首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous study indicated that vanadium compounds can block cell cycle progression at the G1/S phase in human hepatoma HepG2 cells via a highly activated extracellular signal-regulated protein kinase (ERK) signal. To explore their differential action on normal cells, we investigated the response of an immortalized hepatic cell line, L02 cells. The results demonstrated that a higher concentration of vanadium compounds was needed to inhibit L02 proliferation, which was associated with S and G2/M cell cycle arrest. In addition, in contrast to insignificant reactive oxygen species (ROS) generation in HepG2 cells, all of the vanadium compounds resulted significant increases in both O 2 ·? and H2O2 levels in L02 cells. At the same time, ERK and c-Jun N-terminal kinase (JNK) as well as cell division control protein 2 homolog (Cdc2) were found to be highly phosphorylated, which could be counteracted with the antioxidant N-acetylcysteine (NAC). The current study also demonstrated that both the ERK and the JNK pathways contributed to the cell cycle arrest induced by vanadium compounds in L02 cells. More importantly, it was found that although NAC can ameliorate the cytotoxicity of vanadium compounds in L02 cells, it did not decrease their cytotoxicity in HepG2 cells. It thus shed light on the potential therapeutic applications of vanadium compounds with antioxidants as synergistic agents to reduce their toxicities in human normal cells without affecting their antitumor activities in cancer cells.  相似文献   

2.
In its vanadate (V5+) or vanadyl (V4+) forms, vanadium has been demonstrated to possess antidiabetic activity. Oral treatment of streptozotocin (STZ)-diabetic animals with either form is associated with correction of hyperglycemia, and prevention of diabetes-induced complications, although weight gain is unaffected. Vanadium treatment of non-diabetic animals lowers plasma insulin levels by reducing insulin demand, as these animals remain normoglycemic. These results suggest that vanadium hasin vivo insulin-mimetic or insulin-enhancing effects, in agreement with severalin vitro observations.Chronic treatment with vanadium has also been shown to result in sustained antidiabetic effects in STZ-diabetic animals long after treatment has ceased. Thus, at 13 weeks after withdrawal from treatment, corrected animals had normalized glucose and weight gain, and improved basal insulin levels. In addition, near-normal glucose tolerance was found despite an insignificant insulin response. Since vanadium accumulates in several tissue sites (e.g. bone, kidney) when pharmacological doses are administered, it is possible that stored vanadium may be important in maintaining near-normal glucose tolerance at least in the short-term following withdrawal from treatment. Recently, following withdrawal of vanadyl treatment up to 30 weeks, diabetic animals which had remained normoglycemic and had normalized glucose tolerance showed improvements in plasma insulin levels both in the basal state and in response to oral glucose, as compared to those which had reverted to hyperglycemia. The observed significant improvements in insulin capacity over the long-term (>3 months) suggests that a restored and/or preserved insulin secretion may be essential for maintained reversal of the diabetic state over a prolonged period after treatment is withdrawn.  相似文献   

3.
Saprotrophic fungi were investigated for their bioweathering effects on the vanadium‐ and lead‐containing insoluble apatite group mineral, vanadinite [Pb5(VO4)3Cl]. Despite the insolubility of vanadinite, fungi exerted both biochemical and biophysical effects on the mineral including etching, penetration and formation of new biominerals. Lead oxalate was precipitated by Aspergillus niger during bioleaching of natural and synthetic vanadinite. Some calcium oxalate monohydrate (whewellite) was formed with natural vanadinite because of the presence of associated ankerite [Ca(Fe2+,Mg)(CO3)2]. Aspergillus niger also precipitated lead oxalate during growth in the presence of lead carbonate, vanadium(V) oxide and ammonium metavanadate, while abiotic tests confirmed the efficacy of oxalic acid in solubilizing vanadinite and precipitating lead as oxalate. Geochemical modelling confirmed the complexity of vanadium speciation, and the significant effect of oxalate. Oxalate–vanadium complexes markedly reduced the vanadinite stability field, with cationic lead(II) and lead oxalate also occurring. In all treatments and geochemical simulations, no other lead vanadate, or vanadium minerals were detected. This research highlights the importance of oxalate in vanadinite bioweathering and suggests a general fungal transformation of lead‐containing apatite group minerals (e.g. vanadinite, pyromorphite, mimetite) by this mechanism. The findings are also relevant to remedial treatments for lead/vanadium contamination, and novel approaches for vanadium recovery.  相似文献   

