首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Triterpenoids are known to induce apoptosis and to be anti-tumoural. Maslinic acid, a pentacyclic triterpene, is present in high concentrations in olive pomace. This study examines the response of HT29 and Caco-2 colon-cancer cell lines to maslinic-acid treatment. At concentrations inhibiting cell growth by 50-80% (IC50HT29=61+/-1 microM, IC80HT29=76+/-1 microM and IC50Caco-2=85+/-5 microM, IC80Caco-2=116+/-5 microM), maslinic acid induced strong G0/G1 cell-cycle arrest and DNA fragmentation, and increased caspase-3 activity. However, maslinic acid did not alter the cell cycle or induce apoptosis in the non-tumoural intestine cell lines IEC-6 and IEC-18. Moreover, maslinic acid induced cell differentiation in colon adenocarcinoma cells. These findings support a role for maslinic acid as a tumour suppressant and as a possible new therapeutic tool for aberrant cell proliferation in the colon. In this report, we demonstrate for the first time that, in tumoural cancer cells, maslinic acid exerts a significant anti-proliferation effect by inducing an apoptotic process characterized by caspase-3 activation by a p53-independent mechanism, which occurs via mitochondrial disturbances and cytochrome c release.  相似文献   

2.
A single episode of ethanol intoxication triggers widespread apoptotic neurodegeneration in the infant rat or mouse brain. The cell death process occurs over a 6-16 h period following ethanol administration, is accompanied by a robust display of caspase-3 enzyme activation, and meets ultrastructural criteria for apoptosis. Two apoptotic pathways (intrinsic and extrinsic) have been described, either of which may culminate in the activation of caspase-3. The intrinsic pathway is regulated by Bax and Bcl-XL and involves Bax-induced mitochondrial dysfunction and release of cytochrome c as antecedent events leading to caspase-3 activation. Activation of caspase-8 is a key event preceding caspase-3 activation in the extrinsic pathway. In the present study, following ethanol administration to infant mice, we found no change in activated caspase-8, which suggests that the extrinsic pathway is not involved in ethanol-induced apoptosis. We also found that ethanol triggers robust caspase-3 activation and apoptotic neurodegeneration in C57BL/6 wildtype mice, but induces neither phenomenon in homozygous Bax-deficient mice. Therefore, it appears that ethanol-induced neuroapoptosis is an intrinsic pathway-mediated phenomenon involving Bax-induced disruption of mitochondrial membranes and cytochrome c release as early events leading to caspase-3 activation.  相似文献   

3.
Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a major biological active component of Corni fructus that is known to induce apoptosis. However, the apoptotic mechanism of ursolic acid using primary malignant tumor (RC-58T/h/SA#4)-derived human prostate cells is not known. In the present study, ursolic acid significantly inhibited the growth of RC-58T/h/SA#4 cells in dose- and time-dependent manners. Ursolic acid induced cell death as evidenced by an increased proportion of cells in sub-G1 phase, the formation of apoptotic bodies, nuclear condensation, and DNA fragmentation. After ursolic acid treatment at concentrations above 40 μM, the activities of caspase-3, -8, and -9 were significantly increased compared that of control. Ursolic acid modulated the upregulation of Bax (pro-apoptotic) as well as the downregulation of Bcl-2 (anti-apoptotic). Ursolic acid also stimulated Bid cleavage, which indicates that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. Thus, the apoptotic effect of ursolic acid was involved in extrinsic and intrinsic signaling pathways. In addition, ursolic acid increased the expression of the caspase-independent mitochondrial apoptosis factor (AIF) in RC-58T/h/SA#4 cells. The present results suggest that ursolic acid from Corni fructus activated apoptosis in RC-58T/h/SA#4 cells via both caspase-dependent and -independent pathways.  相似文献   

