首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of phosphoinositide metabolism is an early event in signal transduction for a number of neurotransmitters and hormones. In primary cultures of rat neurocortical cells, various excitatory amino acids stimulate inositol phosphate production with a rank order of potency of quisqualate greater than ibotenate greater than glutamate greater than kainate, N-methyl-D-aspartate greater than alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate. This response to excitatory amino acids was insensitive to a variety of excitatory amino acid antagonists including 6-cyano-7-nitroquinoxaline-2,3-dione, 3-3(2-carboxypiperazine-4-yl)propyl-1-phosphonate, and 2-amino-4-phosphonobutyrate. The individual responses of quisqualate-, ibotenate-, and kainate-stimulated inositol phosphate production were not additive. These results suggest that phosphoinositide metabolism activated by excitatory amino acids is mediated by a unique quisqualate-preferring receptor that is not antagonized by known N-methyl-D-aspartate and non-N-methyl-D-aspartate antagonists, and is relatively insensitive to alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate.  相似文献   

2.
Abstract: The activation of phosphoinositide hydrolysis by ibotenate (IBO) in brain slices and the binding of N -[3H]acetylaspartyl-L-glutamate (NAAG) to brain membranes are biochemical parameters previously shown to be selectively inhibited by 2-amino-4-phosphonobutyrate (AP4). We have examined whether the binding of [3H]NAAG and stimulation of phosphoinositide hydrolysis by IBO are indexing the same or different populations of AP4-sensitive excitatory amino acid sites in brain. L-AP4 and D,L-2-amino-3-phosphono-propionate (D,L-AP3) were found to be about equipotent inhibitors of IBO-stimulated phosphoinositide hydrolysis. L-AP4 and D,L-AP3 did not inhibit stimulation of phosphoinositide hydrolysis by the cholinoceptor agonist carbachol. The L-isomers of serine- O -phosphate and α-aminoadipate were selective inhibitors of IBO-stimulated phosphoinositide hydrolysis, but were less potent than L-AP4 or D,L-AP3. When these compounds were examined for their ability to inhibit [3H]NAAG binding to membranes of rat forebrain, the relative order of potency was L-α-aminoadipate = D-α-aminoadipate < L-AP4 < L-serine- O -phosphate < D-AP4 < D,L-AP3. Concentrations of NAAG up to 10−2 M did not stimulate phosphoinositide hydrolysis. Thus, although both assays are sensitive to L-AP4 inhibition, they appear to represent disparate excitatory amino acid sites in brain. Furthermore, D,L-AP3 appears to be a more selective inhibitor of excitatory amino acid-stimulated phosphoinositide hydrolysis than L-AP4, and might be a more useful pharmacological tool to define the function of these receptor sites in brain.  相似文献   

3.
Studies were carried out to define the relative affinities and intrinsic activities of excitatory amino acid agonists that activate receptor sites coupled to phosphoinositide hydrolysis in brain. Slices of rat hippocampus were prelabeled with myo-[3H]inositol, and agonist stimulation was indexed by measuring the accumulation of [3H]inositol monophosphate [( 3H]IP) in the presence of Li+. It was observed that ibotenic (IBO) and quisqualic (QUIS) acids both elicit highly significant, concentration-dependent stimulation of phosphoinositide hydrolysis. Whereas maximal stimulation by IBO (10(-3) M) was four- to fivefold over basal values, the maximal effect of QUIS (10(-4) M) was less (about twofold). Based on the relative concentrations required for 50% maximal stimulation, QUIS was 20 times more potent than IBO. Stimulation of phosphoinositide hydrolysis by either IBO or QUIS was additive to the effects of nonexcitatory amino acid agonists (carbachol and norepinephrine) in this tissue. However, the stimulatory effects of IBO plus QUIS were not additive. At greater than or equal to 10(-4) M, QUIS significantly inhibited phosphoinositide hydrolysis by a maximal stimulatory concentration of IBO (10(-3) M) to a level observed with QUIS alone. Other excitatory amino acid agonists, including kainate, N-methyl-D-aspartate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), had no stimulatory effects at concentrations as high as 10(-3) M. The D,L or L forms of 2-amino-4-phosphonobutyric acid (AP4), but not D-AP4, significantly enhanced [3H]IP levels to approximately 135% of basal values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The binding of L-[3H]glutamate to membranes from human temporal cortex was studied in the absence of Na+, Ca2+, and Cl- ions. Pharmacological characterisation revealed that approximately 35% of specific binding at 50 nM L-[3H]glutamate was sensitive to a combination of kainate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. The remaining approximately 65% of specific binding was to a single population of sites with a KD of 844 nM and a Bmax of 0.92 pmol/mg protein. The pharmacological characteristics were consistent with an interaction at the N-methyl-D-aspartate subclass of excitatory amino acid receptor. The inclusion of Cl- ions revealed additional glutamate binding; this was sensitive to quisqualate and DL-2-amino-4-phosphonobutyrate, but not to kainate, DL-2-amino-7-phosphonoheptanoate, or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid.  相似文献   

