首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
Kim MA  Park TS  Kim JN  Park HJ  Lee YM  Ono T  Lim JM  Han JY 《Theriogenology》2005,63(3):774-782
The possibility of producing quail germline chimeras by the transfer of gonadal primordial germ cells (gPGCs) into recipient embryos was investigated. Japanese quail of the black (D: homozygous for the autosomal incomplete dominant gene D) and wild-type plumage (WP: d+/d+) strains were used as donors and recipients, respectively. Gonadal cells were retrieved from the gonads of 5-day-old D embryos, and gPGCs were enriched by magnetism-activated cell sorting. Fresh (noncultured) gPGCs or those isolated after culture for 3 days with gonadal stromal cells present in the mixed cell population were introduced into the dorsal aorta of 2-day-old recipient WP embryos. Hatchability of the recipient embryos was 23.7% (31/131) and 34.4% (31/90) for those transfused with cultured or noncultured gPGCs, respectively. Of the hatched quail, 28 acquired sexual maturity; among these animals, 7.1% (1/14) and 21.4% (3/14) of those that received cultured or noncultured gPGCs, respectively, were proved to be germline chimeras. The percentage of germline transmission to the donor-derived gametes in the chimeras that received cultured and noncultured gPGCs were 1.9 and 2.2-4.7%, respectively. In conclusion, quail gPGCs retrieved from 5-day-old embryos were thus transmitted in the germline after their transfer to quail embryos of a different strain. This property of the gPGCs was not adversely affected by culture for up to 3 days.  相似文献   

2.
In the avian species, germline chimera production could be possible by transfer of donor germ cells into the blood vessel of recipient embryos. This study was conducted to establish an efficient transfer system of chicken gonadal primordial germ cells (gPGCs) for producing the chimeras having a high capacity of germline transmission. Gonadal PGCs retrieved from 5.5-day-old embryos (stage 28) of Korean Ogol chicken (KOC with i/i gene) were transferred into the dorsal aorta of 2.5-day-old embryos (stage 17) of White Leghorn chicken (WL with I/I gene). Prospective evaluations of whether culture duration (0, 5, or 10 days) and subsequent Ficoll separation of gPGCs before transfer affected chimera production and germline transmission in the chimeras were made while retrospective analysis was conducted for examining the effect of chimera sexuality. A testcross analysis by artificial insemination of presumptive chimeras with adult KOC was performed for evaluating each treatment effect. First, comparison was made for evaluating whether experimental treatments could improve chimera production, but none of the treatments were significantly (P = 0.6831) influenced (5.1%-14.4%). Second, it was determined whether each treatment could enhance germline transmission in produced chimeras. More (P < 0.0001) progenies with black feathers (i/i) were produced in the germline chimeras derived from the transfer of 10-day-cultured gPGCs than from the transfer of 0- or 5-day-cultured gPGCs (0.6%-7.8% vs. 10.7%-49.7%). Ficoll separation was negatively affected (P < 0.0001), whereas there was no effect in chimera sexuality (P = 0.6011). In conclusion, improved germline transmission of more than a 45% transmission rate was found in chicken chimeras produced by transfer of 10-day-cultured gPGCs being separated without Ficoll treatment.  相似文献   

3.
This study reports for the first time the production of chicken germline chimeras by transfer of embryonic germ (EG) cells into recipient embryos of different strain. EG cells were established by the subculture of gonadal tissue cells retrieved from stage 28 White Leghorn (WL) embryos with I/I gene. During primary culture (P(0)), gonadal primordial germ cells (gPGCs) in the stromal cells began to form colonies after 7 days in culture with significant (P < 0.0001) increase in cell population. Colonized gPGCs were then subcultured with chicken embryonic fibroblast monolayer for EG cell preparation. Prepared EG cells or gPGCs at P(0) were transferred to stage 17 Korean Ogol chicken (KOC) embryos with i/i gene. The recipient chickens were raised for 6 months to sexual maturity, then a testcross analysis by artificial insemination was conducted for evaluating germline chimerism. As results, transfer of EG cells and gPGCs yielded total 17 germline chimeras; 2 out of 15 (13.3%) and 15 of 176 sexually matured chickens (8.5%), respectively. The efficiency of germline transmission in the chimeras was 1.5-14.6% in EG cells, while 1.3-27.6% in gPGCs. In conclusion, chicken germline chimeras could be produced by the transfer of EG cells, as well as gPGCs, which might enormously contribute to establishing various innovative technologies in the field of avian transgenic research for bioreactor production.  相似文献   

