首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
细胞分裂素合成基因ipt研究进展(综述)   总被引:1,自引:0,他引:1  
异戊烯基转移酶是细胞分裂素生物合成第一步的催化酶,也是限速酶。其编码基因ipt已被克隆,运用生物信息学方法,在拟南芥中鉴定出与微生物同源的编码异戊烯基转移酶的基因家族,推测这些基因可能存在特殊时空表达来调控细胞分裂素的合成途径。本文着重介绍ipt在细胞分裂素合成中的作用和研究进展。  相似文献   

2.
异戊烯基取代的酚类化合物由UbiA家族的异戊烯基转移酶(prenyltransferase)催化异戊烯基转移到芳香族化合物母核上,其亲脂性较无异戊烯基取代的化合物明显增强,并提高了与生物膜的亲和力,从而形成了各种具有重要生物学功能的活性分子,在植物防御和人体健康方面具有重要作用。本综述总结了538种异戊烯基酚类化合物的取代基类别和取代位点等,为发掘植物中新型异戊烯基转移酶,以及受体和供体的选择提供参考,以期有更多异戊烯基转移酶可应用于合成生物学来生产具有重要活性的异戊烯基酚类化合物。该文对国内外报道的378种类黄酮,80种香豆素类,27种醌类,32种二苯乙烯类,16种对羟基苯甲酸类,5种苯丙酸类共计538种异戊烯基取代的酚类化合物的取代基类别、取代位置以及在植物中的分布进行总结,发现异戊烯基酚类化合物主要分布在28个科中,且以C5和C10取代基为主。该文还综述了已鉴定功能的30余种植物芳香族异戊烯基转移酶。  相似文献   

3.
芳香族异戊烯转移酶的研究进展   总被引:2,自引:0,他引:2  
高娟  曾英  卢山 《植物学报》2010,45(6):751-759
异戊烯基转移酶(prenyltransferase)催化异戊烯基转移至异戊烯单元、芳香环或蛋白质上。芳香族异戊烯基转移酶将异戊烯单元融入含有芳环的化合物, 从而形成具有重要生物学功能的各类活性分子, 如泛醌、质体醌、维生素E、异戊烯黄酮类以及真菌代谢物等。该文综述了近年来植物和真菌芳香族异戊烯转移酶的分子生物学研究进展, 包括膜结合的参与质体醌生物合成的homogentisate solanesyltransferase、参与维生素E生物合成的homogentisate phytyltransferase、类黄酮异戊烯转移酶(flavonoid prenyltransferase)和可溶性的真菌吲哚异戊烯转移酶等。  相似文献   

4.
高娟  曾英  卢山 《植物学通报》2010,45(6):751-759
异戊烯基转移酶(prenyltransferase)催化异戊烯基转移至异戊烯单元、芳香环或蛋白质上。芳香族异戊烯基转移酶将异戊烯单元融入含有芳环的化合物,从而形成具有重要生物学功能的各类活性分子,如泛醌、质体醌、维生素E、异戊烯黄酮类以及真菌代谢物等。该文综述了近年来植物和真菌芳香族异戊烯转移酶的分子生物学研究进展,包括膜结合的参与质体醌生物合成的homogentisate solanesyltransferase、参与维生素E生物合成的homogentisate phytyltransferase、类黄酮异戊烯转移酶(flavonoid prenyltransferase)和可溶性的真菌吲哚异戊烯转移酶等。  相似文献   

5.
8-戊烯基柚皮素(8-prenylnaringenin,8-PN)是一种强有效的雌激素,具有很高的药用价值,同样也是多种异戊烯基黄酮的前体.微生物合成8-PN主要面临异戊烯基转移酶(prenyltransferases,PTs)催化活性较低以及前体供给不足等问题,严重阻碍了 8-PN在微生物体内的高效合成.文中以苦参(...  相似文献   

6.
以巴西橡胶树(Hevea brasiliensis)胶乳的RNA为Tester;叶片RNA为Driver,利用抑制消减杂交法(suppressive subtractive hybridization,SSH)构建了一个胶乳特异表达基因差减文库.通过反式Northern点杂交(reverse Northern dot blots)筛选到一个与顺式异戊烯基转移酶基因(橡胶生物合成的关键酶基因)高度同源的阳性克隆R363.采用RACE方法获得该克隆的全长cDNA(GenBank登陆号:AY461414).序列分析表明,该基因长1156 bp,含有873 bp的阅读框,编码290个氨基酸,分子量约为32.9 kD,等电点为7.2,含有N-端跨膜螺旋区.同源性分析表明R363编码的蛋白质具有异戊烯基转移酶家族的特征,含有cis-异戊烯基链转移酶的5个高度保守区,推测R363可能是一种新的顺式-异戊烯基转移酶基因.Northern blot分析显示,R363在胶乳中高度表达,在叶中不表达.乙烯处理前后表达强度一致,表明该基因表达不为乙烯所诱导.  相似文献   