4.
The effect of vanadium oxides on living systems may involve the in vivo conversion of vanadate and vanadyl ions. The addition of 5 mM orthovanadate (VO4(3-), V(V)), a known inhibitor of the (Na,K)-ATPase, to yeast cells stopped growth. In contrast, the addition of 5 mM vanadyl (VO2+, V(IV) stimulated growth. Orthovanadate addition to whole cells is known to stimulate various cellular processes. In yeast, both ions inhibited the plasma membrane Mg2+ ATPase and were transported into the cell as demonstrated with [48V]VO4(3-) and VO2+. ESR spectroscopy has been used to measure the cell-associated paramagnetic vandyl ion, while 51V NMR has detected cell-associated diamagnetic vanadium (e.g. V(V)). Cells were exposed to both toxic (5 mM) and nontoxic (1 mM) concentrations of vanadate in the culture medium. ESR showed that under both conditions, vanadate became cell associated and was converted to vanadyl which then accumulated in the cell culture medium. 51V NMR studies showed the accumulation of new cell-associated vanadium resonances identified as dimeric vanadate and decavanadate in cells exposed to toxic amounts of medium vanadate (5 mM). These vanadate compounds did not accumulate in cells exposed to 1 mM vanadate. These studies confirm that the inhibitory form of vanadium usually observed in in vitro experiments is vanadate, in one or more of its hydrated forms. These data also support the hypothesis that the stimulatory form of vanadium usually observed in whole cell experiments is the vanadyl ion or one or more of its liganded derivatives.  相似文献   

5.
The major pectenotoxin and okadaic acid group toxins in Dinophysis acuta and Dinophysis acuminata cell concentrates, collected from various locations around the coast of the South Island of New Zealand (NZ), were determined by liquid chromatography–tandem mass spectrometry (LC–MS/MS). PTX2 and PTX11 were the major polyether toxins in all Dinophysis spp. cell concentrates. D. acuta contained PTX11 and PTX2 at concentrations of 4.7–64.6 and 32.5–107.5 pg per cell, respectively. The amounts of PTX11 and PTX2 in D. acuminata were much lower at 0.4–2.1 and 2.4–25.8 pg per cell, respectively. PTX seco acids comprised only 4% of the total PTX content of both D. acuta and D. acuminata. D. acuta contained low levels of OA (0.8–2.7 pg per cell) but specimens from the South Island west coast also contained up to 10 times higher levels of OA esters (7.0–10.2 pg per cell). Esterified forms of OA were not observed in D. acuta specimens from the Marlborough Sounds. D. acuta did not contain any DTX1 though all D. acuminata specimens contained DTX1 at levels of 0.1–2.4 pg per cell. DTX2 was not present in any New Zealand Dinophysis spp. specimens. Although the total toxin content varied spatially and temporally, the relative proportions of the various toxins in different specimens from the same location appeared to be relatively stable. The total PTX/total OA ratios in different isolates of D. acuta were very similar (mean±S.E.: 14.9±1.9), although the Marlborough Sounds D. acuminata isolates had a higher total PTX/total OA ratio (mean±S.E.: 22.7±2.4) than the Akaroa Harbour isolates (8.0). No evidence of azaspiracids were detected in these specimens. These results show that the LC–MS/MS monitoring of plankton for PTX group toxins (e.g. PTX2) and their derivatives (e.g. PTX2 seco acid) may provide a sensitive, semi-quantitative, indicator of the presence of more cryptic OA group toxins (e.g. OA esters).  相似文献   

