首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Sir2 protein mediates gene silencing and repression of recombination at the rDNA repeats in budding yeast. Here we show that Sir2 executes these functions as a component of a nucleolar complex designated RENT (regulator of nucleolar silencing and telophase exit). Net1, a core subunit of this complex, preferentially cross-links to the rDNA repeats, but not to silent DNA regions near telomeres or to active genes, and tethers the RENT complex to rDNA. Net1 is furthermore required for rDNA silencing and nucleolar integrity. During interphase, Net1 and Sir2 colocalize to a subdomain within the nucleous, but at the end of mitosis a fraction of Sir2 leaves the nucleolus and disperses as foci throughout the nucleus, suggesting that the structure of rDNA silent chromatin changes during the cell cycle. Our findings suggest that a protein complex shown to regulate exit from mitosis is also involved in gene silencing.  相似文献   

2.
3.
Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD+-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well.  相似文献   

4.
5.
6.
7.
8.
转录沉默是基因表达调控的重要方式,它对于保持细胞的不同分化状态和维持染色质的稳定性至关重要。沉默信息调节因子2(silent information regulator 2,Sir2)参与酵母交配型基因沉默(silent mating type)、端粒区基因沉默以及核糖体DNA(rDNA)沉默。端粒区的基因沉默可能是酵母衰老过程中的机制之一,处于沉默状态的染色质中的许多基因无转录活性,可能由此影响酵母生长。  相似文献   

9.
10.
11.
Using the zebrafish, we previously identified a central function for perlecan during angiogenic blood vessel development. Here, we explored the nature of perlecan function during developmental angiogenesis. A close examination of individual endothelial cell behavior revealed that perlecan is required for proper endothelial cell migration and proliferation. Because these events are largely mediated by VEGF-VEGFR2 signaling, we investigated the relationship between perlecan and the VEGF pathway. We discovered that perlecan knockdown caused an abnormal increase and redistribution of total VEGF-A protein suggesting that perlecan is required for the appropriate localization of VEGF-A. Importantly, we linked perlecan function to the VEGF pathway by efficiently rescuing the perlecan morphant phenotype by microinjecting VEGF-A165 protein or mRNA. Combining the strategic localization of perlecan throughout the vascular basement membrane along with its growth factor-binding ability, we hypothesized a major role for perlecan during the establishment of the VEGF gradient which provides the instructive cues to endothelial cells during angiogenesis. In support of this hypothesis we demonstrated that human perlecan bound in a heparan sulfate-dependent fashion to VEGF-A165. Moreover, perlecan enhanced VEGF mediated VEGFR2 activation of human endothelial cells. Collectively, our results indicate that perlecan coordinates developmental angiogenesis through modulation of VEGF-VEGFR2 signaling events. The identification of angiogenic factors, such as perlecan, and their role in vertebrate development will not only enhance overall understanding of the molecular basis of angiogenesis, but may also provide new insight into angiogenesis-based therapeutic approaches.  相似文献   

12.
Wang H  Tang X  Balasubramanian MK 《Genetics》2003,164(4):1323-1331
Cytokinesis is the final stage of the cell division cycle in which the mother cell is physically divided into two daughters. In recent years the fission yeast Schizosaccharomyces pombe has emerged as an attractive model organism for the study of cytokinesis, since it divides using an actomyosin ring whose constriction is coordinated with the centripetal deposition of new membranes and a division septum. The final step of cytokinesis in S. pombe requires the digestion of the primary septum to liberate two daughters. We have previously shown that the multiprotein exocyst complex is essential for this process. Here we report the isolation of rho3(+), encoding a Rho family GTPase, as a high-copy suppressor of an exocyst mutant, sec8-1. Overproduction of Rho3p also suppressed the temperature-sensitive growth phenotype observed in cells lacking Exo70p, another conserved component of the S. pombe exocyst complex. Cells deleted for rho3 arrest at higher growth temperatures with two or more nuclei and uncleaved division septa between pairs of nuclei. rho3Delta cells accumulate approximately 100-nm vesicle-like structures. These phenotypes are all similar to those observed in exocyst component mutants, consistent with a role for Rho3p in modulation of exocyst function. Taken together, our results suggest the possibility that S. pombe Rho3p regulates cell separation by modulation of exocyst function.  相似文献   