7.
异戊烯基化吲哚类生物碱广泛存在于麦角菌、青霉菌和曲霉菌中,具有一定的药理学活性,与未异戊烯基化的前体在生物活性方面具有明显的差异.曲霉菌中的某些异戊烯基化吲哚类生物碱具有抗癌活性,如烟曲霉毒素C(fumitremorgin C)、tryprostatin B,但其天然产量低且不易分离,利用化学酶合成法可很容易地将前体转化为异戊烯基化吲哚类生物碱.异戊烯基转移酶FtmPT1对二甲丙烯基二磷酸(dimethylallyl diphosphate,DMAPP)具有专一性,但可以接受不同的芳香族底物.早期研究发现,FtmPT1能接受含色氨酸的不同环二肽为底物,但以cyclo-L-Trp-L-Tyr和cyclo-L-Trp-L-Phe为底物时,酶的相对活性很低,其产物量少,无法用于合成产物.本实验通过优化酶反应条件来提高其产量.将已构建的含ftmPT1的质粒在大肠杆菌中诱导表达,经Ni-NTA亲和柱纯化后用于酶反应.实验结果表明,通过增加酶量(终浓度2.8 μmol/L)、延长培养时间(37 ℃,24 h),以cyclo-L-Trp-L-Tyr和cyclo-L-Trp-L-Phe为底物的酶反应产率分别达到49.3%和21.3%,产物经1H-NMR、1H-1H-COSY和ESI-MS鉴定,其结果与预期吻合.据检索,这2个化合物均为新化合物,分别命名为cyclo-C2-1′-DMA-L-Trp-L-Tyr和cyclo-C2-1′-DMA-L-Trp-L-Phe.  相似文献   

8.
小蠹虫(小蠹科)是重要的森林蛀干害虫,在蛀食坑道时导致树木水分和养分运输系统受到破坏,短时间内对整片森林造成严重的经济危害。聚集信息素在小蠹虫聚集危害过程中扮演着非常重要的角色,目前已有多种小蠹虫聚集信息素成分被鉴定并成功应用于生产防控工作中。类异戊二烯类聚集信息素是小蠹虫中极为重要的一类聚集信息素,其主要成分包括小蠹烯醇、小蠹二烯醇、马鞭草烯醇及其衍生物。本文从类异戊二烯类聚集信息素的生物合成前体物质、生物合成位点、生物合成途径、取食和JHШ调控、微生物与其生物合成关系以及展望6个方面出发,全面阐述了齿小蠹属Ips和大小蠹属Dendroctonus中小蠹虫聚集信息素的生物合成机制及调控机制。文中首先重点阐述了小蠹虫体内以甲羟戊酸途径从头合成小蠹二烯醇以及利用寄主成分α-蒎烯直接合成马鞭草烯醇的生物合成过程;其次阐述了生物合成途径中关键酶和基因对小蠹取食和JHШ处理的响应以及小蠹虫肠道微生物和伴生真菌对该类聚集信息素生物合成的影响;最后,针对小蠹虫类异戊二烯类聚集信息素生物合成研究作了探讨和展望。本文为开发和应用其聚集信息素控制小蠹虫危害提供理论基础。  相似文献   

9.
人参皂苷等萜类化合物生物合成途径及HMGR的研究进展   总被引:3,自引:1,他引:2  
人参皂苷是人参的主要有效成分之一,属典型的萜类化合物。本文对萜类生物合成途径及HMG-CoA还原酶进行了综述。人参皂苷等萜类生物合成分为甲羟戊酸和丙酮酸两种途径,两者都是以异戊烯基焦磷酸为主要的中间产物。大量研究资料表明HMG-CoA还原酶是甲羟戊酸途径的第一个限速关键酶,这对人参皂苷生物合成途径及其调控的深入研究具有一定的参考价值。  相似文献   

