelE was overexpressed, mature PelE protein accumulated in the periplasm rather than the cytoplasm in cells of E. chrysanthemi and Escherichia coli MC4100 (pCPP2006), which harbors a functional cluster of E. chrysanthemi out genes. Removal of the signal peptide from pre-PelE was SecA dependent in E. coli MM52 even in the presence of the out gene cluster. These data indicate that the extracellular secretion of pectic enzymes by E. chrysanthemi is an extension of the Sec-dependent pathway for general export of proteins across the bacterial inner membrane.  相似文献   

11.
12.
13.
14.
The phytopathogenic enterobacterium Erwinia chrysanthemi excretes multiple isozymes of the plant tissue-disintegrating enzyme, pectate lyase (PL). Genes encoding PL were cloned from E. chrysanthemi CUCPB 1237 into Escherichia coli HB101 by inserting Sau3A-generated DNA fragments into the BamHI site of pBR322 and then screening recombinant transformants for the ability to sink into pectate semisolid agar. Restriction mapping of the cloned DNA in eight pectolytic transformants revealed overlapping portions of a 9.8-kilobase region of the E. chrysanthemi genome. Deletion derivatives of these plasmids were used to localize the pectolytic genotype to a 2.5-kilobase region of the cloned DNA. PL gene expression in E. coli was independent of vector promoters, repressed by glucose, and not induced by galacturonan. PL accumulated largely in the periplasmic space of E. coli. An activity stain used in conjunction with ultrathin-layer isoelectric focusing resolved the PL in E. chrysanthemi culture supernatants and shock fluids of E. coli clones into multiple forms. One isozyme with an apparent pI of 7.8 was produced at a far higher level in E. coli and was common to all of the pectolytic clones. Activity staining of renatured PL in sodium dodecyl sulfate-polyacrylamide gels revealed that this isozyme comigrated with the corresponding isozyme produced by E. chrysanthemi. The PL isozyme profiles produced by different clones and deletion derivative subclones suggest that the cloned region contains at least two PL isozyme structural genes. Pectolytic E. coli clones possessed a limited ability to macerate potato tuber tissues.  相似文献   

15.
The phytopathogenic enterobacterium Erwinia chrysanthemi contains pel genes encoding several different isozymes of the plant-tissue-disintegrating enzyme pectate lyase (PL). The pelC gene, encoding an isozyme with an approximate isoelectric point of 8.0, was mutagenized by a three-step procedure involving (i) insertional inactivation of the cloned gene by ligation of a kan-containing BamHI fragment from pUC4K with a partial Sau3A digest of E. chrysanthemi pelC DNA in pBR322; (ii) mobilization of the pBR322 derivative from Escherichia coli to E. chrysanthemi by the helper plasmids R64drd11 and pLVC9; and (iii) exchange recombination of the pelC::kan mutation into the E. chrysanthemi chromosome by selection for kanamycin resistance in transconjugants cultured in phosphate-limited medium (which renders pBR322 unstable). The resulting E. chrysanthemi mutant was Kanr Amps, lacked pBR322 sequences, and was deficient in only one of the four major PL isozymes, PLc, as determined by activity-stained isoelectric-focusing polyacrylamide gels. The rates of PL induction and cell growth in a medium containing polygalacturonic acid as the sole carbon source were not significantly reduced in the mutant. No difference was detected in the ability of the mutant to macerate potato tuber tissue. The evidence suggests that this isozyme is not necessary for soft-rot pathogenesis.  相似文献   