6.
Mutations in GJB2 and GJB6, the genes that encode the human gap junction proteins connexin26 (Cx26) and connexin30 (Cx30), respectively, cause hearing loss. Cx26 and Cx30 are both expressed in the cochlea, leading to the potential formation of heteromeric hemichannels and heterotypic gap junction channels. To investigate their interactions, we expressed human Cx26 and Cx30 individually or together in HeLa cells. When they were expressed together, Cx26 and Cx30 appeared to interact directly (by their colocalization in gap junction plaques, by coimmunoprecipitation, and by fluorescence resonance energy transfer). Scrape-loading cells that express either Cx26 or Cx30 demonstrated that Cx26 homotypic channels robustly transferred both cationic and anionic tracers, whereas Cx30 homotypic channels transferred cationic but not anionic tracers. Cells expressing both Cx26 and Cx30 also transferred both cationic and anionic tracers by scrape loading, and the rate of calcein (an anionic tracer) transfer was intermediate between their homotypic counterparts by fluorescence recovery after photobleaching. Fluorescence recovery after photobleaching also showed that Cx26 and Cx30 form functional heterotypic channels, allowing the transfer of calcein, which did not pass the homotypic Cx30 channels. Electrophysiological recordings of cell pairs expressing different combinations of Cx26 and/or Cx30 demonstrated unique gating properties of cell pairs expressing both Cx26 and Cx30. These results indicate that Cx26 and Cx30 form functional heteromeric and heterotypic channels, whose biophysical properties and permeabilities are different from their homotypic counterparts. gap junctions; hearing; fluorescence resonance energy transfer; fluorescence recovery after photobleaching; immunoprecipitation; dye transfer; electrophysiology  相似文献   

7.
Dipyridamole (DIP), 2,6-bis(diethanolamino)-4,8-dipiperidino-[5,4-d]pyrimidine, is a coronary vasodilator widely used in clinics. It has also been reported to have coactivator activity for a number of antitumour drugs and antioxidant activity in membrane systems. In recent years we have been studying the spectroscopic properties of this drug and several of its derivatives as well as their interaction with charged micelles and phospholipid monolayers. A strong interaction of DIP and DIP derivatives with these model membrane systems and a dependence of the strength of the interaction upon the chemical structure of the DIP derivative was observed. Here, the antioxidant effect of DIP and the derivatives, RA14, RA47, and RA25, was compared. We observed that although it strongly inhibits the iron-induced lipoperoxidation on mitochondria (IC50 = 1 μM), it shows no protection against an organic oxidant, cumene hydroperoxide. The order of hydrophobicity of the DIP derivatives, DIP > RA14 > RA47 > RA25, correlates very well with both the values of the association constants of these derivatives to micelles, their localization in the micelles, and phospholipid films and their antioxidant effect on mitochondria. So, a very good correlation of the structure of the drug in regarded to the nature of its substituents with the biological activity is observed. Essentially the same result was observed either measuring the lipid peroxidation or the membrane fluidity by ESR, suggesting that the effect of DIP and DIP derivatives is probably associated to their binding to the lipid bilayer and not to interaction with membrane proteins.  相似文献   

8.
The aim of this study was to evaluate biologically active novel molecules having potentials to be drugs by their antitumor properties and by activities of apoptotic caspase and topoisomerase. Following syntheses of novel eight bis(α‐aminoalkyl)phosphinic acid derivatives ( 4a–h ) as a result of array of reactions, compounds were evaluated by cytotoxic effects in vitro on human breast cancer (MCF‐7) and normal endothelial (HUVEC) cell lines. All phosphinic acid derivatives were effective for cytotoxicity on both MCF‐7 and HUVEC lines, while 4c , 4e , and 4f compounds were found significantly more effective. For the evaluation of antitumor properties of compounds in a highly sensitive method, their effects on inhibiting topoisomerases I and II were investigated. Also, some of the bis(α‐aminoalkyl)phosphinic acid derivatives ( 4a, 4e–h ) showed nice inhibitory action against acetylcholinesterase and human carbonic anhydrase isoforms I and II.  相似文献   