5.
L-[3H]Glutamate binding sites were solubilized from porcine brain synaptic junctions by Triton X-114 in the presence of KCl. The solubilized binding sites bound L-[3H]glutamate reversibly with KD and Bmax values of 1.48 +/- 0.18 microM and 178.2 +/- 15.9 pmol/mg of protein, respectively. These binding sites appeared to be integral membrane glycoproteins, with sugar moieties recognized by wheat germ agglutinin. A 49.3-fold purification of these binding sites was achieved by Triton X-114 solubilization, anion-exchange chromatography, and affinity chromatography using wheat germ agglutinin-Sepharose. The apparent molecular mass of the partially purified binding sites was 620 +/- 50 kDa. L-[3H]Glutamate bound to the solubilized preparation could be effectively displaced by agonists of non-N-methyl-D-aspartate (NMDA) L-glutamate receptors but not by NMDA or alpha-amino-4-phosphonobutyrate. The rank order for the competitive ligands in displacing L-[3H]glutamate was: quisqualate greater than alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid greater than L-glutamate greater than kainate.  相似文献   

6.
Intracellular free [Ca2+]i was measured using fura-2 in synaptosomes prepared from cerebral cortices of adult male rats (12 weeks). L-(+)-Glutamate, D-(-)-glutamate, and quisqualate produced similar dose-dependent increases in [Ca2+]i, with EC50 values of 0.38 microM, 0.74 microM, and 0.1 microM, respectively, and maximum increases of approximately 40%. Ibotenate showed less affinity (EC50 4.4 microM) but had a greater maximum effect (57%). N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) did not increase [Ca2+]i. The increases in [Ca2+]i induced by quisqualate and ibotenate were not diminished in the absence of extrasynaptosomal Ca2+. L-2-Amino-4-phosphonobutyrate (L-AP4) (1 microM) completely blocked the changes in [Ca2+]i induced by L-(+)-glutamate, D-(-)-glutamate, quisqualate, or ibotenate. The effects of quisqualate and ibotenate on [Ca2+]i were also blocked by coincubation of synaptosomes with L-(+)-serine-O-phosphate (L-SP) (1 mM) (which, like L-AP4, blocks the effects of quisqualate and ibotenate on inositol phospholipid metabolism). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) had no effect on agonist-mediated increases in [Ca2+]i when coincubated with either quisqualate or ibotenate. These data are consistent with the existence of presynaptic glutamate receptors (of the excitatory amino acid metabotropic type) which activate phospholipase C leading to the elevation of inositol 1,4,5-trisphosphate and release of Ca2+ from intracellular stores.  相似文献   

7.
Ibotenate, a rigid structural analogue of glutamate, markedly enhances the hydrolysis of membrane inositol phospholipids, as reflected by the stimulation of [3H]inositol monophosphate formation in rat hippocampal slices prelabeled with [3H]inositol and treated with Li+. Quisqualate, homocysteate, L-glutamate, and L-aspartate also induce a significant (albeit weaker) increase in [3H]inositol monophosphate formation, whereas N-methyl-D-aspartate, kainate, quinolinate, and N-acetylaspartylglutamate are inactive. The increase in [3H]inositol monophosphate formation elicited by the above-mentioned excitatory amino acids is potently and selectively antagonized by DL-2-amino-4-phosphonobutyric acid, a dicarboxylic amino acid receptor antagonist. These results suggest that, in the hippocampus, a class of dicarboxylic amino acid recognition sites is coupled with phospholipase C, the enzyme that catalyzes the hydrolysis of membrane inositol phospholipids.  相似文献   