4.
The anti-tumor effect of Icariside II (IcaS), a natural prenylated flavonol glycoside, was studied on human breast cancer MCF7 cells to unveil the underlying mechanisms involved. IcaS in MCF7 cells produced a loss of mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 revealed the involvement of the intrinsic apoptosis pathway. In contrast, IcaS enhanced the expression level of Fas and the Fas-associated death domain (FADD), and activated caspase-8, suggesting the involvement of the extrinsic apoptosis pathway. IcaS also increased the expression of Bax and BimL without affecting the expression status of Bcl-2 and Bid, suggesting that the apoptosis induced by IcaS was related to Bcl-2 family protein regulation. IcaS thus induced apoptosis in MCF7 cells involving both the intrinsic and extrinsic signaling pathways. Its potential as a candidate for an anti-cancer agent warrants further investigation.  相似文献   

5.
The anti-tumor effect of Icariside II (IcaS), a natural prenylated flavonol glycoside, was studied on human breast cancer MCF7 cells to unveil the underlying mechanisms involved. IcaS in MCF7 cells produced a loss of mitochondrial membrane potential and release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9 revealed the involvement of the intrinsic apoptosis pathway. In contrast, IcaS enhanced the expression level of Fas and the Fas-associated death domain (FADD), and activated caspase-8, suggesting the involvement of the extrinsic apoptosis pathway. IcaS also increased the expression of Bax and BimL without affecting the expression status of Bcl-2 and Bid, suggesting that the apoptosis induced by IcaS was related to Bcl-2 family protein regulation. IcaS thus induced apoptosis in MCF7 cells involving both the intrinsic and extrinsic signaling pathways. Its potential as a candidate for an anti-cancer agent warrants further investigation.  相似文献   

6.
Based on our recent findings that resveratrol, a natural plant polyphenol found in red grape skins as well as other food products, induces apoptosis via a caspase-independent intrinsic pathway in human lung adenocarcinoma cells, this study is designed to explore whether SB203580, a p38 inhibitor, potentiates the resveratrol-induced apoptosis of human lung adenocarcinoma (A549) cells. We found that pretreatment with SB203580 enhanced the resveratrol-induced apoptosis by accelerating the intrinsic apoptotic pathway including Bax activation, loss of mitochondrial membrane potential, and activation of both caspase-9 and -3. Although treatment with resveratrol alone did not induce caspase-8 activation, cotreatment with both SB203580 and resveratrol not only enhanced FasL cleavage but also activated caspase-8, indicating that the extrinsic apoptotic pathway may be involved in the synergistic effect. Collectively, we for the first time demonstrate that SB203580 synergistically enhances the resveratrol-induced apoptosis by accelerating Bax-mediated intrinsic pathway and initiating extrinsic pathway, suggesting a possible alternative therapeutic strategy for human lung cancer.  相似文献   

7.
Hyperoxia causes cell injury and death associated with reactive oxygen species formation and inflammatory responses. Recent studies show that hyperoxia-induced cell death involves apoptosis, necrosis, or mixed phenotypes depending on cell type, although the underlying mechanisms remain unclear. Using murine lung endothelial cells, we found that hyperoxia caused cell death by apoptosis involving both extrinsic (Fas-dependent) and intrinsic (mitochondria-dependent) pathways. Hyperoxia-dependent activation of the extrinsic apoptosis pathway and formation of the death-inducing signaling complex required NADPH oxidase-dependent reactive oxygen species production, because this process was attenuated by chemical inhibition, as well as by genetic deletion of the p47(phox) subunit, of the oxidase. Overexpression of heme oxygenase-1 prevented hyperoxia-induced cell death and cytochrome c release. Likewise, carbon monoxide, at low concentrations, markedly inhibited hyperoxia-induced endothelial cell death by inhibiting cytochrome c release and caspase-9/3 activation. Carbon monoxide, by attenuating hyperoxia-induced reactive oxygen species production, inhibited extrinsic apoptosis signaling initiated by death-inducing signal complex trafficking from the Golgi apparatus to the plasma membrane and downstream activation of caspase-8. We also found that carbon monoxide inhibited the hyperoxia-induced activation of Bcl-2-related proteins involved in both intrinsic and extrinsic apoptotic signaling. Carbon monoxide inhibited the activation of Bid and the expression and mitochondrial translocation of Bax, whereas promoted Bcl-X(L)/Bax interaction and increased Bad phosphorylation. We also show that carbon monoxide promoted an interaction of heme oxygenase-1 with Bax. These results define novel mechanisms underlying the antiapoptotic effects of carbon monoxide during hyperoxic stress.  相似文献   

