首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombin exerts a number of effects on skeletal myoblasts in vitro. It stimulates proliferation and intracellular calcium mobilization and inhibits differentiation and apoptosis induced by serum deprivation in these cells. Many cellular responses to thrombin are mediated by protease-activated receptor-1 (PAR-1). Expression of PAR-1 is present in mononuclear myoblasts in vitro, but repressed when fusion occurs to form myotubes. In the current study, we used PAR-1-null mice to determine which of thrombin's effects on myoblasts are mediated by PAR-1. Thrombin inhibited fusion almost as effectively in cultures prepared from the muscle of PAR-1-null myoblasts as in cultures prepared from wild-type mice. Apoptosis was inhibited as effectively in PAR-1-null myoblasts as in wild-type myoblasts. These effects in PAR-1-null myoblasts were mediated by a secreted inhibitor of apoptosis and fusion, as demonstrated previously for normal rat myoblasts. Thrombin failed to induce an intracellular calcium response in PAR-1-null myoblast cultures, although these cells were able to mobilize intracellular calcium in response to activation of other receptors. PAR-1-null myoblasts also failed to proliferate in response to thrombin. These results demonstrate that thrombin's effects on myoblast apoptosis and fusion are not mediated by PAR-1 and that PAR-1 is the only thrombin receptor capable of inducing proliferation and calcium mobilization in neonatal mouse myoblasts.  相似文献   

2.
A role for acetylcholine receptors in the fusion of chick myoblasts   总被引:5,自引:3,他引:2       下载免费PDF全文
The role of acetylcholine receptors in the control of chick myoblast fusion in culture has been explored. Spontaneous fusion of myoblasts was inhibited by the nicotinic acetylcholine receptor antagonists alpha-bungarotoxin, Naja naja toxin and monoclonal antibody mcAb 5.5. The muscarinic antagonists QNB and n-methyl scopolamine were without effect. Atropine had no effect below 1 microM, where it blocks muscarinic receptors; at higher concentrations, when it blocks nicotinic receptors also, atropine inhibited myoblast fusion. The inhibitions imposed by acetylcholine receptor antagonists lasted for approximately 12 h; fusion stimulated by other endogenous substances then took over. The inhibition was limited to myoblast fusion. The increases in cell number, DNA content, the level of creatine phosphokinase activity (both total and muscle-specific isozyme) and the appearance of heavy chain myosin, which accompany muscle differentiation, followed a normal time course. Pre-fusion myoblasts, fusing myoblasts, and young myotubes specifically bound labeled alpha-bungarotoxin, indicating the presence of acetylcholine receptors. The nicotinic acetylcholine receptor agonist, carbachol, induced uptake of [14C]Guanidinium through the acetylcholine receptor. Myoblasts, aligned myoblasts and young myotubes expressed the synthetic enzyme Choline acetyltransferase and stained positively with antibodies against acetylcholine. The appearance of ChAT activity in myogenic cultures was prevented by treatment with BUDR; nonmyogenic cells in the cultures expressed ChAT at a level which was too low to account for the activity in myogenic cultures. We conclude that activation of the nicotinic acetylcholine receptor is part of the mechanism controlling spontaneous myoblast fusion and that myoblasts synthesize an endogenous, fusion-inducing agent that activates the nicotinic ACh receptor.  相似文献   