8.
The excitatory amino acid agonists kainate, N-methyl-D-aspartate (NMDA), and quisqualate inhibited ligand-stimulated phosphoinositide hydrolysis in rat cortical slices. The NMDA channel blocker MK-801 antagonized the inhibition by NMDA but had no effect on the inhibition due to kainate or quisqualate. The antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the effects of quisqualate and kainate but not the effect of NMDA. These data indicate that activation of the NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate types of ionotropic receptors has the same effect. In membranes prepared from cortical slices, there was no inhibition of carbachol-stimulated phosphoinositidase C activity by excitatory amino acids, suggesting that excitatory amino acids indirectly affect carbachol-stimulated phosphoinositide hydrolysis. The inhibition by excitatory amino acids of carbachol-stimulated phosphoinositide breakdown was dependent on extracellular Mg2+ and was abolished by procedures that increase intracellular Ca2+. Veratridine inhibition of carbachol-stimulated phosphoinositide hydrolysis was reversed by ouabain but not by other procedures that increase intracellular Ca2+. In contrast to excitatory amino acids, veratridine potentiated carbachol-stimulated phosphoinositide breakdown in the presence of 10 mM extracellular Mg2+. These data suggest that excitatory amino acids inhibit carbachol-stimulated phosphoinositide breakdown in rat cortex by lowering intracellular Ca2+ through a mechanism dependent on extracellular Mg2+.  相似文献   

9.
The binding of [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([3H]CPP), a rigid analogue of 2-amino-7-phosphonoheptanoic acid (AP7) and reported to be a selective N-methyl-D-aspartate (NMDA) antagonist, was studied in rat striatal membranes using a centrifugation procedure to separate bound and free radioligand. [3H]CPP bound with high affinity (KD = 272 nM) in a saturable, reversible, and protein concentration-dependent manner. Specific binding was suggested to involve a single class of noninteracting binding sites. The most potent [3H]CPP binding inhibitors tested were CPP, L-glutamate, 2-amino-5-phosphonovalerate, and AP7. NMDA, L-aspartate, and alpha-aminoadipate were also shown to be efficient in inhibiting the binding, whereas quisqualate, D,L-2-amino-4-phosphonobutyrate, kainate, L-glutamate diethylester, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid were found to be essentially inactive. These data are therefore consistent with the view that [3H]CPP selectively binds to NMDA receptors in the rat striatum. Lesions of intrastriatal neurons using local injections of kainic acid revealed a marked decrease in [3H]CPP binding, suggesting an almost exclusively postsynaptic location of binding sites in the striatum. Conversely, bilateral lesion of corticostriatal glutamatergic fibers resulted in an increased number of [3H]CPP striatal binding sites, providing evidence for a putative supersensitivity response to this striatal deafferentation. Interestingly, lesion of the nigrostriatal dopaminergic neurons using intranigral 6-hydroxydopamine injections resulted, 2-3 weeks later, in a similar increase in the number of [3H]CPP striatal binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Excitatory amino acids stimulated inositol phospholipid hydrolysis in primary cultures of astrocytes, as reflected by an increased formation of [3H]inositol monophosphate [( 3H]InsP) in the presence of 10 mM Li+. Quisqualate was the most potent activator of inositol phospholipid hydrolysis, followed by glutamate and ibotenate. Kainate exhibited low activity, whereas N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) were inactive. The increase in [3H]InsP formation induced by glutamate was potentiated after 12-h exposure to the proliferative agent epidermal growth factor (EGF), suggesting that activation of the mitotic cycle leads to an enhanced coupling of glutamate recognition sites with phospholipase C. To study how glutamate receptors are involved in regulating cell proliferation, we have measured [methyl-3H]thymidine incorporation in cultured astrocytes. Excitatory amino acids reduced thymidine incorporation with a pharmacological profile similar to that observed for the stimulation of inositol phospholipid hydrolysis. Quisqualate acted as a potent antiproliferative agent, both under basal conditions and in cells stimulated to proliferate by addition of EGF or phorbol 12-tetradecanoate 13-acetate. Glutamate and ibotenate reduced [methyl-3H]thymidine incorporation at high concentrations, whereas kainate, AMPA, and NMDA were virtually inactive. The action of quisqualate on both inositol phospholipid hydrolysis and thymidine incorporation was attenuated by 2-amino-4-phosphonobutyrate, which acted as a weak agonist/competitive antagonist. Other excitatory amino acid receptor antagonists were not effective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Membrane fractions prepared from astrocytes grown in culture exhibit a specific binding site for L-[3H]glutamate that is Cl--dependent and Na+-independent. The binding site is a single saturable site with a KD of about 0.5 microM, is inhibited by L-aspartate, L-cysteate, and quisqualate, and is insensitive to kainate, N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, and 2-amino-4-phosphonobutyrate. The pharmacological characteristics of the binding site indicate that it is distinct from any site previously described in synaptic membrane preparations. Comparisons of ionic requirements, ligand specificity, and inhibitor sensitivities, however, suggest the described binding is the first step in a Cl--dependent high-affinity glutamate uptake system. Such binding studies provide a useful model system in which to investigate the close association between excitatory amino acids, astrocytes, the termination of glutamate's excitatory action by high-affinity uptake, and the excitotoxic action of acidic amino acids in membranes of a single cell type.  相似文献   