4.
Kim JN  Lee YM  Park TS  Jung JG  Cho BW  Lim JM  Han JY 《Theriogenology》2005,63(4):1038-1049
The developmental similarity between the chicken and pheasant (Phasianus colchicus) allows the novel biotechnologies developed in the chicken to be applied to the production of transgenic pheasants and interspecies germline chimeras. To detect pheasant primordial germ cells (PGCs) efficiently, which is important for inducing germline transmission, the ultrastructure of PGCs and their reactivity to several antibodies (2C9, QB2, anti-SSEA-1, and QCR1) and periodic acid-Schiff's solution (PAS) were examined. To obtain PGCs, blood was taken from embryos incubated for 62-72 h or from gonads from embryos incubated for 156-216 h. The PGCs collected from both sources had the typical ultrastructure of pluripotent cells: a large nucleus with a distinct nucleolus, a high ratio of nuclear to cytoplasmic volume, and a distinct cytoplasmic membrane. In comparing the morphology of PGCs collected from different sites, more mitochondria and better-developed membrane microvilli were found in gonadal PGCs than in circulating PGCs. The nucleus of gonadal PGCs was flattened and had a large eccentrically positioned nucleolus. Of the antibodies tested, only QCR1 antibody reacted with an epitope in pheasant PGCs, and no specific signal was detected to other antibodies. The temporal change in the PGC populations in the blood and gonads of embryos was examined. In blood, the population was greater (P < 0.0001) in embryos incubated for 64 h than in embryos incubated for 62 or 66-72 h (31.4 versus 5.6-16.2 microL(-1)). In embryonic gonads, the number of PGCs increased continuously from 156 to 216 h of incubation (193-2,718 cells/embryo), although the ratio of PGCs to total gonadal cells did not change significantly (0.50-0.61%). In conclusion, pheasant PGCs have typical germ cell morphology and possess the QCR1 epitope. Circulating blood and the gonads of embryos incubated for 64 and 216 h, respectively, are good sources of PGCs.  相似文献   

5.
Busulfan (1,4-butanediol dimethanesulfonate) was used to deplete endogenous germ cells for the enhanced production of chicken germline chimeras. Utilizing immunohistochemical identification of primordial gem cells (PGCs) in Stage 27 chicken embryos, two delivery formulations were compared relative to the degree of endogenous PGC depletion, a busulfan suspension (BS) and a solublized busulfan emulsion (SBE). Both busulfan treatments resulted in a significant reduction in PGCs when compared to controls. However, the SBE resulted in a more consistent and extensive depletion of PGCs than that observed with the BS treatment. Repopulation of SBE-treated embryos with exogenous PGCs resulted in a threefold increase of PGCs in Stage 27 embryos. Subsequently, germline chimeras were produced by the transfer of male gonadal PGCs from Barred Plymouth Rock embryos into untreated and SBE-treated White Leghorn embryos. Progeny testing of the presumptive chimeras with adult Barred Plymouth Rock chickens was performed to evaluate the efficiency of germline chimera production. The frequency of germline chimerism in SBE-treated recipients increased fivefold when compared to untreated recipients. The number of donor-derived offspring from the germline chimeras also increased eightfold following SBE-treatment of the recipient embryos. These results demonstrated that the administration of a busulfan emulsion into the egg yolk of unincubated eggs improved the depletion of endogenous PGCs in the embryo and enhanced the efficiency of germline chimera production.  相似文献   

6.
This study was conducted to evaluate whether the sex of donor primordial germ cells (PGCs) influences production of chimeric semen from recipient hatchlings produced by interspecies transfer between pheasant (Phasianus colchicus) and chicken (Gallus gallus). Pheasant PGCs were retrieved from 7-d-old embryos and subsequently transferred into circulatory blood of 2.5-d-old (Stage 17) embryos. The sex of embryos was discerned 3 to 6 days after laying, and in preliminary study, overall rate of embryo survival after sexing was 74.6% with male-to-female ratio of 0.49 to 0.51. In Experiment 1, magnetic-activated cell sorting (MACS) using QCR1 antibody was effective for enriching the population of male and female PGCs in gonadal cells (9.2- to 12.5-fold and 10.8- to 19.5-fold increase, respectively). In Experiment 2, an increase in the number of hatchlings producing chimeric semen was detected after the homosexual transfer of male-to-male compared with that after the heterosexual transfer of female-to-male (68% to 88%). Significant increase was found in the frequency of chimeric semen production (0.96 to 1.68 times); production of pheasant progenies by artificial insemination using chimeric semen was also increased in the homosexual transfer (0 to 3 cases). In conclusion, the homosexual PGC transfer of male-to-male yielded better rate of generating pheasant progenies after test cross-reproduction than that of the heterosexual transfer of female-to-male, which could improve the efficiency of interspecies germ cell transfer system.  相似文献   