16.
The plant pathogen Erwinia chrysanthemi produces a variety of factors that have been implicated in its ability to cause soft-rot diseases in various hosts. These include HrpN, a harpin secreted by the Hrp type III secretion system; PelE, one of several major pectate lyase isozymes secreted by the type II system; and PelL, one of several secondary Pels secreted by the type II system. We investigated these factors in E. chrysanthemi EC16 with respect to the effects of medium composition and growth phase on gene expression (as determined with uidA fusions and Northern analyses) and effects on virulence. pelE was induced by polygalacturonic acid, but pelL was not, and hrpN was expressed unexpectedly in nutrient-rich King's medium B and in minimal salts medium at neutral pH. In contrast, the effect of medium composition on hrp expression in E. chrysanthemi CUCPB1237 and 3937 was like that of many other phytopathogenic bacteria in being repressed in complex media and induced in acidic pH minimal medium. Northern blot analysis of hrpN and hrpL expression by the wild-type and hrpL::omegaCmr and hrpS::omegaCmr mutants revealed that hrpN expression was dependent on the HrpL alternative sigma factor, whose expression, in turn, was dependent on the HrpS putative sigma54 enhancer binding protein. The expression of pelE and hrpN increased strongly in late logarithmic growth phase. To test the possible role of quorum sensing in this expression pattern, the expI/expR locus was cloned in Escherichia coli on the basis of its ability to direct production of acyl-homoserine lactone and then used to construct expI mutations in pelE::uidA, pelL::uidA, and hrpN::uidA Erwinia chrysanthemi strains. Mutation of expI had no apparent effect on the growth-phase-dependent expression of hrpN and pelE, or on the virulence of E. chrysanthemi in witloof chicory leaves. Overexpression of hrpN in E. chrysanthemi resulted in approximately 50% reduction of lesion size on chicory leaves without an effect on infection initiation.  相似文献   

17.
J R Alfano  J H Ham    A Collmer 《Journal of bacteriology》1995,177(15):4553-4556
Erwinia chrysanthemi mutant CUCPB5047, delta(pelA pelE) delta(pelB pelC)::28bp delta(pelX) delta 4bp pehX::omega Cmr, was constructed, mutated with Tn5tac1, and screened for isopropyl-beta-D-thiogalactopyranoside-dependent pectate lyase (Pel) production. A Kmr SacI fragment from the hyperexpressing Pel+ mutant CUCPB5066 was cloned into Escherichia coli and sequenced. The gene identified, pelL, encodes a novel, asparagine-rich, highly alkaline enzyme that is similar in primary structure to PelX and in enzymological properties to PelE.  相似文献   

18.
The genes for two of several pectate lyase isozymes produced by the phytopathogenic enterobacterium Erwinia chrysanthemi 1237 were subcloned and compared by DNA-DNA hybridization, and the encoded proteins were analyzed. The borders of the genes were located on a restriction map by incremental exonuclease III deletions. DNA-DNA hybridization studies revealed a low percentage of mismatch (7 to 17%) between pelB and pelC. No homology was detected between pelC and other regions of the E. chrysanthemi 1237 chromosome, in which three other isozyme genes apparently reside. The pectate lyase isozymes were readily purified by chromatofocusing or granulated-gel bed isoelectric focusing from the periplasmic shock fluids of Escherichia coli subclones. The molecular weights of PLb and PLc were 30,000 and 33,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their isoelectric points were 7.6 and 8.1, respectively, as determined by equilibrium isoelectric focusing in ultrathin polyacrylamide gels. The Km values for PLb and PLc were 0.20 and 0.32 mg/ml, respectively, with polygalacturonate as a substrate. Thin-layer chromatography of reaction products and viscometric assays revealed little difference between the two isozymes. All our data indicate that the genes are duplicates and that the proteins are isofunctional.  相似文献   

19.
A pectate lyase gene (pelY) from Yersinia pseudotuberculosis was cloned in Escherichia coli DH-5 alpha. The gene was expressed in either orientation in pUC plasmids, indicating that the insert DNA carried a Y. pseudotuberculosis promoter which functioned in E. coli. However, when cloned in the orientation which placed the coding region downstream of the vector lac promoter, expression of pelY was nine times higher than it was in the opposite orientation and the growth of E. coli cells was inhibited. Nucleotide sequence analysis of the pelY gene disclosed an open reading frame of 1,623 base pairs (PLY). The peptide sequence at the amino-terminal end of the protein contains a typical signal peptide sequence, consistent with the observation that the mature PLY protein accumulated largely in the periplasmic space of E. coli. The pI of PLY produced in E. coli cells was 4.5, and its activity was inhibited 90% or more by EDTA. The enzyme macerated cucumber tissue about 1,000 times less efficiently than did PLe from Erwinia chrysanthemi EC16. The pelY gene has no sequence similarity to the pel genes thus far sequenced from Erwinia spp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号