首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Although much progress has been made in the identification and characterization of adhesins borne by pathogenic bacteria, the molecular details underlying their interaction with host receptors remain largely unknown owing to the lack of appropriate probing techniques. Here we report a method, based on atomic force microscopy (AFM) with tips bearing biologically active molecules, for measuring the specific binding forces of individual adhesins and for mapping their distribution on the surface of living bacteria. First, we determined the adhesion forces between the heparin-binding haemagglutinin adhesin (HBHA) produced by Mycobacterium tuberculosis and heparin, used as a model sulphated glycoconjugate receptor. Both the adhesion frequency and adhesion force increased with contact time, indicating that the HBHA-heparin complex is formed via multiple intermolecular bridges. We then mapped the distribution of single HBHA molecules on the surface of living mycobacteria and found that the adhesin is not randomly distributed over the mycobacterial surface, but concentrated into nanodomains.  相似文献   

2.
NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.  相似文献   

3.
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.  相似文献   

4.
Summary The role of fimbriae in enterobacterial adhesion to roots of grasses and cereals is discussed. All nitrogen-fixing enteric bacteria isolated in Finland had fimbriae. AllEnterobacter isolates had mannose-binding type-1 fimbriae, whereas most of theKlebsiella isolates had both type-1 and type-3 fimbriae. The strains were isolated from a total of ten different grass species, and no specific association was found between grass species and bacterial fimbriation, biogroup or serogroup. Purified, radiolabeled fimbriae bound to roots ofPoa pratensis in vitro, and bacterial adhesion was inhibited by Fab fragments specific for fimbriae.Klebsiella strains carrying type-3 fimbriae adhered to roots of various grasses and cereals more efficiently than type-1- or nonfimbriated strains, and it was concluded that type-3 fimbriae are the major adhesions ofKlebsiella. Immunofluorescence studies revealed that the bacteria preferentially adhered to root hairs, and to a lesser extent, to the zone of elongation and the root cap mucilage. No strict host specificity in enterobacterial adhesion was observed.  相似文献   

5.
The precise mechanisms underlying the interaction between intestinal bacteria and the host epithelium lead to multiple consequences that remain poorly understood at the molecular level. Deciphering such events can provide valuable information as to the mode of action of commensal and probiotic microorganisms in the gastrointestinal environment. Potential roles of such microorganisms along the privileged target represented by the mucosal immune system include maturation prior, during and after weaning, and the reduction of inflammatory reactions in pathogenic conditions. Using human intestinal epithelial Caco-2 cell grown as polarized monolayers, we found that association of a Lactobacillus or a Bifidobacterium with nonspecific secretory IgA (SIgA) enhanced probiotic adhesion by a factor of 3.4-fold or more. Bacteria alone or in complex with SIgA reinforced transepithelial electrical resistance, a phenomenon coupled with increased phosphorylation of tight junction proteins zonula occludens-1 and occludin. In contrast, association with SIgA resulted in both enhanced level of nuclear translocation of NF-κB and production of epithelial polymeric Ig receptor as compared with bacteria alone. Moreover, thymic stromal lymphopoietin production was increased upon exposure to bacteria and further enhanced with SIgA-based complexes, whereas the level of pro-inflammatory epithelial cell mediators remained unaffected. Interestingly, SIgA-mediated potentiation of the Caco-2 cell responsiveness to the two probiotics tested involved Fab-independent interaction with the bacteria. These findings add to the multiple functions of SIgA and underscore a novel role of the antibody in interaction with intestinal bacteria.  相似文献   

6.
The ability of a pathogen to rapidly form a stable interaction with the host cell surface is key to its success. Bacterial pathogens use a repertoire of virulence factors, but their efficient use relies on close contact between the host and the pathogen. We have recently identified a constitutively expressed MAM7 (multivalent adhesion molecule 7), which is widely distributed in gram-negative pathogens and enables them to establish initial contact with the host cell. Here, we describe the dissection of the MAM7 interaction with the host cell surface into two distinct binding events, involving the host protein fibronectin and the membrane phospholipid phosphatidic acid. We analyzed which domains within MAM7 and fibronectin are necessary for complex formation. We further studied phosphatidic acid binding by MAM7 using site-directed mutagenesis and liposome association assays and demonstrated that a specific distribution of basic charge on MAM7 is required for high affinity binding. Finally, we showed that fibronectin and phosphatidic acid binding to MAM7 are not mutually exclusive and that the three molecules likely assemble into a tripartite complex on the host cell surface.  相似文献   