10.
以不同发育阶段款冬花(发育初期、中期、中后期、解封期及花朵期)为对象,基于核磁共振的代谢组学技术,分析其次生代谢物种类及含量的合成累积规律,并进行高通量转录组学测序,从差异表达的基因中寻找次生代谢物生物合成的关联酶基因。代谢组学分析发现,款冬花不同发育阶段的次生代谢物代谢组成明显不同,苯丙素类成分在发育初期至中后期含量较高,之后逐渐降低;黄酮类成分(芦丁、山奈酚)在发育的各个阶段含量均有波动,但总体变化不大。转录组学分析结果显示,与苯丙素类成分生物合成相关的酶基因(COMT、HCT),随着花蕾的发育表达量逐渐降低;与黄酮类成分合成相关的酶基因(FLS、F3H、DFR),其表达量在不同阶段变化不大。转录组测序中的相关酶基因表达量同次生代谢物成分的变化趋势基本一致。本文采用的代谢组学和转录组学结合的方式,对款冬花的次生代谢物累积规律进行分析,为今后款冬花次生代谢物的生物合成调控研究奠定了基础。  相似文献   

11.
Prenylation is a process widely prevalent in primary and secondary metabolism, contributing to functionality and chemical diversity in natural systems. Due to their high regio- and chemoselectivities, prenyltransferases are also valuable tools for creation of new compounds by chemoenzymatic synthesis and synthetic biology. Over the last ten years, biochemical and structural investigations shed light on the mechanism and key residues that control the catalytic process, but to date crucial information on how certain prenyltransferases control regioselectivity and chemoselectivity is still lacking. Here, we advance a general understanding of the enzyme family by contributing the first structure of a tryptophan C5-prenyltransferase 5-DMATS. Additinally, the structure of a bacterial tryptophan C6-prenyltransferase 6-DMATS was solved. Analysis and comparison of both substrate-bound complexes led to the identification of key residues for catalysis. Next, site-directed mutagenesis was successfully implemented to not only modify the prenyl donor specificity but also to redirect the prenylation, thereby switching the regioselectivity of 6-DMATS to that of 5-DMATS. The general strategy of structure-guided protein engineering should be applicable to other related prenyltransferases, thus enabling the production of novel prenylated compounds.  相似文献   

12.
Pipecolic acid in microbes: biosynthetic routes and enzymes   总被引:2,自引:0,他引:2  
Pipecolic acid is an important precursor of many useful microbial secondary metabolites. Pipecolic acid-derived moieties are often crucial for the biological activities of some microbial natural products with pharmaceutical applications. Understanding the biogenesis of pipecolic acid in microorganisms would be a significant step toward the mutasynthesis of novel analogs of choice. This review focuses on various microbial pathways and enzymes for pipecolic acid synthesis, especially those related to the origination of pipecolic acid moieties in secondary metabolites.  相似文献   

13.
Secondary plant metabolites in phytoremediation and biotransformation   总被引:6,自引:0,他引:6  
For millennia, secondary plant metabolites have antagonized microorganisms, insects and humans alike, ultimately generating a complex and dynamic mixture of facultative and obligate interactions from symbioses to pathogenicity. Secondary plant metabolites have an important role in developing the myriad of organic pollutant-degrading enzymes found in nature. The link between secondary plant metabolites and enzymatic diversity has yet to be exploited, with potential applications in fields as varied as pest management, bioremediation and fine chemical production.  相似文献   

14.
Aromatic prenyltransferases transfer prenyl moieties onto aromatic acceptor molecules, catalyzing an electrophilic substitution of the aromatic ring under formation of carbon–carbon bonds. They give rise to an astounding diversity of primary and secondary metabolites in plants, fungi and bacteria. This review describes a recently discovered family of aromatic prenyltransferases. The structure of these enyzmes shows a type of β/α fold with antiparallel β strands. Due to the α-β-β-α architecture of this fold, this group of enzymes was designated as ABBA prenyltransferases. They lack the (N/D)DxxD motif which is characteristic for many other prenyltransferases.At present, 14 genes with sequence similarity to ABBA prenyltransferases can be identified in the database. A phylogenetic analysis of these genes separates them into two clades. One of them comprises the 4-hydroxyphenylpyruvate 3-dimethylallyltransferases CloQ and NovQ involved in aminocoumarin antibiotic biosynthesis in Streptomyces strains, as well as four genes of unknown function from fungal genomes. The other clade comprises genes involved in the biosynthesis of prenylated naphthoquinones and prenylated phenazines in different streptomycetes. ABBA prenyltransferases are soluble biocatalysts which can easily be obtained as homogeneous proteins in significant amounts. Their substrates are accommodated in a surprisingly spacious central cavity which explains their promiscuity for different aromatic substrates. Therefore, the enzymes of this family represent attractive tools for the chemoenzymatic synthesis of bioactive molecules.  相似文献   

