首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Leymus chinensis (Trin.) Tzvel is a rhizomatous grass species in the Eastern Eurasian steppe zone that is often limited by low soil nitrogen availability. Although a previous study showed that the rhizomes of L. chinensis have the capacity to take up nitrogen, the importance of such uptake for nitrogen nutrition is unclear. Moreover, little is known regarding the inorganic nitrogen uptake kinetics of roots and rhizomes in response to nitrogen status. Here, we first found that ammonium is preferred over nitrate and glycine for L. chinensis growth. Using the 15N-labelling method, we found that the rate of ion influx into roots was approximately five-fold higher than into rhizomes under the same nitrogen content, and the ion influxes into roots and rhizomes under 0.05 mM N were greater than in the presence of 3 mM N, especially in the form of NH4+. Using a non-invasive micro-test technique, we characterised the patterns of NH4+ and NO3 fluxes in the root mature zone, root tip, rhizome mature zone, and rhizome tip following incubation in the solution with different N compounds and different N concentrations. These results suggest a dynamic balance between the uptake, utilisation, and excretion of nitrogen in L. chinensis.  相似文献   

2.
Endophytic fungi have been isolated from the healthy turmeric (Curcuma longa L.) rhizomes from South India. Thirty-one endophytes were identified based on morphological and ITS–rDNA sequence analysis. The isolated endophytes were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric respectively. Results revealed that only six endophytes showed >?70% suppression of test pathogens in antagonistic dual culture assays. The endophyte T. harzianum TharDOB-31 showed significant in vitro mycelial growth inhibition of P. aphanidermatum (76.0%) and R. solani (76.9%) when tested by dual culture method. The SEM studies of interaction zone showed morphological abnormalities like parasitism, shriveling, breakage and lysis of hyphae of the pathogens by endophyte TharDOB-31. Selected endophytic isolates recorded multiple plant growth promoting traits in in vitro studies. The rhizome bacterization followed by soil application of endophyte TharDOB-31 showed lowest Percent Disease Incidence of rhizome rot and leaf blight, 13.8 and 11.6% respectively. The treatment of TharDOB-31 exhibited significant increase in plant height (85 cm) and fresh rhizome yield/plant (425 g) in comparison with untreated control under greenhouse condition. The confocal microscopy validates the colonization of the TharDOB-31 in turmeric rhizomes. The secondary metabolites in ethyl acetate extract of TharDOB-31 were found to contain higher number of antifungal compounds by high resolution liquid chromatograph mass spectrometer analysis. Thereby, endophyte T. harzianum isolate can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.  相似文献   

3.
The influence of 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and thidiazuron (TDZ) on direct rhizome induction and shoot formation from rhizome explants of Cymbidium goeringii was explored. Rhizome segments obtained from in vitro seed cultures of C. goeringii were placed on Murashige and Skoog (MS) medium incorporated with 5, 10, 20, or 40 µM 2,4-D and 1, 2, 4, or 8 µM BA or TDZ alone or in combination with 20 µM 2,4-D. The explants developed only rhizomes on MS medium with or without 2,4-D. The highest percent of rhizome formation (100%) was obtained on MS medium incorporated with 20 μM of 2,4-D. The morphology and number of rhizomes varied with the level of 2,4-D in the medium. Direct adventitious shoot formation was achieved on medium incorporated with BA or TDZ. The adventitious shoots produced per explant significantly increased with the supplementation of 2,4-D to cytokinin-containing medium. The highest mean of 21.8 ± 1.8 shoot buds per rhizome segment was obtained in medium fortified with 20 μM 2,4-D and 2 μM TDZ. The greatest percent of root induction (100%) and the mean of 5.3 ± 1.1 roots per shoot were achieved on ½ MS medium incorporated with 2 μM of α-naphthaleneacetic acid. About 97% of the in vitro-produced plantlets acclimatized in the greenhouse. An efficient in vitro propagation protocol was thus developed for C. goeringii using rhizome explants.  相似文献   