12.
Micromolar concentrations of piracetam, aniracetam, and oxiracetam enhanced alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-stimulated 45Ca2+ influx in primary cultures of cerebellar granule cells. Nootropic drugs increased the efficacy but not the potency of AMPA and their action persisted in the presence of the voltage-sensitive calcium channel blocker nifedipine. Potentiation by oxiracetam was specific for AMPA receptor-mediated signal transduction, as the drug changed neither the stimulation of 45Ca2+ influx by kainate or N-methyl-D-aspartate nor the activation of inositol phospholipid hydrolysis elicited by quisqualate or (+-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid. Piracetam, aniracetam, and oxiracetam increased the maximal density of the specific binding sites for [3H]AMPA in synaptic membranes from rat cerebral cortex. Taken collectively, these results support the view that nootropic drugs act as positive modulators of AMPA-sensitive glutamate receptors in neurons.  相似文献   

13.
A detailed pharmacological characterization of metabotropic glutamate receptors (mGluR) was performed in primary cultures of cerebellar granule cells at 6 days in vitro (DIV). The rank order of agonists induced polyphosphoinositide (PPI) hydrolysis (after correcting for the ionotropic component in the response) was as follows: in terms of efficiency, Glu>quisqualate (quis)=ibotenate (ibo)>(1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD)>-methyl-amino-l-alanine (BMAA) and in terms of potency, quis>ACPD>Glu>ibo=BMAA. Ionotropic excitatory amino acid (EAA) receptor agonists, such as -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) were relatively inactive (in the presence of Mg2+). Quis and ACPD-induced PPI hydrolysis was unaffected by ionotropic Glu receptor antagonists, but was inhibited, in part by L-2-amino-3-phosphonopropionate (AP3). In contrast, Glu-or ibo- induced PPI hydrolysis was reduced, in part, by both AP3 and NMDA receptor antagonists. Characteristic interactions involving different transmitter receptors were noted. PPI hydrolysis evoked by quis and 1S,3R-ACPD was not additive. In contrast, PPI hydrolysis stimulated by quis/ACPD and carbamylcholine was additive (indicating different receptors/transduction pathways). In the presence of Mg2+, the metabotropic response to quis/AMPA and NMDA was synergistic (this being consistent with AMPA receptor-induced depolarization activating NMDA receptor). On the other hand, in Mg2+-free buffer the effects of quis and NMDA, at concentrations causing maximal PPI hydrolysis, were additive (indicating that PPI hydrolysis was effected by two different mechanisms). Thus, in cerebellar granule cells EAAs elicit PPI hydrolysis by acting at two distinct receptor types: (i) metabotropic Glu receptors (mGluR), with pharmacological characteristics suggesting the expression of a unique mGluR receptor that shows certain similarities to those observed for the mGluR1 subtype (Aramori and Nakanishi, 1992) and (ii) NMDA receptors. The physiological agonist, Glu, is able to stimulate both receptor classes.Abbreviations ACPD (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid - AMPA -amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid - AP3 L-2-amino-3-phosphono-propionate - AP5 D-2-amino-5-phosphonopentenoate - BMAA -methyl-amino-L-alanine - DIV days in vitro - DNOX 6,7-dinitroouinoxoline-2,3-dione - EAA excitatory amino acids - Glu glutamate - InsP inositol monophosphate - mGluR metabotropic glutamate receptors - MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohept-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate - PPI polyphosphoinositide - quis quisqualate  相似文献   