9.
Vanadium is a trace element present in practically all cells in plants and animals. It exerts interesting actions in living systems. At pharmacological doses, vanadium compounds display relevant biological actions such as mimicking insulin and growth factors as well as having osteogenic activity. Some vanadium compounds also show antitumoral properties. The importance of vanadium in bone arises from the studies developed to establish the essentiality of this element in animals and humans. Bone tissue, where the element seems to play an important role, accumulates great amounts of vanadium. This paper reviews the physiology of osteoblasts, the involvement of different growth factors on bone development, and the effects of vanadium derivatives on the skeletal system of animal models and bone-related cells. Two cellular lines are discussed in particular; one derived from a rat osteosarcoma (UMR106) and the other is a nontransformed osteoblast cell line (MC3T3-E1). The effects of different growth factors and their mechanisms of action in these cellular lines are reviewed. These models of osteoblasts are especially useful in understanding the intracellular signaling pathways of vanadium derivatives in hard tissues. Vanadium uses an intricate interplay of intracellular mechanisms to exert different biochemical and pharmacological actions. The effects of vanadium derivatives on some cellular signaling pathways related to insulin are compiled in this review. The comprehension of these intracellular signaling pathways may facilitate the design of vanadium compounds with promising therapeutic applications as well as the understanding of secondary side effects derived from the use of vanadium as a therapeutic agent.  相似文献   

10.
In vivo effects of insulin and vanadium treatment on glycogen synthase (GS), glycogen synthase kinase-3 (GSK-3) and protein phosphatase-1 (PP1) activity were determined in Wistar rats with streptozotocin (STZ)-induced diabetes. The skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). Diabetes, vanadium, and insulin in vivo treatment did not affect muscle GSK-3 activity as compared to controls. Following insulin stimulation in 4-week STZ-diabetic rats muscle GS fractional activity (GSFA) was increased 3 fold (p < 0.05), while in 7-week diabetic rats it remained unchanged, suggesting development of insulin resistance in longer term diabetes. Muscle PP1 activity was increased in diabetic rats and returned to normal after vanadium treatment, while muscle GSFA remained unchanged. Therefore, it is possible that PP1 is involved in the regulation of some other cellular events of vanadium (other than regulation of glycogen synthesis). The lack of effect of vanadium treatment in stimulating glycogen synthesis in skeletal muscle suggests the involvement of other metabolic pathways in the observed glucoregulatory effect of vanadium.  相似文献   

11.
Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycaemia resulting in defective insulin secretion, resistance to insulin action or both. The use of biguanides, sulphonylurea and other drugs are valuable in the treatment of diabetes mellitus; their use, however, is restricted by their limited action, pharmaco-kinetic properties, secondary failure rates and side effects. Trigonella foenum-graecum, commonly known as fenugreek, is a plant that has been extensively used as a source of antidiabetic compounds from its seeds and leaf extracts. Preliminary human trials and animal experiments suggest possible hypoglycaemic and anti-hyperlipedemic properties of fenugreek seed powder taken orally. Our results show that the action of fenugreek in lowering blood glucose levels is almost comparable to the effect of insulin. Combination with trace metal showed that vanadium had additive effects and manganese had additive effects with insulin on in vitro system in control and diabetic animals of young and old ages using adipose tissue. The Trigonella and vanadium effects were studied in a number of tissues including liver, kidney, brain peripheral nerve, heart, red blood cells and skeletal muscle. Addition of Trigonella to vanadium significantly removed the toxicity of vanadium when used to reduce blood glucose levels. Administration of the various combinations of the antidiabetic compounds to diabetic animals was found to reverse most of the diabetic effects studied at physiological, biochemical, histochemical and molecular levels. Results of the key enzymes of metabolic pathways have been summarized together with glucose transporter, Glut-4 and insulin levels. Our findings illustrate and elucidate the antidiabetic/insulin mimetic effects of Trigonella, manganese and vanadium.  相似文献   