13.
14.
In budding yeast, the silent information regulator Sir2p is a nuclear NAD-dependent deacetylase that is essential for both telomeric and rDNA silencing. All eukaryotic species examined to date have multiple homologues of Sir two (HSTs), which share a highly conserved globular core domain. Here we report that yeast Hst2p and a mammalian Hst2p homologue, hSirT2p, are cytoplasmic in yeast and human cells, in contrast to yHst1p and ySir2p which are exclusively nuclear. Although yHst2p cannot restore silencing in a sir2 deletion, overexpression of yHst2p influences nuclear silencing events in a SIR2 strain, derepressing subtelomeric silencing while increasing repression in the rDNA. In contrast, a form of ySir2p carrying a point mutation in the conserved core domain disrupts both telomeric position effect (TPE) and rDNA repression at low expression levels. This argues that non-nuclear yHst2p can compete for a substrate or ligand specifically required for telomeric, and not rDNA repression.  相似文献   

15.
16.
Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo.  相似文献   

17.
Cationic amino acid transporters (CAT) are important regulators of NOS2 and ARG1 activity because they regulate L-arginine availability. However, their role in the development of Th1/Th2 effector functions following infection has not been investigated. Here we dissect the function of CAT2 by studying two infectious disease models characterized by the development of polarized Th1 or Th2-type responses. We show that CAT2(-/-) mice are significantly more susceptible to the Th1-inducing pathogen Toxoplasma gondii. Although T. gondii infected CAT2(-/-) mice developed stronger IFN-gamma responses, nitric oxide (NO) production was significantly impaired, which contributed to their enhanced susceptibility. In contrast, CAT2(-/-) mice infected with the Th2-inducing pathogen Schistosoma mansoni displayed no change in susceptibility to infection, although they succumbed to schistosomiasis at an accelerated rate. Granuloma formation and fibrosis, pathological features regulated by Th2 cytokines, were also exacerbated even though their Th2 response was reduced. Finally, while IL-13 blockade was highly efficacious in wild-type mice, the development of fibrosis in CAT2(-/-) mice was largely IL-13-independent. Instead, the exacerbated pathology was associated with increased arginase activity in fibroblasts and alternatively activated macrophages, both in vitro and in vivo. Thus, by controlling NOS2 and arginase activity, CAT2 functions as a potent regulator of immunity.  相似文献   

18.
Congenital diseases caused by abnormal development of the cranial neural crest usually present craniofacial malformations and heart defects while the precise mechanism is not fully understood. Here, we show that the zebrafish eif3ba mutant caused by pseudo-typed retrovirus insertion exhibited a similar phenotype due to the hypogenesis of cranial neural crest cells (NCCs). The derivatives of cranial NCCs, including the NCC-derived cell population of pharyngeal arches, craniofacial cartilage, pigment cells and the myocardium derived from cardiac NCCs, were affected in this mutant. The expression of several neural crest marker genes, including crestin, dlx2a and nrp2b, was specifically reduced in the cranial regions of the eif3ba mutant. Through fluorescence-tracing of the cranial NCC migration marker nrp2b, we observed reduced intensity of NCC-derived cells in the heart. In addition, p53 was markedly up-regulated in the eif3ba mutant embryos, which correlated with pronounced apoptosis in the cranial area as shown by TUNEL staining. These findings suggest a novel function of eif3ba during embryonic development and a novel level of regulation in the process of cranial NCC development, in addition to providing a potential animal model to mimic congenital diseases due to cranial NCC defects. Furthermore, we report the identification of a novel transgenic fish line Et(gata2a:EGFP)pku418 to trace the migration of cranial NCCs (including cardiac NCCs); this may serve as an invaluable tool for investigating the development and dynamics of cranial NCCs during zebrafish embryogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号