15.
The manipulation of growth conditions of microorganisms is a common strategy used by pharmaceutical companies to improve the quantities and spectra of secondary metabolites with potential therapeutic interest. In this work, the effects of fermentation media on secondary metabolite production from a set of Actinomycetes was statistically compared. For this purpose, we created an automated method for comparing the ability of microorganisms to produce different secondary metabolites. HPLC analyses guided the selection of those media in which a wider chemical diversity was obtained from microorganisms inoculated in a wide spectrum of production media. Fermented media yielding a better secondary metabolite profile were included in subsequent drug discovery screening.  相似文献   

16.
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases.  相似文献   

17.
Attachment of isoprene units to various acceptors by prenylation plays an important role in primary and secondary metabolism of living organisms. Protein prenylation belongs to posttranslational modification and is involved in cellular regulation process. Prenylated secondary metabolites usually demonstrate promising biological and pharmacological activities. Prenyl transfer reactions catalyzed by prenyltransferases represent the key steps in the biosynthesis and contribute significantly to the structural and biological diversity of these compounds. In the last decade, remarkable progress has been achieved in the biochemical, molecular, and structural biological investigations of prenyltransferases, especially on those of the members of the dimethylallyltryptophan synthase (DMATS) superfamily. Until now, more than 40 of such soluble enzymes are identified and characterized biochemically. They catalyze usually regioselective and stereoselective prenylations of a series of aromatic substances including tryptophan, tryptophan-containing peptides, and other indole derivatives as well as tyrosine or even nitrogen-free substrates. Crystal structures of a number of prenyltransferases have been solved in the past 10 years and provide a solid basis for understanding the mechanism of prenyl transfer reactions.  相似文献   

18.
Biosynthesis of deoxyaminosugars in antibiotic-producing bacteria   总被引:3,自引:0,他引:3  
Deoxyaminosugars comprise an important class of deoxysugars synthesized by a variety of different microorganisms; they can be structural components of lipopolysaccharides, extracellular polysaccharides, and secondary metabolites such as antibiotics. Genes involved in the biosynthesis of the deoxyaminosugars are often clustered and are located in the vicinity of other genes required for the synthesis of the final compound. Most of the gene clusters for aminosugar biosynthesis have common features, as they contain genes encoding dehydratases, isomerases, aminotransferases, methyltransferases, and glycosyltransferases. In the present mini-review, the proposed biosynthetic pathways for deoxyaminosugar components of both macrolide and non-macrolide antibiotics are highlighted. The possibilities for genetic manipulations of the deoxyaminosugar biosynthetic pathways aimed at production of novel secondary metabolites are discussed.  相似文献   

19.
潘园园  刘钢 《遗传》2018,40(10):874-887
在目前已知的具有生物活性的微生物次级代谢物中约有50%是由丝状真菌产生的,其中包括人们所熟知的青霉素、环孢菌素A以及洛伐他汀等。鉴于丝状真菌次级代谢物在农业、医药和工业上的重要价值,它们的生物合成及其分子调控一直备受关注。丝状真菌次级代谢物的生物合成是一个复杂的过程,一般涉及多步酶学反应,该过程往往受到不同水平的调控。深入了解丝状真菌次级代谢的分子调控机制,可以为其产量的提高、新骨架化合物的发掘以及隐性次级代谢物的激活奠定重要的理论基础。本文以丝状真菌次级代谢分子调控为主线,重点介绍近40年来我国科研工作者在该领域取得的研究进展,并对这一领域未来的发展进行展望。  相似文献   

20.
Adventitious Roots and Secondary Metabolism   总被引:2,自引:0,他引:2  
Plants are a rich source of valuable secondary metabolites and in the recent years plant cell, tissue and organ cultures have been developed as an important alternative sources for the production of these compounds. Adventitious roots have been successfully induced in many plant species and cultured for the production of high value secondary metabolites of pharmaceutical, nutraceutical and industrial importance. Adoption of elicitation methods have shown improved synthesis of secondary metabolites in adventitious root cultures. Development of large-scale culture methods using bioreactors has opened up feasibilities of production of secondary metabolites at the industrial levels. In the present review we summarize the progress made in recent past in the area of adventitious root cultures for the production of secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号