7.
Knief C  Delmotte N  Vorholt JA 《Proteomics》2011,11(15):3086-3105
Diverse bacterial taxa that live in association with plants affect plant health and development. This is most evident for those bacteria that undergo a symbiotic association with plants or infect the plants as pathogens. Proteome analyses have contributed significantly toward a deeper understanding of the molecular mechanisms underlying the development of these associations. They were applied to obtain a general overview of the protein composition of these bacteria, but more so to study effects of plant signaling molecules on the cytosolic proteome composition or metabolic adaptations upon plant colonization. Proteomic analyses are particularly useful for the identification of secreted proteins, which are indispensable to manipulate a host plant. Recent advances in the field of proteome analyses have initiated a new research area, the analysis of more complex microbial communities. Such studies are just at their beginning but hold great potential for the future to elucidate not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa when living in association with plants. These include not only the symbiotic and pathogenic bacteria, but also the commensal bacteria that are consistently found in association with plants and whose functions remain currently largely uncovered.  相似文献   

8.
Bacterial pathogenesis: exploiting cellular adherence   总被引:14,自引:0,他引:14  
Cell adhesion molecules, such as integrins, cadherins, the immunoglobulin superfamily of cell adhesion molecules and selectins, play important structural roles and are involved in various signal transduction processes. As an initial step in the infectious process, many bacterial pathogens adhere to cell adhesion molecules as a means of exploiting the underlying signaling pathways, entering into host cells or establishing extracellular persistence. Often, bacteria are able to bind to cell adhesion molecules by mimicking or acting in place of host cell receptors or their ligands. Recent studies have contributed to our understanding of bacterial adherence mechanisms and the consequences of receptor engagement; they have also highlighted alternative functions of cell adhesion molecules.  相似文献   

9.
10.
糖基转移酶(glycosyltransferases,GTs)将糖基从活化的供体转移到糖、脂、蛋白质和核酸等受体,其参与的蛋白质糖基化是最重要的翻译后修饰(post-translational modifications,PTMs)之一。近年来越来越多的研究证明,糖基转移酶与致病菌毒力密切相关,在致病菌的黏附、免疫逃逸和定殖等生物学过程中发挥关键作用。目前,已鉴定的糖基转移酶根据其蛋白质三维结构特征分为3种类型GT-A、GT-B和GT-C,其中常见的是GT-A和GT-B型。在致病菌中发挥黏附功能的糖基转移酶,在结构上属于GT-B或GT-C型,对致病菌表面蛋白质(黏附蛋白、自转运蛋白等)进行糖基化修饰,在致病菌黏附、生物被膜的形成和毒力机制发挥具有重要作用。糖基转移酶不仅参与致病菌黏附这一感染初始过程,其中属于GT-A型的一类致病菌糖基转移酶会进入宿主细胞,通过糖基化宿主蛋白质影响宿主信号传导、蛋白翻译和免疫应答等生物学功能。本文就常见致病菌糖基转移酶的结构及其糖基化在致病机制中的作用进行综述,着重介绍了特异性糖基化高分子量(high-molecular-weight,HMW)黏附蛋白的糖基转移酶、针对富丝氨酸重复蛋白(serine-rich repeat proteins,SRRP)糖基化修饰的糖基转移酶、细菌自转运蛋白庚糖基转移酶(bacterial autotransporter heptosyltransferase,BAHT)家族、N-糖基化蛋白质系统和进入宿主细胞发挥毒力作用的大型梭菌细胞毒素、军团菌(Legionella)葡萄糖基转移酶以及肠杆菌科的效应子NleB。为揭示致病菌中糖基转移酶致病机制的系统性研究提供参考,为未来致病菌的诊断、药物设计研发以及疫苗开发等提供科学依据和思路。  相似文献   

11.
1.  The relationship between the composition of communities of micro-organisms and their hosts remains poorly understood. We conducted extensive field studies of feather-degrading bacteria, other cultivable bacteria, and fungi on the plumage of a migratory bird, the barn swallow Hirundo rustica Linnaeus, to understand the association between micro-organisms, host sociality and host antimicrobial defences, as reflected by the size of the uropygial gland.
2.  The abundance of feather-degrading bacteria, but not other cultivable bacteria or fungi, decreased with increasing size of the uropygial gland.
3.  Females had more feather-degrading bacteria than males.
4.  Barn swallows living in larger colonies had more feather-degrading bacteria than less social conspecifics.
5.  These findings suggest that the uropygial gland plays a specific role in regulating the abundance of feather-degrading bacteria that furthermore depends on the social environment of the host.  相似文献   