3.
We previously found that L6 myoblasts and skeletal muscle isolated from developing rats express the platelet-derived growth factor (PDGF) beta-receptor gene (Jin, P., Rahm, M., Claesson-Welsh, L., Heldin, C.-H., and Sejersen, T. (1990) J. Cell Biol. 110, 1665-1672). We now report that recombinant human PDGF-BB is a mitogen for L6 myoblasts and also a potent inhibitor of myogenic differentiation. Treatment of L6J1 myoblasts with PDGF-BB increased the rate of DNA synthesis and stimulated cell proliferation. In differentiation medium (Dulbecco's modified Eagle's medium/0.5% fetal calf serum or Dulbecco's modified Eagle's medium/insulin), PDGF-BB prevented fusion of confluent myoblasts and suppressed biochemical differentiation in L6J1 cells. Inhibition of myoblast differentiation was, however, reversible. Withdrawal of PDGF-BB from the medium allowed myoblast fusion to occur. Northern blot hybridization showed that the PDGF beta-receptor mRNA was down-regulated to an undetectable level when confluent cultures of L6J1 myoblasts in growth medium (Dulbecco's modified Eagle's medium/5% fetal calf serum) were shifted to differentiation medium. Receptor binding assays further indicated that binding of PDGF-BB to its receptors on L6J1 myoblasts declined rapidly before creatine kinase activity rose. Our results provide the first demonstration that PDGF-BB is a potent regulator of myogenesis of L6 rat myoblasts and suggest that it may regulate muscle differentiation in vivo.  相似文献   

4.
Protease-activated receptors (PARs) mediate cellular responses to a subset of extracellular proteases, including blood coagulation factors and proteases produced by inflammatory cells. Cells in bone, cartilage and muscle exhibit cell type-specific expression patterns and functional responses for the different PARs. Activators of PAR-1 include thrombin, and activators of PAR-2 include trypsin and tryptase; PARs-3 and -4 are also receptors for thrombin. Thrombin stimulates PAR-1-mediated proliferative responses in osteoblasts, chondrocytes and myoblasts, and in developing muscle, PAR-1 activation by thrombin appears to mediate activity-dependent polyneuronal synapse reduction. In bone, activation of PAR-2 leads to inhibition of osteoblast-mediated osteoclast differentiation induced by hormones or cytokines, and in muscle, PAR-2 activation leads to stimulation of myoblast proliferation. Although there is some evidence for a role for PARs expressed by cells of the musculoskeletal system at specific stages of development, their major role appears to be in protecting the tissues from the destructive effects of inflammation and promoting regeneration. This review discusses the regulation of cell function in the musculoskeletal system by receptor-mediated responses to proteases. Expression patterns of PARs, the circumstances in which PAR activators are likely to be present, functional responses of PAR activation, and responses to thrombin for which receptors have not yet been identified are considered.  相似文献   

5.
Osteopontin is a secreted glycoprotein expressed by many cell types including osteoblasts and lymphocytes; it is a constituent of the extracellular matrix (ECM) in bone, and a mitogen for lymphocytes. To investigate the role of osteopontin in muscle repair and development, expression of osteopontin by muscle cells in vivo and in vitro, and the effects of osteopontin on myoblast function in vitro were investigated. Osteopontin staining was weak in sections of muscle from normal mice, but associated with desmin-positive cells in areas of regeneration in muscles from mdx mice. In immunocytochemical, PCR and ELISA studies, cultured myoblasts were found to express osteopontin and secrete it into medium. Treatment of myoblast cultures with fibroblast growth factor-2, transforming growth factor beta1, interleukin-1beta or thrombin significantly increased osteopontin expression. Osteopontin-coated substrata promoted adhesion and fusion, but not proliferation or migration, of myoblasts. The effect of osteopontin on myoblast adhesion was RGD-dependent. In solution, osteopontin significantly increased proliferation and decreased fusion and migration of myoblasts. These results suggest that myoblasts are an important source of osteopontin in damaged muscle and that osteopontin released by myoblasts may assist in controlling both the myogenic and inflammatory processes during the early stages of muscle regeneration.  相似文献   

6.
Cell fusion of embryonic chick myoblasts has been studied in the presence of fat-soluble agents that induce erythrocytes to fuse. Retinol inhibited myoblast fusion but the cells recovered their ability to fuse within 48 h of removal of the retinol from the medium. Myristic acid, oleic acid, glycerol monooleate, linolenic acid and arachidonic acid similarly prevented fusion in myogenic cultures. By contrast, linoleic acid moderately enhanced the fusion of chick skeletal myoblasts. In addition, stearic acid, which does not fuse erythrocytes, inhibited myoblast fusion whereas the saturated, non-fusogenic fatty acid, arachidic acid, was without effect.  相似文献   