14.
In cerebral cortical slices from the guinea-pig, quinoxalinedione derivatives antagonised the generation of 3H-inositol phosphates evoked by the excitatory amino acids quisqualate and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid but were without effect on the trans-DL-1-amino-1,3-cyclopentanedicarboxylic acid and L-glutamate responses. Omission of calcium from the medium reduced the accumulation of 3H-inositol phosphates induced by incubation with trans-DL-1-amino-1,3-cyclopentanedicarboxylic acid (incubation for 45 min) by greater than 50%, whereas the responses to L-glutamate and the two other amino acid analogues were reduced by approximately 20%. Generation of inositol 1,4,5-trisphosphate over a 30-s period by treatment with quisqualate, trans-DL-1-amino-1,3-cyclopentane-dicarboxylic acid, KCl, and carbachol was abolished in the presence of nominally calcium-free medium. L-Glutamate induced a large, rapid increase in inositol 1,4,5-trisphosphate mass (more than three-fold), which was, however, unaffected by omission of calcium from the medium. These results indicate that of the excitatory amino acids tested, only L-glutamate may be classed as a metabotropic receptor agonist in guinea-pig cerebral cortical slices with respect to generation of inositol phosphates. The other agents appear to stimulate accumulation of inositol phosphates, at least in part through some mechanism requiring the presence of extracellular Ca2+, presumably Ca2+ entry.  相似文献   

15.
1. Experiments were conducted in vitro on isolated spinal cords of frogs and immature rats and in vivo on cat spinal neurones. 2. The concept of two major types of excitatory amino acid receptors present in these preparations is summarized, one type (NMDA receptors) being activated specifically by N-methyl-D-aspartate (NMDA) and blocked by specific antagonists such as D(-)-2-amino-5-phosphonovalerate (APV), and a second type (non-NMDA receptors) characterized by insensitivity to specific NMDA antagonists. This second type may be comprised of two sub-types activated selectively by the agonists quisqualate and kainate. The putative transmitters L-glutamate and L-aspartate have mixed action on both NMDA and non-NMDA receptors. The major action of both transmitter candidates is considered to be on non-NMDA receptors, but the proportion of the composite responses mediated by NMDA receptors (at least for spinal neurones) appears to be greater for L-aspartate than for L-glutamate. 3. The preference of NMDA and non-NMDA receptors for a range of agonists is discussed. Some newer agonists are considered, in addition to several known agonists not previously discussed in terms of NMDA- and non-NMDA-receptor preference. Structure-activity relations of agonists are discussed. 4. The actions of some new amino acid antagonists are reported. Some of these have useful kainate and quisqualate blocking activity, in addition to their ability to block NMDA induced responses. 5. Evidence is presented suggesting that excitatory amino acid receptors are involved in both polysynaptic and monosynaptic excitation in the spinal cord, NMDA receptors mediating polysynaptic excitation and non-NMDA receptors monosynaptic excitation. 6. The unusual effect is reported of L-2-amino-4-phosphonobutyrate, which potently blocks spinal synaptic excitation in the absence of depressant action on excitatory amino acid-induced responses.  相似文献   

16.
In rat prefrontal cortical slices, the excitatory amino acids N-methyl-D-aspartate (NMDA), ibotenate, L-aspartate, quisqualate, kainate and L-glutamate inhibit carbachol-induced phosphoinositide hydrolysis as measured by the accumulation of [3H]inositol-1-phosphate ([3H]IP1). NMDA dose-dependently inhibited the carbachol response (IC50 = 14.4 microM), and this inhibition was blocked by the NMDA receptor antagonist D,L-aminophosphonovaleric acid. Lowering medium Na+ concentration to 10 mM or exposing slices to pertussis toxin alleviated the inhibitory effect of NMDA on carbachol-induced [3H]IP1 formation. Serotonin-induced stimulation of [3H]IP1 was also inhibited by NMDA; in contrast, stimulation by norepinephrine, epinephrine or dopamine was unaffected. The results suggest that excitatory amino acids, besides their traditional role as stimulatory substances, can also act to inhibit the production of 2nd messengers activated by certain neurotransmitters in the brain.  相似文献   

17.
Metabotropic excitatory amino acid (EAA) receptors are coupled to effector systems through G proteins. Because various G protein-coupled receptors stimulate the hydrolysis of phosphatidylcholine by phospholipase D (PLD), we examined the possibility that metabotropic EAA receptors exist that are coupled to the activation of PLD. We found that the selective metabotropic glutamate receptor (mGluR) agonists 1S,3R-amino-1,3-cyclopentanedicarboxylic acid (ACPD) and 1S,3S-ACPD, but not the inactive isomer, 1R,3S-ACPD, induce a concentration-dependent increase in PLD activity in hippocampal slices. Selective ionotropic glutamate receptor (iGluR) antagonists did not block 1S,3R-ACPD-induced PLD stimulation. Furthermore, although selective iGluR agonists did not activate this response, the nonselective mGluR-iGluR agonists, ibotenate and quisqualate, caused significant increases in PLD activity (all in the presence of iGluR antagonists). L-2-Amino-3-phosphonopropionic acid, which blocks the mGluR that is coupled to phosphoinositide hydrolysis in various brain regions, activates PLD to the same extent as the active isomers of ACPD. These data suggest that metabotropic EAA receptors exist in hippocampus that are coupled to PLD activation and are pharmacologically distinct from phosphoinositide hydrolysis-coupled mGluRs.  相似文献   