12.
Seventeen steviol derivatives, i.e., 2 – 18 , and 19 isosteviol derivatives, i.e., 19 – 37 , were prepared from a diterpenoid glycoside, stevioside ( 1 ). Upon evaluation of the cytotoxic activities of these compounds against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines, nine steviol derivatives, i.e., 5 – 9 and 11 – 14 , and five isosteviol derivatives, i.e., 28 – 32 , exhibited activities with single‐digit micromolar IC50 values against one or more cell lines. All of these active compounds possess C(19)‐O‐acyl group, and among which, ent‐kaur‐16‐ene‐13,19‐diol 19‐O‐4′,4′,4′‐trifluorocrotonate ( 14 ) exhibited potent cytotoxicities against four cell lines with IC50 values in the range of 1.2–4.1 μM . Compound 14 induced typical apoptotic cell death in HL60 cells upon evaluation of the apoptosis‐inducing activity by flow‐cytometric analysis. These results suggested that acylation of the 19‐OH group of kaurane‐ and beyerane‐type diterpenoids might be useful for enhancement of their cytotoxicities with apoptosis‐inducing activity.  相似文献   

13.
Cytochrome P-450 is a group of enzymes involved in the biotransformation of many substances, including drugs. These enzymes possess a heme group (1) that when it is properly modified induces several important physicochemical changes that affect their enzymatic activity. In this work, the five structurally modified heme derivatives 2–6 and the native heme 1 were docked on CYP2B4, (an isoform of P450), in order to determine whether such modifications alter their binding form and binding affinity for CYP2B4 apoprotein. In addition, docking calculations were used to evaluate the affinity of CYP2B4 apoprotein-heme complexes for aniline (A) and N-methyl-aniline (NMA). Results showing the CYP2B4 heme 4- and heme 6-apoprotein complexes to be most energetically stable indicate that either hindrance effects or electronic properties are the most important factors with respect to the binding of heme derivatives at the heme-binding site. Furthermore, although all heme-apoprotein complexes demonstrated high affinity for both A and NMA, the CYP2B4 apoprotein-5 complex had higher affinity for A, and the heme 6 complex had higher affinity for NMA. Finally, surface electronic properties (SEP) were calculated in order to explain why certain arginine residues of CYP2B4 apoprotein interact with polarizable functionalities, such as ester groups or sp 2 carbons, present in some heme derivates. The main physicochemical parameter involved in the recognition process of the heme derivatives, the CYP2B4 apoprotein and A or NMA, are reported. Figure Scheme of steps to be followed for obtaining five new CYP2B4 apoprotein-heme complexes by docking  相似文献   

14.
Accumulation of vanadium, manganese, and nickel in Antarctic tunicates   总被引:1,自引:0,他引:1  
The vanadium, manganese, and nickel contents of nine species of Antarctic tunicates were determined by atomic absorption spectroscopy. The Antarctic species Distaplia cylindrica contained significantly more vanadium (1,445 ppm dry weight) than the other Antarctic tunicates investigated. Antarctic Ascidia sp. was also shown to accumulate considerable amounts of vanadium (567 ppm). Low levels of bioaccumulated manganese (<50 ppm) and nickel (<15 ppm) were observed in all tunicates examined.  相似文献   

15.
《Free radical research》2013,47(12):1473-1484
Abstract

A series hydroxycinnamic and gallic acids and their derivatives were studied with the aim of evaluating their in vitro antioxidant properties both in homogeneous and in cellular systems. It was concluded from the oxygen radical absorbance capacity-fluorescein (ORAC-FL), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and cyclic voltammetry data that some compounds exhibit remarkable antioxidant properties. In general, in homogeneous media (DPPH assay), galloyl-based cinnamic and benzoic systems (compounds 7–11) were the most active, exhibiting the lowest oxidation potentials in both dimethyl sulfoxide (DMSO) and phosphate buffer. Yet, p-coumaric acid and its derivatives (compounds 1–3) disclosed the highest scavenging activity toward peroxyl radicals (ORAC-FL assay). Interesting structure–property– activity relationships between ORAC-FL, or DPPH radical, and redox potentials have been attained, showing that the latter parameter can be a valuable antioxidant measure. It was evidenced that redox potentials are related to the structural features of cinnamic and benzoic systems and that their activities are also dependent on the radical generated in the assay. Electron spin resonance data of the phenoxyl radicals generated both in DMSO and phosphate buffer support the assumption that radical stability is related to the type of phenolic system. Galloyl-based cinnamic and benzoic ester-type systems (compounds 9 and 11) were the most active and effective compounds in cell-based assays (51.13 ± 1.27% and 54.90 ± 3.65%, respectively). In cellular systems, hydroxycinnamic and hydroxybenzoic systems operate based on their intrinsic antioxidant outline and lipophilic properties, so the balance between these two properties is considered of the utmost importance to ensure their performance in the prevention or minimization of the effects due to free radical overproduction.  相似文献   