7.
The serine protease thrombin has been proposed to be involved in neuromuscular plasticity. Its specific receptor "protease activated receptor-1" (PAR-1), a G protein-coupled receptor, has been shown to be expressed in myoblasts but not after fusion (Suidan et al., 1996 J Biol Chem 271:29162-29169). In the present work we have investigated the expression of PAR-1 during rat skeletal muscle differentiation both in vitro and in vivo. Primary cultures of rat foetal skeletal muscle, characterized by their spontaneous contractile activity, were used for exploration of PAR-1 by RT-PCR, immunocytochemistry and Western blotting. Our results show that PAR-1 mRNA and protein are both present in myoblasts and myotubes. Incubation of myotubes loaded with fluo-3-AM in presence of thrombin (200 nM) or PAR-1 agonist peptide (SFLLRN, 500 microM), induced the intracellular release of calcium indicating the activation of PAR-1. Blockade of contractile activity by tetrodotoxin (TTX, 6 nM) did not modify either PAR-1 synthesis or its cellular localization. Investigation of PAR-1 on rat muscle cryostat sections at Day 18 of embryogenesis and postnatal Days 1, 5, and 10 indicated that this protein is first expressed in the cytoplasm and that it later localizes to the membrane. Moreover, its expression correlates with myosin heavy chain transitions occurring during post-natal period and is restricted to primary fibers. Taken together, these results suggest that PAR-1 expression is not related to contractile activity but to myogenic differentiation.  相似文献   

8.
Several growth factors, including platelet-derived growth factor (PDGF), have been implicated in the mechanism of lung and airway remodeling. In the present study, we evaluated whether thrombin may promote lung and airway remodeling by increasing PDGF production from lung and airway epithelial cells. Conditioned medium (CM) was prepared by treating epithelial cells with increasing concentrations of thrombin; before use in the assays, CM was treated with hirudin until complete inhibition of thrombin activity. CM from epithelial cells stimulated the proliferation of lung fibroblasts and bronchial smooth muscle cells. Anti-PDGF antibody significantly inhibited this CM proliferative activity, implicating PDGF in this effect. Enzyme immunoassay and RT-PCR demonstrated that thrombin induced the secretion and expression of PDGF from bronchial and alveolar epithelial cells. RT-PCR showed that epithelial cells express the thrombin receptors protease-activated receptor (PAR)-1, PAR-3, and PAR-4. The PAR-1 agonist peptide was also found to induce PDGF secretion from epithelial cells, suggesting that the cellular effect of thrombin occurs via a PAR-1-mediated mechanism. Overall, this study showed for the first time that thrombin may play an important role in the process of lung and airway remodeling by stimulating the expression of PDGF via its cellular receptor, PAR-1.  相似文献   

9.
A rapid assay for fusion of embryonic chick myoblasts   总被引:1,自引:0,他引:1  
A rapid and sensitive assay for measuring myoblast fusion in suspension cultures of embryonic chick pectoral myoblasts is described. Fusion-competent cells are generated by growth in suspension using a low calcium medium. Fusion-promoting levels of calcium are added, and the suspensions incubated for 1–6 h. The cells are then trypsinized to disperse cellular aggregates and sized in a Coulter particle counter. This assay minimizes many of the artifacts inherent in measurements of fusion in monolayer cultures, and is designed for the rapid screening of agents for their effects on fusion.  相似文献   

10.
Cadherins belong to a large family of membrane glycoprotein adhesion receptors that mediate homophilic, calcium-dependent cell adhesion. During myogenesis, cadherins are involved in initial cell-to-cell recognition; and it has also been suggested that they play a role in the initiation of myoblast fusion into multinuclear myotubes. One of the members of the cadherin family, M-cadherin, has been detected during embryogenesis in myogenic cells of somitic origin and in adult muscles. We investigated the distribution and function of M-cadherin and beta-catenin during differentiation of myoblasts in primary cultures of rat satellite cells. We found that M-cadherin was accumulated at the areas of contact between fusing myoblasts and that it colocalized with beta-catenin. Moreover, beta-catenin colocalized with actin in pre-fusing myoblasts. We show that myoblast differentiation is accompanied by an increase in the amounts of M-cadherin and beta-catenin both at the mRNA and the protein level. Flow cytometry analysis showed that M-cadherin expression was highest in fusing myoblasts. In addition, an antibody specific for the extracellular domain of M-cadherin inhibited the fusion of cultured myoblasts. These data suggest that regulation of the M-cadherin level plays an important role in the differentiation of satellite cells and in myoblast fusion in primary cultures.  相似文献   