8.
Mammalian orthoreoviruses induce apoptosis in vivo and in vitro; however, the specific mechanism by which apoptosis is induced is not fully understood. Recent studies have indicated that the reovirus outer capsid protein μ1 is the primary determinant of reovirus-induced apoptosis. Ectopically expressed μ1 induces apoptosis and localizes to intracellular membranes. Here we report that ectopic expression of μ1 activated both the extrinsic and intrinsic apoptotic pathways with activation of initiator caspases-8 and -9 and downstream effector caspase-3. Activation of both pathways was required for μ1-induced apoptosis, as specific inhibition of either caspase-8 or caspase-9 abolished downstream effector caspase-3 activation. Similar to reovirus infection, ectopic expression of μ1 caused release into the cytosol of cytochrome c and smac/DIABLO from the mitochondrial intermembrane space. Pancaspase inhibitors did not prevent cytochrome c release from cells expressing μ1, indicating that caspases were not required. Additionally, μ1- or reovirus-induced release of cytochrome c occurred efficiently in Bax(-/-)Bak(-/-) mouse embryonic fibroblasts (MEFs). Finally, we found that reovirus-induced apoptosis occurred in Bax(-/-)Bak(-/-) MEFs, indicating that reovirus-induced apoptosis occurs independently of the proapoptotic Bcl-2 family members Bax and Bak.  相似文献   

9.
Epirubicin is an anthracycline and is widely used in tumor treatment, but has toxic and undesirable side effects on wide range of cells and hematopoietic stem cells (HSC). Osteoblasts play important roles in bone development and in supporting HSC differentiation and maturation. It remains unknown whether epirubicin-induced bone loss and hematological toxicity are associated with its effect on osteoblasts. In primary osteoblast cell cultures, epirubicin inhibited cell growth and decreased mineralization. Moreover, epirubicin arrested osteoblasts in the G2/M phase, and this arrest was followed by apoptosis in which both the extrinsic (death receptor-mediated) and intrinsic (mitochondrial-mediated) apoptotic pathways were evoked. The factors involved in the extrinsic apoptotic pathway were increased FasL and FADD as well as activated caspase-8. Those involved in the intrinsic apoptotic pathway were decreased Bcl-2; increased reactive oxygen species, Bax, cytochrome c; and activated caspase-9 and caspase-3. These results demonstrate that epirubicin induced osteoblast apoptosis through the extrinsic and intrinsic apoptotic pathways, leading to the destruction of osteoblasts and consequent lessening of their functions in maintaining bone density and supporting hematopoietic stem cell differentiation and maturation.  相似文献   