16.
This paper describes the profile of peroxidase (POX) isoenzymes induced due to the natural infection of Staphylococcus xylosus in spongy Alphonso mango fruits. Very low levels of protein and POX activity was observed in non-spongy unripe fruits, and when these fruits turned table-ripe, the levels of both the protein content and POX activity increased several fold. The spongy fruits, however, showed further 2-fold increase in POX activity; although drastic decrease in protein content was observed. Anionic and cationic PAGE, and isoelectric focusing (IEF), resulted in separation of various isoenzymes of POX. Both, anionic and cationic PAGE indicated that, at unripe stage, only basic isoforms were present in trace amounts. In non-spongy ripe fruits, increased levels of both anionic and cationic isoforms were observed after staining the gel with o-dianisidine, the POX substrate. In spongy fruits, however, an anionic PAGE showed appearance of four acidic isoforms with relative electrophoretic mobility (REM) of 0.52, 0.73, 0.78, and 0.84 and an isoenzyme (REM 0.52), showed further activation, as indicated by the intense dark color formation. Cationic PAGE also indicated higher levels of two basic isoforms (REM 0.56 and 0.62), in the spongy fruits. Isoelectric focusing resolved these isoenzymes in acidic, neutral, and basic isoforms. Two acidic isoforms in the pI range of 2–3.5 were detected toward the anode region and two cationic isoforms of pI 7.8 and 8.7, toward the cathode, giving visible indication of increased levels of these isoforms. The increased intensities of the POX bands observed in anionic and cationic PAGE, and IEF, gave confirmatory evidence for the up regulation of anionic and cationic isoforms in spongy fruits. These isoenzymes could have been overexpressed as a defense response of the spongy fruits against the Staphylococcus infection.  相似文献   

17.
Propofol (2,6-diisopropylphenol), some substituted phenols (2,6-dimethylphenol and 2,6-ditertbutylphenol) and their 4-nitrosoderivatives have been compared for their scavenging ability towards 1,1-diphenyl-2-picrylhydrazyl and for their inhibitory action on lipid peroxidation. These products were also compared to the classical antioxidants butylated hydroxytoluene and butylated hydroxyanisole. When measuring the reactivity of the various phenolic derivatives with 1,1-diphenyl-2-picrylhydrazyl the following order of effectiveness was observed: butylated hydroxyanisole>propofol>2,6-dimethylphenol>2,6-di-tertbutylphenol?>?butylated hydroxytoluene. In cumene hydroperoxide-dependent microsomal lipid peroxidation, propofol acts as the most effective antioxidant, while butylated hydroxyanisole, 2,6-di-tertbutylphenol and butylated hydroxytoluene exhibit a rather similar effect, although lower than propofol. In the iron/ascorbate-dependent lipid peroxidation propofol, at concentrations higher than 10?μM, exhibits antioxidant properties comparable to those of butylated hydroxytoluene and butylated hydroxyanisole. 2,6-Dimethylphenol is scarcely effective in both lipoperoxidative systems. The antioxidant properties of the various molecules depend on their hydrophobic characteristics and on the steric and electronic effects of their substituents. However, the introduction of the nitroso group in the 4-position almost completely removes the antioxidant properties of the examined compounds. The nitrosation of the aromatic ring of antioxidant molecules and the consequent loss of antioxidant capacity can be considered a condition potentially occurring in vivo since nitric oxide and its derivatives are continuously formed in biological systems.  相似文献   