11.
Thy-1 antigen is a well-characterized cell-surface glycoprotein known to be variably expressed in many different tissues, including lymphocytes, brain, and muscle. Its function remains unknown. In skeletal muscle, both in vivo and in vitro, the antigen has been reported on immature but not on adult tissue, and its disappearance corresponds roughly to the time of myoblast fusion. Using monoclonal H36 antibody to identify myoblasts unambiguously, we demonstrate here that Thy-1 is expressed only on a small (less than 1%) fraction of rat skeletal muscle myoblasts in heterogeneous primary cultures, but the number of myoblasts that express Thy-1 rises to a steady level of about 70% when fibroblasts are removed from secondary cultures. Restitution of fibroblasts or growth of purified myoblasts in medium conditioned by fibroblasts greatly suppresses this increase in myoblast Thy-1 expression. Thus an interaction between fibroblasts and myoblasts, mediated by a soluble nondialyzable molecule, modulates expression of Thy-1 on the myoblast outer membrane.  相似文献   

12.
The synthesis of the heavy chain subunit of myosin has been studied in breast muscle myoblasts from embryos of the Japanese quail, Coturnix coturnix japonica, during differentiation of these cells in culture. Specifically, these experiments were done to examine the roles of myoblast fusion and the regulation of myoblast cell division in the control of myosin heavy chain synthesis.The rates of myosin heavy chain synthesis have been quantitated in cultures of fusing myoblasts by measurement of the incorporation of radioactive leucine and valine precursors into myosin heavy chain, and simultaneous determination of the intracellular specific activities of these radioactive amino acids. These measurements demonstrate that, prior to fusion, dividing myoblasts synthesize little, if any, myosin heavy chain, but that during the period of myoblast fusion, myosin heavy chain synthesis becomes activated at least 50 to 100-fold. Myosin heavy chain synthesis was also measured in mononucleated myoblasts inhibited from fusing by the presence of EGTA in the culture medium. These experiments demonstrate that myosin synthesis can be activated in mononucleated myoblasts to reach rates similar to those attained in fused myoblasts. This activation occurs under conditions in which EGTA-inhibited myoblasts were induced to withdraw from the cell division cycle by reducing the concentrations of the serum and embryo extract components of the culture medium or by prior “conditioning” of standard growth medium.These experiments, therefore, establish that the activation of myosin synthesis in breast muscle myoblasts does not require fusion, but indicate that activation is co-ordinated with the withdrawal of myoblasts from the cell division cycle.  相似文献   