10.
High oxygen tension (hyperoxia) causes pulmonary cell death, involving apoptosis, necrosis, or mixed death phenotypes, though the underlying mechanisms remain unclear. In mouse lung endothelial cells (MLEC) hyperoxia activates both extrinsic (Fas-dependent) and intrinsic (mitochondria-dependent) apoptotic pathways. We examined the hypothesis that FLIP, an inhibitor of caspase-8, can protect endothelial cells against the lethal effects of hyperoxia. Hyperoxia caused the time-dependent downregulation of FLIP in MLEC. Overexpression of FLIP attenuated intracellular reactive oxygen species generation during hyperoxia exposure, by downregulating extracellular-regulated kinase-1/2 activation and p47(phox) expression. FLIP prevented hyperoxia-induced trafficking of the death-inducing signal complex from the Golgi apparatus to the plasma membrane. Furthermore, FLIP blocked the activations of caspase-8/Bid, caspases -3/-9, and inhibited the mitochondrial translocation and activation of Bax, resulting in protection against hyperoxia-induced cell death. Under normoxic conditions, FLIP expression increased the phosphorylation of p38 mitogen-activated protein kinase leading to increased phosphorylation of Bax during hyperoxic stress. Furthermore, FLIP expression markedly inhibited protein kinase C activation and expression of distinct protein kinase C isoforms (alpha, eta, and zeta), and stabilized an interaction of PKC with Bax. In conclusion, FLIP exerted novel inhibitory effects on extrinsic and intrinsic apoptotic pathways, which significantly protected endothelial cells from the lethal effects of hyperoxia.  相似文献   

11.
B cell leukemia-3 (Bcl-3) has been defined as an anti-apoptotic gene; however, the exact mechanisms through which Bcl-3 influences apoptosis have been elusive. To determine the specific role of Bcl-3 in apoptosis, we evaluated the effect of its silencing on the expression of proteins involved in either the extrinsic or intrinsic apoptotic pathways induced by ultraviolet light B-mediated DNA damage. We found that, in Bcl-3-silenced cells, caspase-3, caspase-8 and caspase-9 activation is accelerated and tBid mitochondrial content is increased. It is important to note that, although mitochondrial Smac levels were reduced after UV exposure, the rate of reduction was slightly higher in Bcl-3 silenced cells than in control cells. Additionally, p53 levels diminished in Bcl-3 silenced cells compared to control cells, as did those of DNA-PK, a DNA repair protein. Altogether, our data indicate that Bcl-3 protects cells from apoptosis by regulating both apoptotic pathways.  相似文献   

12.
Resveratrol (RV), a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts, has an ability to inhibit various stages of carcinogenesis in vitro and in vivo. In this report, we explored the roles of intrinsic and extrinsic apoptotic pathways during RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. After exposure of cells to different concentrations of RV, we found that RV induced concentration-dependent apoptosis. Fluorometric substrates assay and western blotting (WB) analysis showed that caspase-8 was not activated, which was further verified by monitoring the cleavage of Bid to tBid using fluorescence resonance energy transfer (FRET) microscopy imaging inside single living cells, indicating that extrinsic apoptotic pathway was not involved in RV-induced apoptosis. In addition, inhibition of caspases-3 or -9 but not caspase-8 using the specific inhibitors of caspases modestly but significantly attenuated RV-induced apoptosis. Moreover, flow cytometry (FCM) analysis showed that RV treatment induced time-dependent loss of mitochondrial membrane potential (?ψ(m)), in combination with the activation of caspases-3 and -9; we therefore concluded that RV-induced apoptosis involved the intrinsic apoptotic pathway. It is noteworthy that RV treatment induced translocation of AIF from mitochondria to nucleus in a time dependent manner, and that knockdown of AIF remarkably attenuated RV-induced apoptosis. Collectively, our findings demonstrate that RV induces caspase-8-independent apoptosis via AIF and to a lesser extent caspase-9-dependent mitochondrial pathway in ASTC-a-1 cells.  相似文献   