12.
Adhesins from oral bacteria perform an important function in colonizing target tissues within the dentogingival cavity. In Porphyromonas gingivalis certain of these adhesion proteins exist as a complex with either of two major proteinases referred to as gingipain R (arginine-specific gingipain) and gingipain K (lysine-specific gingipain) (R. N. Pike, W. T. McGraw, J. Potempa, and J. Travis, J. Biol. Chem. 269:406-411, 1994). With specific proteinase inhibitors, it was shown that hemagglutination by either proteinase-adhesin complex could occur independently of proteinase activity. Significantly, low concentrations of fibrinogen, fibronectin, and laminin inhibited hemagglutination, indicating that adherence to these proteins and not the hemagglutination activity was a primary property of the adhesin activity component of complexes. Binding studies with gingipain K and gingipain R suggest that interaction with fibrinogen is a major function of the adhesin domain, with dissociation constants for binding to fibrinogen being 4 and 8.5 nM, respectively. Specific association with fibronectin and laminin was also found. All bound proteins were degraded by the functional proteinase domain, with gingipain R being more active on laminin and fibronectin and gingipain K being more effective in the digestion of fibrinogen. Cumulatively, these data suggest that gingipain R and gingipain K, acting as proteinase-adhesin complexes, progressively attach to, degrade, and detach from target proteins. Since such complexes appear to be present on the surfaces of both vesicles and membranes of P. gingivalis, they may play an important role in the attachment of this bacterium to host cell surfaces.  相似文献   

13.
In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (≈50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the pathogenesis of spirochetal infection.  相似文献   

14.

Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria that comprise several species which have evolved in close association with humans (food and lifestyle). While their use to ferment food dates back to very ancient times, in the last decades, LAB have attracted much attention for their documented beneficial properties and for potential biomedical applications. Some LAB are commensal that colonize, stably or transiently, host mucosal surfaces, inlcuding the gut, where they may contribute to host health. In this review, we present and discuss the main factors enabling LAB adaptation to such lifestyle, including the gene reprogramming accompanying gut colonization, the specific bacterial components involved in adhesion and interaction with host, and how the gut niche has shaped the genome of intestine-adapted species. Moreover, the capacity of LAB to colonize abiotic surfaces by forming structured communities, i.e., biofilms, is briefly discussed, taking into account the main bacterial and environmental factors involved, particularly in relation to food-related environments. The vast spread of LAB surface-associated communities and the ability to control their occurrence hold great potentials for human health and food safety biotechnologies.

  相似文献   

15.
Streptococcus pneumoniae (the pneumococcus) is an opportunistic human pathogen, which causes serious invasive disease such as pneumonia, bacteraemia and meningitis. The interaction of the bacteria with host receptors precedes the development of invasive disease. One host receptor implicated in pneumococcal adhesion to, invasion of and ultimately translocation of cell layers is the platelet‐activating factor receptor (PAFR). PAFR is a G‐protein coupled receptor which binds PAF, a potent phospholipid activator involved in many leucocyte functions, platelet aggregation and inflammation. PAFR has been proposed to bind S. pneumoniae and as such facilitate adhesion to, uptake by and transcytosis of endothelial cells leading to invasive disease. However, there is a shortage of biochemical data supporting direct interaction between PAFR and the bacteria, in addition to conflicting data on its role in development of invasive pneumococcal disease (IPD). In this review, we will discuss current literature on PAFR and S. pneumoniae and other pathogens,including data concerning human PAFR genetic variation related to IPD clinical aspects, to shed light on the importance of PAFR in IPD. Clarification of the role of this receptor in IPD development has the potential to enable the development of novel therapeutic strategies for treating pneumococcal disease by interfering with the PAFR.  相似文献   

16.
Aims: The bacteria–host molecular cross‐talk is the matter of primary importance both in pathogenesis and in commensalism. Principally based on immunological methods, the methodologies commonly utilized for these studies are laborious and require specific antibodies. Here, we developed a new high‐performance affinity chromatography (HPAC)‐based approach that allows a direct measure of the interaction between whole bacterial cells and host molecules. Methods and Results: Bifidobacterium lactis BI07 cells immobilized on amino‐derivatized silica beads were utilized as stationary phase in a high‐performance affinity chromatography approach. The analytes plasminogen, collagen I and collagen IV were injected, and interactions were evaluated by the insertion in an HPLC system with UV detection. According to our data, Bif. lactis BI07 is capable of interacting with plasminogen, while it does not exhibit any binding activity to collagen I and IV. Conclusions: In this study, we implemented a high‐performance affinity chromatography‐based method to characterize the biological interaction between whole micro‐organisms and target proteins. Significance and Impact of the Study: With respect to the approaches commonly utilized to study the interaction between bacteria and host proteins, this HPAC‐based approach is fast and cheaper than other methods and allows a direct measure of the interaction between bacterial cells and target molecules.  相似文献   