7.
Ha JY  Park TS  Hong YH  Jeong DK  Kim JN  Kim KD  Lim JM 《Theriogenology》2002,58(8):1531-1539
We previously reported that germline chimeras could be produced by transfer of chicken gonadal primordial germ cells (gPGCs) cultured for a short term (5 days). This study was subsequently undertaken to examine whether gPGCs maintained in vitro for an extended period could retain their specific characteristics to induce germline transmission. Chicken (White Leghorn, WL) gPGCs were retrieved from embryos at stage 28 (5.5 days of incubation) and continuously cultured for 2 months in modified Dulbecco's minimal essential medium without subpassage and changing of the feeder cell layer. After the identification of gPGC characteristics using Periodic acid-Shiff's (PAS) reaction and anti stage-specific embryonic antigen-1 (SSEA-1) antibody staining at the end of the culture, cultured gPGCs were injected into the dorsal aorta of Korean Ogol Chicken (KOC) recipient embryos at stage 17 (2.5 days of incubation). Nineteen chickens (13 males and 6 females) were hatched, grown to sexual maturity, and subsequently subjected to testcross analysis employing artificial insemination with adult KOC. Of these, four (three males and one female) hatched chickens with white coat color. The percentage of germline chimerism was 21% (4/19). The results of this study demonstrated that gPGCs could maintain their specific characteristics for up to 2 months in vitro, resulting in the birth of germline chimeras following transfer to recipient embryos.  相似文献   

8.
The behavior of quail primordial germ cells (PGC) after injection into chick embryos by the intravascular route was examined. The quail (donor) PGC, taken from the bloodstream of quail embryos (recipient) at stage 13-14, were injected into the vitelline vessels of chick embryos (recipient) at stage 15. In the recipient embryos, the PGC of the quail and the chick were histochemically distinguished by a double-staining technique involving a lectin, from Wistaria floribunda (WFA) and the PAS reaction. One day after injection, quail PGC appeared in the prospective gonadal region of recipient chick embryos, being localized among the recipient chick PGC. This result indicates that a staining technique specific for WFA lectin is useful for identification of quail PGC and that quail PGC can be transferred by a vascular route for the production of germline chimeras.  相似文献   

9.
Primordial germ cells (PGCs) are the only cells in developing embryos that can transmit genetic information to the next generation. PGCs therefore have considerable potential value for gene banking and cryopreservation, particularly via production of donor gametes using germ-line chimeras. In some animal species, including teleost fish, the feasibility of using PGC transplantation to obtain donor-derived offspring, within and between species, has been demonstrated. Successful use of PGC transplantation to produce germ-line chimeras is absolutely dependent on the migration of the transplanted cells from the site of transplantation to the host gonadal region. Here, we induced germ-line chimeras between teleost species using two different protocols: blastomere transplantation and single PGC transplantation. We evaluated the methods using the rate of successful migration of transplanted PGCs to the gonadal region of the host embryo. First, we transplanted blastomeres from zebrafish, pearl danio, goldfish, or loach into blastula-stage zebrafish embryos. Some somatic cells, derived from donor blastomeres, were co-transplanted with the PGCs and formed aggregates in the host embryos; a low efficiency of PGC transfer was achieved. Second, a single PGC from the donor species was transplanted into a zebrafish embryo. In all inter-species combinations, the donor PGC migrated toward the gonadal region of the host embryo at a comparatively high rate, regardless of the phylogenetic relationship of the donor and host species. These transplantation experiments showed that the mechanism of PGC migration is highly conserved beyond the family barrier in fish and that transplantation of a single PGC is an efficient method for producing inter-species germ-line chimeras.  相似文献   