13.
This study investigates the efficacy of carnosic acid (CA), a polyphenolic diterpene, isolated from the plant rosemary (Rosemarinus officinalis), on androgen-independent human prostate cancer PC-3 cells. CA induced anti-proliferative effects in PC-3 cells in a concentration- and time-dependent manner, which was due to apoptotic induction as evident from flow-cytometry, DNA laddering and TUNEL assay. Apoptosis was associated with the activation of caspase-8, -9, -3 and -7, increase in Bax:Bcl-2 ratio, release of cytochrome-c and decrease in expression of inhibitor of apoptosis (IAP) family of proteins. Apoptosis was attenuated upon pretreatment with specific inhibitors of caspase-8 (Z-IETD-fmk) and caspase-9 (Z-LEHD-fmk) suggesting the involvement of both intrinsic and extrinsic apoptotic cascades. Further, apoptosis resulted from the inhibition of IKK/NF-κB pathway as evident from decreased DNA binding activity, nuclear translocation of p50 and p65 and IκBα phosphorylation. The down-regulation of IKK/NF-κB was associated with inhibition of Akt phosphorylation and its kinase activity with a concomitant increase in the serine/threonine protein phosphatase 2A (PP2A) activity. Pharmacologic inhibition of PP2A by okadaic acid and calyculin A, significantly reversed CA-mediated apoptotic events in PC-3 cells indicating that CA induced apoptosis by activation of PP2A through modulation of Akt/IKK/NF-κB pathway. In addition, CA induced apoptosis in another androgen refractory prostate cancer DU145 cells via intrinsic pathway as evidenced from the activation of caspase 3, cleavage of PARP, increase in Bax:Bcl-2 ratio and cytochrome-c release. Carnosic acid, therefore, may have the potential for use in the prevention and/or treatment of prostate cancer.  相似文献   

14.
Interferons (IFNs) are crucial for host defence against viruses. Many IFN-stimulated genes (ISGs) induced by viral infection exert antiviral effects. Microarray analysis of gene expression induced in liver tissues of mice on dengue virus (DENV) infection has led to identification of the ISG gene ISG12b2. ISG12b2 is also dramatically induced on DENV infection of Hepa 1-6 cells (mouse hepatoma cell line). Here, we performed biochemical and functional analyses of ISG12b2. We demonstrate that ISG12b2 is an inner mitochondrial membrane (IMM) protein containing a cleavable mitochondrial targeting sequence and multiple transmembrane segments. Overexpression of ISG12b2 in Hepa 1-6 induced release of cytochrome c from mitochondria, disruption of the mitochondrial membrane potential, and activation of caspase-9, caspase-3, and caspase-8. Treatment of ISG12b2-overexpressing Hepa 1-6 with inhibitors of pan-caspase, caspase-9, or caspase-3, but not caspase-8, reduced apoptotic cell death, suggesting that ISG12b2 activates the intrinsic apoptotic pathway. Of particular interest, we further demonstrated that ISG12b2 formed oligomers, and that ISG12b2 was able to mediate apoptosis through both Bax/Bak-dependent and Bax/Bak-independent pathways. Our study demonstrates that the ISG12b2 is a novel IMM protein induced by IFNs and regulates mitochondria-mediated apoptosis during viral infection.  相似文献   

15.
Activation of Bax following diverse cytotoxic stress has been shown to be an essential gateway to mitochondrial dysfunction and activation of the intrinsic apoptotic pathway characterized by cytochrome c release with caspase-9/-3 activation. Interestingly, c-Myc has been reported to promote apoptosis by destabilizing mitochondrial integrity in a Bax-dependent manner. Stress-induced activation of caspase-2 may also induce permeabilization of mitochondria with activation of the intrinsic death pathway. To test whether c-Myc and caspase-2 cooperate to activate Bax and thereby mediate intrinsic apoptosis, small interfering RNA was used to efficiently knock down the expression of c-Myc, caspase-2, and Apaf-1, an activating component in the apoptosome, in two human cancer cell lines, lung adenocarcinoma A-549 and osteosarcoma U2-OS cells. Under conditions when the expression of endogenous c-Myc, caspase-2, or Apaf-1 is reduced 80-90%, cisplatin (or etoposide)-induced apoptosis is significantly decreased. Biochemical studies reveal that the expression of c-Myc and caspase-2 is crucial for cytochrome c release from mitochondria during cytotoxic stress and that Apaf-1 is only required following cytochrome c release to activate caspases-9/-3. Although knockdown of c-Myc or caspase-2 does not affect Bax expression, caspase-2 is important for cytosolic Bax to integrate into the outer mitochondrial membrane, and c-Myc is critical for oligomerization of Bax once integrated into the membrane.  相似文献   