18.
Cultured human melanocytes express mGlu5 metabotropic glutamate (mGlu) receptors, as shown by RT-PCR, immunocytochemistry, Western blot analysis, and measurement of agonist-stimulated polyphosphoinositide hydrolysis. The mGlu5 receptor agonists (S)-3, 5-dihydroxyphenylglycine and quisqualate increased [(3)H-methyl]thymidine incorporation and melanocyte proliferation in subconfluent cultures, but impaired cell viability in confluent cultures. Both effects were prevented by 2-methyl-6-(2-phenyl-1-ethynyl)-pyridine, a potent and highly selective mGlu5 receptor antagonist. Agonists of other mGlu receptor subtypes (such as the mGlu2/3 receptor agonist, 2S,2'R,3'R-2-2', 3'-dicarboxycyclopropylglycine, or the mGlu4/6/7/8 receptor agonist, L-2-amino-4-phosphonobutanoate) or selective agonists of ionotropic glutamate receptors (N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, and kainate) did not affect melanocyte proliferation or viability. The presence of a receptor for glutamate, the major excitatory neurotransmitter, in human melanocytes is intriguing. mGlu5 receptors may be involved in the control of melanocyte proliferation (and perhaps in other functions), but harbor a potential toxicity and may therefore contribute to cell damage under pathological conditions.  相似文献   

19.
Slices of hippocampal area CA1 were employed to test the hypothesis that the release of glutamate and aspartate is regulated by the activation of excitatory amino acid autoreceptors. In the absence of added Mg2+, N-methyl-D-aspartate (NMDA)-receptor antagonists depressed the release of glutamate, aspartate, and gamma-aminobutyrate evoked by 50 mM K+. Conversely, the agonist NMDA selectively enhanced the release of aspartate. The latter action was observed, however, only when the K+ stimulus was reduced to 30 mM. Actions of the competitive antagonists 3-[(+/- )-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid (CPP) and D-2-amino-5-phosphonovalerate (D-AP5) differed, in that the addition of either 1.2 mM Mg2+ or 0.1 microM tetrodotoxin to the superfusion medium abolished the depressant effect of CPP without diminishing the effect of D-AP5. These results suggest that the activation of NMDA receptors by endogenous glutamate and aspartate enhances the subsequent release of these amino acids. The cellular mechanism may involve Ca2+ influx through presynaptic NMDA receptor channels or liberation of a diffusible neuromodulator linked to the activation of postsynaptic NMDA receptors. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, a selective quisqualate receptor agonist, and kainate, an agonist active at both kainate and quisqualate receptors, selectively depressed the K(+)-evoked release of aspartate. Conversely, 6-cyano-7-nitro-quinoxaline-2,3-dione, an antagonist active at both quisqualate and kainate receptors, selectively enhanced aspartate release. These results suggest that glutamate can negatively modulate the release of aspartate by activating autoreceptors of the quisqualate, and possibly also of the kainate, type. Thus, the activation of excitatory amino acid receptors has both presynaptic and postsynaptic effects.  相似文献   

20.
Inositol phosphate synthesis elicited by excitatory amino acids was measured in rat forebrain synaptoneurosomes in presence of Li+. Quisqualate (QA) was the most potent excitatory amino acid inducing inositol phosphate formation. This QA action was not blocked by any of the usual antagonists [glutamate-amino-methyl-sulphonate (GAMS); glutamate-diethyl-ester (GDEE); γ- -glutamyl-glycine (γ-DGG)] known to inhibit the QA-induced depolarization. The same was found for the most potent and selective QA antagonist reported so far [6-nitro-7-cyanoquinoxaline-2,3-dion (FG 9065)]. In addition, --amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) a potent depolarizing agonist at the quisqualate receptor subtype was about 300 times less potent than quisqualate in increasing inositol phosphate accumulation. Our results provide the first pharmacological evidence indicating that a new quisqualate receptor subtype, tentatively termed sAA2 is responsible for inositol phosphate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号