13.
The role of integrins in muscle differentiation was addressed by ectopic expression of integrin alpha subunits in primary quail skeletal muscle, a culture system particularly amenable to efficient transfection and expression of exogenous genes. Ectopic expression of either the human alpha5 subunit or the chicken alpha6 subunit produced contrasting phenotypes. The alpha5-transfected myoblasts remain in the proliferative phase and are differentiation inhibited even in confluent cultures. In contrast, myoblasts that overexpress the alpha6 subunit exhibit inhibited proliferation and substantial differentiation. Antisense suppression of endogenous quail alpha6 expression inhibits myoblast differentiation resulting in sustained proliferation. These effects of ectopic alpha subunit expression are mediated, to a large extent, by the cytoplasmic domains. Ectopic expression of chimeric alpha subunits, alpha5ex/6cyto and alpha6ex/5cyto, produced phenotypes opposite to those observed with ectopic alpha5 or alpha6 expression. Myoblasts that express alpha5ex/6cyto show decreased proliferation while differentiation is partially restored. In contrast, the alpha6ex/5cyto transfectants remain in the proliferative phase unless allowed to become confluent for at least 24 h. Furthermore, expression of human alpha5 subunit cytoplasmic domain truncations, before and after the conserved GFFKR motif, shows that this sequence is important in alpha5 regulation of differentiation. Ectopic alpha5 and alpha6 expression also results in contrasting responses to the mitogenic effects of serum growth factors. Myoblasts expressing the human alpha5 subunit differentiate only in the absence of serum while differentiation of untransfected and alpha6-transfected myoblasts is insensitive to serum concentration. Addition of individual, exogenous growth factors to alpha5-transfected myoblasts results in unique responses that differ from their effects on untransfected cells. Both bFGF or TGFbeta inhibit the serum-free differentiation of alpha5- transfected myoblasts, but differ in that bFGF stimulates proliferation whereas TGF-beta inhibits it. Insulin or TGF-alpha promote proliferation and differentiation of alpha5-transfected myoblasts; however, insulin alters myotube morphology. TGF-alpha or PDGF-BB enhance muscle alpha-actinin organization into myofibrils, which is impaired in differentiated alpha5 cultures. With the exception of TGF- alpha, these growth factor effects are not apparent in untransfected myoblasts. Finally, myoblast survival under serum-free conditions is enhanced by ectopic alpha5 expression only in the presence of bFGF and insulin while TGF-alpha and TGF-beta promote survival of untransfected myoblasts. Our observations demonstrate (1) a specificity for integrin alpha subunits in regulating myoblast proliferation and differentiation; (2) that the ratio of integrin expression can affect the decision to proliferate or differentiate; (3) a role for the alpha subunit cytoplasmic domain in mediating proliferative and differentiative signals; and (4) the regulation of proliferation, differentiation, cytoskeletal assembly, and cell survival depend critically on the expression levels of different integrins and the growth factor environment in which the cells reside.  相似文献   

14.
15.
FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts   总被引:8,自引:0,他引:8  
Bois PR  Grosveld GC 《The EMBO journal》2003,22(5):1147-1157
  相似文献   

16.
The ability of skeletal muscle myoblasts to differentiate in the absence of spontaneous fusion was studied in cultures derived from chicken embryo leg muscle, rat myoblast lines L6 and L8, and the mouse myoblast line G8. Following 48–96 hr of culture in a low-Ca2+ (25 μm), Mg2+-depleted medium, chicken myoblasts exhibited only 3–5% fusion whereas up to 64% of the cells fused in control cultures. Depletion of Mg2+ led to preferential elimination of fibroblasts, with the result that 97% of the mononucleated cells remaining at 120 hr exhibited a bipolar morphology and stained with antibodies directed against M-creatine kinase, skeletal muscle myosin, and desmin. Mononucleated myoblasts rarely showed visible cross-striations or M-line staining with anti-myomesin unless the medium was supplemented with 0.81 mM Mg2+, suggesting that Mg2+ plays a role in sarcomere assembly. Conditions of Ca2+ and Mg2+ depletion inhibited myoblast fusion in the rodent cell lines as well, but mononucleated myoblasts failed to differentiate under these conditions. Differentiated individual myoblasts from rat cell lines and from chicken cell cultures were obtained when fusion was inhibited by growth in cytochalasin B (CB). CB-treated rat myoblast cultures accumulated MM-CK to nearly twice the specific activity found in extensively fused control cultures of comparable age. Spherical cells which accumulated during CB treatment were isolated and shown to contain nearly eight times the CK specific activity present in nonspherical cells from the same cultures. Approximately 90% of these cells exhibited immunofluorescent staining with antibodies to skeletal muscle myosin, failed to incorporate [3H]thymidine or to form colonies in clonal subculture, and thus represent terminally differentiated rat myoblasts. Quantitative microfluorometric DNA measurements on individual nuclei demonstrated that the terminally differentiated myoblasts obtained in these experiments from both chicken and rat contain 2cDNA levels, suggesting arrest in the G0 stage of the cell cycle.  相似文献   