16.
Jurkat leukemic T cells are highly sensitive to the extrinsic pathways of apoptosis induced via the death receptor Fas or tumor necrosis factor-related apoptosis-inducing ligand as well as to the intrinsic/mitochondrial pathways of death induced by VP-16 or staurosporin. We report here that clonal Jurkat cell lines selected for resistance to Fas-induced apoptosis were cross-resistant to VP-16 or staurosporin. Each of the apoptotic pathways was blocked at an apical phase, where common regulators of apoptosis have not yet been defined. The Fas pathway was blocked at the level of caspase-8, whereas the intrinsic pathway was blocked at the mitochondria. No processing or activity of caspases was detected in resistant cells in response to either Fas-cross-linking or VP-16 treatment. Also, no apoptosis-associated alterations in the mitochondrial inner membrane, outer membrane, or matrix were detected in resistant Jurkat cells treated with VP-16. Thus, no changes in permeability transition, loss in inner membrane cardiolipin, generation of reactive oxygen species, or release of cytochrome c were observed in resistant cells treated with VP-16. Further, unlike purified mitochondria from wild type cells, those obtained from resistant cells did not release cytochrome c or apoptosis-inducing factor in response to recombinant Bax or truncated Bid. These results identify a defect in mitochondria ability to release intermembrane proteins in response to Bid or Bax as a mechanism of resistance to chemotherapeuetic drugs. Further, the selection of VP-16-resistant mitochondria via elimination of Fas-susceptible cells may suggest the existence of a shared regulatory component between the extrinsic and intrinsic pathways of apoptosis.  相似文献   

17.
We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with alterations in integrin signaling. We now investigated whether differentiation and apoptosis of Caco-2 cells induced by the short-chain fatty acid butyrate (NaBT) was associated with alterations in the integrin-mediated signaling pathway with special interest in the expression and activity of focal adhesion kinase (FAK), of the downstream phosphatidylinositol 3'-kinase (PI 3-kinase)-Akt pathway and in the role of the nuclear factor kappaB (NF-kappaB). NaBT increased the level of sucrase. It induced apoptosis as shown by: (1) decreased Bcl-2 and Bcl-X(L) proteins and increased Bax protein; (2) activation of caspase-3; and (3) increased shedding of apoptotic cells in the medium. This effect was associated with defective integrin-mediated signaling as shown by: (1) down-regulation of beta1 integrin expression; 2) decreased FAK expression and tyrosine phosphorylation; (3) concerted alterations in cytoskeletal and structural focal adhesions proteins (talin, ezrin); and (4) decreased FAK ability to associate with PI 3-kinase. However, in Caco-2 cells, beta1-mediated signaling failed to be activated downstream of FAK and PI 3-kinase at the level of Akt. Transfection studies show that NaBT treatment of Caco-2 cells promoted a significant activation of the NF-kappaB which was probably involved in the NaBT-induced apoptosis. Our results indicate that the prodifferentiating agent NaBT induced apoptosis of Caco-2 cells probably through NF-kappaB activation together with a defective beta1 integrin-FAK-PI 3-kinase pathways signaling.  相似文献   