10.
We transfused concentrated primordial germ cells (PGCs) of the black strain (D: homozygous for the autosomal incomplete dominant gene, D) of quail into the embryos of the wild-type plumage strain (WP: d+/d+) of quail. The recipient quail were raised until sexual maturity and a progeny test of the putative germline chimeras was performed to examine the donor gamete-derived offspring (D/d+). Thirty-one percent (36/115) of the transfused quail hatched and 21 (13 females and 8 males) of them reached maturity. Five females and 2 males were germline chimeras producing donor gamete-derived offspring. Transmission rates of the donor derived gametes in the chimeric females and males were 1.8-8.3% and 2.6-63.0%, respectively. Germline chimeric and the other putative chimeric males were also test-mated with females from the sex-linked imperfect albino strain (AL: d+/d+, al/W, where al indicates the sex-linked imperfect albino gene on the Z chromosome, and W indicates the W chromosome) for autosexing of W-bearing spermatozoa: No albino offspring were born.  相似文献   

11.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

12.
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.  相似文献   

13.
This study was conducted to evaluate whether immunomagnetic treatment could improve the retrieval and migration capacity of avian gonadal primordial germ cells (gPGCs) collected from gonads in 5.5-day-old chick and 5-day-old quail embryos, respectively. Collected gPGCs were loaded into a magnetic-activated cell sorter (MACS) after being conjugated with specific gPGC antibodies and either MACS-treated or non-treated cells in each species were subsequently transferred to the recipient embryos. MACS treatment significantly (P < 0.05) increased the population ratio of gPGCs in gonadal cells retrieved (0.74 to 33.4% in the chicken and 2.68 to 45.1% in the quail). This was due to decreased number of non-gPGCs in total cell population. MACS treatment further enhanced gonadal migration of gPGCs transferred in both species (10% vs. 80-85% in the chicken and 10-15% vs. 70-80% in the quail). Increase in the number of microinjected cells up to 600 cells/embryo did not eliminate such promoting effect. In conclusion, MACS treatment greatly increased the population ratio of avian gPGCs in gonadal cells, resulting improved gonadal migration in recipient embryos.  相似文献   

14.
Kang SJ  Sohn SH  Kang KS  Lee HC  Lee SK  Choi JW  Han JY 《Theriogenology》2011,75(4):696-706
Interspecific hybrids provide insights into fundamental genetic principles, and may prove useful for biotechnological applications and as tools for the conservation of endangered species. In the present study, interspecies hybrids were generated between the Korean ring-necked pheasant (Phasianus colchicus) and the White Leghorn chicken (Gallus gallus domesticus). We determined whether these hybrids were good recipients for the production of germline chimeric birds. PCR-based species-specific amplification and karyotype analyses showed that the hybrids inherited genetic material from both parents. Evaluation of biological function indicated that the growth rates of hybrids during the exponential phase (body weight/week) were similar to those of the pheasant but not the chicken, and that the incubation period for hatching was significantly different from that of both parents. Primordial germ cells (PGCs) of hybrids reacted with a pheasant PGC-specific antibody and circulated normally in blood vessels. The peak time of hybrid PGC migration was equivalent to that of the pheasant. In late embryonic stages, germ cells were detected by the QCR1 antibody on 15 d male gonads and were normally localized in the seminiferous cords. We examined the migration ability and developmental localization of exogenous PGCs transferred into the blood vessels of 63 h hybrid embryos. Donor-derived PGCs reacted with a donor-specific antibody were detected on 7 d gonads and the seminiferous tubules of hatchlings. Therefore, germ cell transfer into developing embryos of an interspecies hybrid can be efficiently used for the conservation of threatened animals and endangered species, and many biotechnological applications.  相似文献   

15.
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.  相似文献   

16.
Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.  相似文献   

17.
Simplicity is the key element of an inexpensive technique described that is superior in performance to previous methods. It can make it the rapid method of choice to obtain reasonable yields of purified primordial germ cells (PGCs) for immediate production of germline chimeric chickens with integrated foreign genes. After Ficoll centrifugation, the purity of PGCs from gonads was 80.9+/-0.08% (mechanical) compared with 86.1+/-0.19% (enzymatic). GFP gene and lacZ-transduced chicken gonadal primordial germ cells (gPGCs) examined 72h after transduction had a transfection efficiency of approximately 61% and approximately 64%, respectively. After 10 days of G418 selection, approximately 90 and 92% of pure gPGCs did not contain other cells following this Ficoll gradient centrifugation method of preparation.  相似文献   