17.
The effects of competitive inhibitors of transglutaminase on the formation of myotubes by the fusion of myoblasts in vitro has been investigated. Myotube formation was inhibited when myoblasts from 11-day-old chick embryos were cultured in vitro in the presence of 10 mM histamine or 0.2 mM dansyl cadaverine. The inhibitions observed were reversed when the treated cells were subsequently cultured in normal medium. Glycine methyl ester also inhibited myotube formation but sarcosine methyl ester, which is not a competitive inhibitor of transglutaminase, had little if any inhibitory action. The formation of myotubes was not inhibited by cultivation in normal medium adjusted to pH 8.0-8.1, indicating that the observed effects of histamine and of dansyl cadaverine were not mediated by a lysosomotropic effect. Inhibition of myotube formation in the presence of histamine was accompanied by the production of abnormal multinucleated cells, indicating that myoblast fusion occurred in the treated cultures but that the fused cells failed to elongate into normal myotubes. Transglutaminase activity has been found in cell-free lysates of embryonic chick myoblasts and it is concluded that a transglutaminase enzyme, activated by an increase in the concentration of intracellular Ca2+, plays an important role in stabilising the cytoskeletal network of developing myotubes.  相似文献   

18.
Fusion of myoblasts to form syncitial muscle cells results from a complex series of sequential events including cell alignment, cell adhesion and cell communication. The aim of the present investigation was to assess whether intercellular communication through gap junctions would be required for subsequent membrane fusion. The presence of the gap junction protein connexin 43 at areas of contact between prefusing rat L6 myoblasts was established by immunofluorescent staining. These myoblasts were dye-coupled, as demonstrated by the use of the scrape-loading/dye transfer technique. L6 myoblast dye coupling was reversibly blocked by heptanol in short term experiments as well as after chronic treatment. After a single addition of 3.5 mM heptanol, gap junctions remained blocked for up to 8 hours, then this inhibitory effect decreased gradually, likely because the alcohol was evaporated. Changing heptanol solutions every 8 hours during the time course of L6 differentiation resulted in a lasting drastic inhibition of myoblast fusion. We further investigated the effect of heptanol and of other uncoupling agents on the differentiation of primary cultures of embryonic chicken myoblasts. These cells are transiently coupled by gap junctions before myoblast fusion and prolonged application of heptanol, octanol and 18-β-glycyrrhetinic acid also inhibited their fusion. The effect of heptanol and octanol was neither due to a cytotoxic effect nor to a modification of cell proliferation. Moreover, heptanol treatment did not alter myoblast alignment and adhesion. Taken together these observations suggest that intercellular communication might be a necessary step for myoblast fusion.  相似文献   

19.
20.
Previous research in our laboratory has already shown the importance of the role played by ubiquitous calpains during myoblast migration. The aim of this study was to investigate calpain expression during myoblast migration and, to enhance this phenomenon via calpain stimulation. Ubiquitous calpains are members of a large family of calcium-dependent cysteine proteases. They play an important role in numerous biological and pathological phenomena, such as signal transduction, apoptosis, cell-cycle regulation, cell spreading, adhesion, invasion, myogenesis, and motility. Myoblast migration is a crucial step in myogenesis, as it is necessary for myoblast alignment and fusion to form myotubes. This study started by examining changes in calpain expression during migration, then investigated the possibility of activating myoblast migration via the stimulation of calpain expression and/or activity. The migration rate of myoblasts overexpressing mu- or milli-calpain was quantified. The results showed that calpain overexpression dramatically inhibited myoblast migration. Growth-factor treatments were then used to enhance myoblast migration. The results showed that treatment with IGF-1, TGF-β1, or insulin induced a major increase in migration and caused a significant increase in m-calpain expression and activity. The increase in migration was totally inhibited by adding calpeptin, a calpain-specific inhibitor. These findings suggest that milli-calpain is involved in growth factor-mediated migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号