18.
It has been reported that extracts from Asian traditional/medical herbs possess therapeutic agents against cancers, metabolic diseases, inflammatory diseases, and other intractable diseases. In this study, we assessed the molecular mechanisms involved in the anticancer effects of A1E, the extract of Korean medicinal herbs. We examined the role of the cytotoxic and apoptotic pathways in the cancer chemopreventive activity in non-small-cell lung cancer (NSCLC) cell lines NCI-H460 and NCI-H1299. A1E inhibited the proliferation of NCI-H460 more efficiently than NCI-H1299 (p53?/?) cells. The apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blot, RT-PCR, and measurement of mitochondrial membrane potential. A1E induced cellular morphological changes and nuclear condensation at 24 h in a dose-dependent manner. A1E also perturbed cell cycle progression at the sub-G1 stage and altered cell cycle regulatory factors in NCI-H460 cells. Furthermore, A1E inhibited the PI3K/Akt and NF-κB survival pathways, and it activated apoptotic intrinsic and extrinsic pathways. A1E increased the expression levels of members of the extrinsic death receptor complex FasL and FADD. In addition, A1E treatment induced cleavage of caspase-8, caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), whereas the expression levels of Bcl-2 and Bcl-xl were downregulated. A1E induced mitochondrial membrane potential collapse and cytochrome C release. Our results suggest that A1E induces apoptosis via activation of both extrinsic and intrinsic pathways and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 cells. In conclusion, these data demonstrate the potential of A1E as a novel chemotherapeutic agent in NSCLC.  相似文献   

19.
Choi SA  Kim SJ  Chung KC 《FEBS letters》2006,580(22):5275-5282
Huntingtin interacting protein-1 (Hip1) is known to be associated with the N-terminal domain of huntingtin. Although Hip1 can induce apoptosis, the exact upstream signal transduction pathways have not been clarified yet. In the present study, we examined whether activation of intrinsic and/or extrinsic apoptotic pathways occurs during Hip1-mediated neuronal cell death. Overexpression of Hip1 induced cell death through caspase-3 activation in immortalized hippocampal neuroprogenitor cells. Interestingly, proteolytic processing of Hip1 into partial fragments was observed in response to Hip1 transfection and apoptosis-inducing drugs. Moreover, Hip1 was found to directly bind to and activate caspase-9. This promoted cytosolic release of cytochrome c and apoptosis-inducing factor via mitochondrial membrane perturbation. Furthermore, Hip1 could directly bind to Apaf-1, suggesting that the neurotoxic signals of Hip1 transmit through the intrinsic mitochondrial apoptotic pathways and the formation of apoptosome complex.  相似文献   

20.
Silibinin, a flavonolignan isolated from the milk thistle plant (Silybum marianum), possesses anti-neoplastic properties. In vitro and in vivo studies have recently shown that silibinin inhibits the growth of colorectal cancer (CRC). The present study investigates the mechanisms of silibinin-induced cell death using an in vitro model of human colon cancer progression, consisting of primary tumor cells (SW480) and their derived metastatic cells (SW620) isolated from a metastasis of the same patient. Silibinin induced apoptotic cell death evidenced by DNA fragmentation and activation of caspase-3 in both cell lines. Silibinin enhanced the expression (protein and mRNA) of TNF-related apoptosis-inducing ligand (TRAIL) death receptors (DR4/DR5) at the cell surface in SW480 cells, and induced their expression in TRAIL-resistant SW620 cells normally not expressing DR4/DR5. Caspase-8 and -10 were activated demonstrating the involvement of the extrinsic apoptotic pathway in silibinin-treated SW480 and SW620 cells. The protein Bid was cleaved in SW480 cells indicating a cross-talk between extrinsic and intrinsic apoptotic pathway. We demonstrated that silibinin activated also the intrinsic apoptotic pathway in both cell lines, including the perturbation of the mitochondrial membrane potential, the release of cytochrome c into the cytosol and the activation of caspase-9. Simultaneously to apoptosis, silibinin triggered an autophagic response. The inhibition of autophagy with a specific inhibitor enhanced cell death, suggesting a cytoprotective function for autophagy in silibinin-treated cells. Taken together, our data show that silibinin initiated in SW480 and SW620 cells an autophagic-mediated survival response overwhelmed by the activation of both the extrinsic and intrinsic apoptotic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号