18.
Quail-chick chimeras have been used extensively in the field of developmental biology. To detect quail cells more easily and to detect cellular processes of quail cells in quail-chick chimeras, we generated four monoclonal antibodies (MAb) specific to some quail tissues. MAb QCR1 recognizes blood vessels, blood cells, and cartilage cells, MAb QB1 recognizes quail blood vessels and blood cells, and MAb QB2 recognizes quail blood vessels, blood cells, and mesenchymal tissues. These antibodies bound to those tissues in 3-9-day quail embryos and did not bind to any tissues of 3-9-day chick embryos. MAb QSC1 is specific to the ventral half of spinal cord and thymus in 9-day quail embryo. No tissue in 9-day chick embryo reacted with this MAb. This antibody binds transiently to a small number of brain vesicle cells in developing chick embryo as well as in quail embryo. A preliminary application of two of these MAb, QCR1 and QSC1, on quail-chick chimeras of neural tube and somites is reported here.  相似文献   

19.
Immunomagnetic cell sorting (MACS) with the monoclonal antibody (mAb) QCR1 was compared with the Ficoll density-gradient centrifugation system (FICS) in terms of the efficiency of enrichment of quail (Coturnix japonica) primordial germ cells (PGCs) from blood. The purified PGCs were tested for their ability to settle in the chick (Gallus domesticus) embryonic gonad. Blood containing 60-100 PGCs microliter-1 was taken from the dorsal aorta of quail embryos at Hamburger and Hamilton's stages 14-16. The amount and concentration of PGCs in the PGC-rich fraction purified by MACS were greater than in the fraction purified by FICS. Purified quail PGCs were transfused into chick embryos at stages 14-16 and immunohistochemically stained with mAb QCRI on day 8 of chick development. Transfused PGCs purified by either MACS or FICS were positively stained in the chick embryonic gonads.  相似文献   

20.
A novel system has been developed to determine the origin and development of primordial germ cells (PGCs) in avian embryos directly. Approximately 700 cells were removed from the center of the area pellucida, the outer of the area pellucida, and the area opaca of the stage X blastoderm (Eyal-Giladi and Kochav, 1976; Dev Biol 49:321–337). When the cells were removed from the center of the area pellucida, the mean number of circulating PGCs per 1 μl of blood was significantly decreased to 13 (P < 0.05) in the embryo at stage 15 (Hamburger and Hamilton, 1951: J Morphol 88:49–92) as compared to intact embryos of 51. When the removed recipient cells from the center of the area pellucida were replenished with 500 donor cells, no reduction in the PGC number was observed. The removal of cells from the outer of area pellucida or from the area opaca had no effect on the number of PGCs. When another set of the manipulated embryos were cultured ex vivo to hatching and reared to sexual maturity, the absence of germ cells and the degeneration of seminiferous tubules were observed in resulting chickens derived from the blastoderm from which the cells were removed from the center of the area pellucida. Chimeric embryos produced by the male donor cells and the female recipient contained the female-derived cells at 97.2% in the whole embryo and 94.3% in the erythrocytes at 5 days of incubation. At 5–7 days of incubation, masculinization was observed in about one half of the mixed-sex embryos. The proportions of the female-derived cells in the whole embryo and in the erythrocytes were 76.5% and 80.2% at 7 days to 55.7% and 62.5% at 10 days of incubation, respectively. When the chimeras reached their sexual maturity, they were test mated to assess donor contribution to their germline. Five of six male chimeras (83%) and three of five female chimeras (60%) from male donor cells and a female recipient embryo from which 700 cells at the center of area pellucida were removed were germline chimeras. Three of the five male germline chimeras (60%) and one of the three female germline chimeras (33%) transmitted exclusively (100%) donor-derived gametes into the offspring. When embryonic cells were removed from the outer of area pellucida or area opaca, regardless of the sex combination of the donor and the recipient, the transmission of the donor-derived gametes was essentially null. The findings in the present studies demonstrated, both in vivo and in vitro, that the PGCs originate in the central part of the area pellucida and that the developmental fate to germ cell (PGCs) had been destined at stage X blastoderm in chickens. Mol. Reprod. Dev. 48:501–510, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号