17.
Salmonella enteric serovar Typhi Ty2 is a human specific pathogen and an etiological agent for typhoid fever. Most of Salmonella serotypes produce glycogen which has a comparatively minor role in virulence and colonization, but has a more significant role in survival. Enzymes present in glycolytic pathway of bacteria help bacteria to survive by activating other factors inside host. Numerous pathogenic bacteria species intervene with the plasminogen system, and this plasminogen-enolase association may play a critical role in the virulence of S. Typhi by causing direct damage to the host cell extracellular matrix, possibly by enzymic degradation of extracellular matrix proteins or other protein constituents. In this study, molecular modelling of enolase of Salmonella has been accomplished in silico by comparative modelling; we have then analyzed Human alpha enolase which is a homodimer and serves on epithelial cells with our model. Both Structures were docked by D-tartronate semialdehyde phosphate (TSP) and 3-aminoenolpyruvate phosphate (AEP) enolase inhibitors. Our study shows that salmonella enolase and human enolase have different active sites in their structure. This will help in development of new ligands, more suitable for inhibiting bacterial survival inside host as vaccines for typhoid fever are not fully protective. The study also confirmed that enolase Salmonella and Human Plasminogen suggested direct physical interaction between both of them as the activation loop of plasminogen residues showed conformational changes similar to the tissue type plasminogen activator. Various computational biology tools were used for our present study such as Modeller, Molegro Virtual Docker, Grommacs.  相似文献   

18.
The specific adhesion of cells to other cells or to particular tissue microenvirorvments is a basic function of cell migration and recognition, and underlines many biologic processes including embryogenesis, repair and immunity. Leukocytes express an array of surface receptors broadly known as “accessory adhesion molecules.” which mediate most cell -cell interactions, direct lymphocyte traffic between anatomical compartments, and facilitate cellular adhesion to the inflammation or alloantigenic sites (Springer 1990). In addition, adhesion molecules are involved in the process of antigen recognition, and may costimulate cell activation and transformation. These proteins are thought to affect the very early antigen independent events between host leukocytes and vascular endothelium. Because of these activities, the subject of adhesion molecules is gaining interest in the field of organ transplantation, in both conceptualization and development of novel therapeutic strategies (de Sousa et al. 1991, Kupiec-Weglinski et al. 1993a, Heemann et al. 1993).  相似文献   

19.
The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Major determinants of host susceptibility against luminal commensal bacteria include genes regulating mucosal immune responses, intestinal barrier function and microbial defense. Of note, it has been postulated that commensal bacterial adhesion and invasion on/into host cells may be strongly involved in the pathogenesis of inflammatory bowel disease (IBD). During the intestinal inflammation, the composition of the commensal flora is altered, with increased population of aggressive and detrimental bacteria and decreased populations of protective bacteria. In fact, some pathogenic bacteria, including Adherent-Invasive Escherichia coli, Listeria monocytogenes and Vibrio cholerae are likely to initiate their adhesion to the host cells by expressing accessory molecules such as chitinases and/or chitin-binding proteins on themselves. In addition, several inducible molecules (e.g., chitinase 3-like 1, CEACAM6) are also induced on the host cells (e.g. epithelial cells, lamina proprial macrophages) under inflammatory conditions, and are actively participated in the host-microbial interactions. In this review, we will summarize and discuss the potential roles of these important molecules during the development of acute and chronic inflammatory conditions.  相似文献   

20.
益生菌与肠黏膜互作的分子机制研究进展   总被引:1,自引:0,他引:1  
益生菌是一类定植于动物肠道,可辅助动物消化功能,维护肠道菌群平衡并可影响肠道免疫系统,有益于动物健康的重要调节性菌群。该类菌群与动物肠上皮细胞间互作的分子机制包括菌体表面分子如磷脂壁酸(phosphatidicacid,LTA)、表面层蛋白(Slayerprotein)等与宿主的粘附相关蛋白分子结合,通过占位效应抑制有害菌群在肠道内的定植;益生菌还可刺激肠道细胞分泌B防御素2、细菌素和有机酸等可抑制甚至杀灭有害菌群;在益生菌作用下,肠道上皮细胞可增强粘液糖蛋白、紧密连接蛋白occludin和ZO-1等分子的表达,加厚并加固肠道黏膜屏障;益生菌相关抗原可通过与抗原递呈细胞表面模式识别受体(TLRs等)分子结合,激活递呈细胞,启动各免疫细胞的交互作用,调节肠道免疫状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号