18.
The development of new vanadium derivatives with organic ligands, which improve the beneficial actions (insulin-mimetic, antitumoral) and decrease the toxic effects, is of great interest. A good candidate for the generation of a new vanadium compound is the flavonoid quercetin because of its own anticarcinogenic effect. The complex [VO(Quer)2EtOH] n (QuerVO) has been synthesized and characterized by means of different spectroscopic techniques (UV–vis, Fourier transform IR, electron paramagnetic resonance) and its magnetic and stability properties. The inhibitory effect on bovine alkaline phosphatase (ALP) activity has been tested for the free ligand, the complex as well as for the vanadyl(IV) (comparative purposes). The biological activity of the complex on the proliferation of two osteoblast-like cells in culture, a normal one (MC3T3E1) and a tumoral one (UMR106), has been compared with that of the vanadyl(IV) cation and quercetin. The differentiation osteoblast markers ALP specific activity and collagen synthesis have been also tested. In addition, the effect of QuerVO on the activation of the extracellular regulated kinase (ERK) pathway is reported. The bone antitumoral effect of quercetin alone was established with the cell proliferation assays (it inhibits the proliferation of the tumoral cells and does not exert any effect on the normal osteoblasts). Moreover, the complex exerts osteogenic effects since it stimulates the type I collagen production and is a weak inhibitory agent upon ALP activity. Finally, QuerVO stimulated the ERK phosphorylation in a dose–response manner and this activation seems to be involved as one of the possible mechanisms for the biological effects of the complex.  相似文献   

19.
Summary— Human pancreatic ductal cells of the Capan 1 cell line differentiate progressively during growth. After the exponential growth phase, the cells elongate and become polarized with their apical poles covered by microvilli and separated from the basolateral pole by tight junctions. In this stationary phase, they form domes, which are thought to result from the exchange of water and electrolytes. In this study, we demonstrated, using patch-clamp techniques, that HCO3? ions exit via the g350 high conductance anionic channel we observed recently at the Capan 1 cell surface. This g350 channel was thought to be either a Cl?/HCO3? antiport or a simple HCO3? channel. The stilbene derivatives 4-acetamido-4 isothiocyano-2-2′-disulfonic acid (SITS) and 4,4′ diisothiocyano stilbene-2,2′ disulfonic acid (DIDS) reduced both the number of domes and the Cl? and HCO3? flux through the g350 channel. Moreover, using histochemical, immunocytochemical and biochemical methods we showed that Capan 1 cells express a specific pattern of carbonic anhydrases (CA). Two types of CA were detected: the CA II isozyme mainly localized in the cytoplasm, but also found beneath the inner leaflet of the apical plasma membrane, and the CA IV isozyme localized on the outer leaflet of the apical plasma membrane and microvilli. Their molecular masses were 30 (CA II) and 55 kDa (CA IV), respectively. They were expressed continuously during the exponential growth phase, although their activity increased greatly during the stationary phase. Inhibition of dome formation by acetazolamide indicated the existence of a direct relationship between dome formation and CA. Characteristic structures with a central electron-dense core surrounded by a light halo were observed on the surface of cell membranes using histochemical and immunocytochemical methods. These structures were thought to represent a channel, corresponding possibly to CA IV. Our observations suggest that Capan 1 cells, despite their neoplasic transformation, produce HCO3? ions in the same way as normal human pancreatic ductal cells. Capan 1 cells in culture may therefore represent a suitable model for studying pancreatic duct HCO3? secretion at the cellular and molecular levels.  相似文献   

20.
Nine amino acid conjugate derivatives, each 2 – 10 and 12 – 20 , were prepared from abietic acid ( 1 ) and dehydroabietic acid ( 11 ), respectively, and they were evaluated for their cytotoxicities against four human cancer cell lines, i.e., leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3). All compounds showed cytotoxicities against HL60 with IC50 values in the range of 2.3–37.3 μM . In addition, most of the derivatives exhibited moderate cytotoxicities against the other cancer cell lines. Among the derivatives, methyl N‐[18‐oxoabieta‐8,11,13‐trien‐18‐yl]‐L ‐tyrosinate ( 19 ) exhibited potent cytotoxic activities against four cancer cell lines with IC50 values of 2.3 (HL60), 7.1 (A549), 3.9 (AZ521), and 8.1 μM (SK‐BR‐3). Furthermore, all derivatives were shown to possess high selective cytotoxic activities for leukemia cells, since they exhibited only weak cytotoxicities against normal lymphocyte cell line RPMI1788.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号