4.
An efficient plant regeneration protocol was developed from rhizomes of two Curcuma species C. longa and C. amada. Response was highly dependent on the season, with above 69 % of culture developing adventitious shoots during spring. Greatest regeneration and multiplication was observed in modified Murashige and Skoog (MS) medium supplemented with 13.31 μM benzyladenine and 2.68 μM α-naphthalene acetic acid (NAA) in C. longa or 2.46 μM indolebutyric acid in C. amada. Effect of sugars and agar at different concentrations were also studied and 2 % maltose and 0.7 % agar were found optimum for shoot multiplication and regeneration. Most plantlets developed roots simultaneously but others formed roots when subcultured in ½ MS medium supplemented with 2.68 μM NAA. Plants were successfully hardened in greenhouse with 80 % survival. The genetic purity of micropropagated plantlets was analyzed using RAPD and protein profiles.  相似文献   

5.

Background

Although ferns are often known under collective names in Norway, e.g. blom, a substantial number of vernacular names for individual fern species are known, in particular for useful or poisonous taxa. In the past, the rhizomes (Norwegian: moldfôr) of selected species were collected for fodder. Only scattered records of such use are available from southern Norway, and the tradition’s core area is found in the two North Norwegian counties of Nordland and Troms, in accordance with the longer winters encountered in the north, frequently leading to fodder shortage in early spring. The tradition extends northeastwards into Finnmark, but is less well documented there. Although numerous sources mention the use of fern rhizomes for fodder, the fern species hiding behind the tradition are incompletely known. This paper aims at reviewing available data in terms of identifyng the species used for fodder, the history and geographical distribution of such use, and other relevant traditions, e.g. the timing and mode of collection, and the way the rhizomes were used.

Methods

The study is based on data extracted from a variety of archival and literature sources; the latter retrived from my database of more than 7500 publications providing information on plant names and plant uses in Norway.

Results

More than 200 individual records mention the use of fern rhizomes for fodder in Norway. Only a fraction of these, typically made by botanist recording data on plant uses, provides information on the identity of the species used. Based on these, Dryopteris filix-mas and Matteuccia struthiopteris stand out as the most important species serving as sources of fern rhizomes for fodder. Locally, Dryopteris expansa was the preferred species, and this taxon may to some extent be overlooked in the records so far available. With a few exceptions, Norwegian folk tradition singles out Athyrium filix-femina as a harmful and poisonous species, causing livestock to go blind and lame, but whether this is true or not, remains unknown; the symptoms are in fact documented elsewhere as a consequence of poisoning due to Dryopteris filix-mas. In coastal north Norway, fern rhizomes were regularly collected for fodder, both in late autumn and early spring, and used to remedy a recurrent shortage of fodder in late winter and spring. Locally, the tradition of collecting fern rhizomes lived on until the 1940’s or 1950’s. Although mainly a tradition of the ethnic Norwegians, it had also been adopted by the farmers belonging to the Finnish and Sámi ethnic minorities.

Conclusion

Fern rhizomes have a long tradition as an additional fodder for livestock in Norway. Preferred species were Matteuccia struthiopteris and Dryopteris filix-mas, locally also Dryopteris expansa. Athyrium filix-femina was considered to be poisonous, and usually avoided.
  相似文献   

6.
Vegetation in grasslands is changing at an unprecedented rate. In the Nebraska Sandhills, this shift is attributed in part to encroachment of the woody species Juniperus virginiana. We investigated changes in resource availability and their feedback on seasonal trends in photosynthetic characteristics of J. virginiana trees scattered in open grasslands vs. a dense 57-year-old stand. Dense stand exhibited lower volumetric soil water content, NH4 +, NO3 , and δ13C, as well as foliage δ13C, δ15N, and N content, compared to grasslands. Water potential was higher in trees in grasslands compared to dense stand. J. virginiana in dense stand exhibited similar trends to trees in grasslands for net photosynthetic rate (P N), stomatal conductance, transpiration, maximum photochemical efficiency of PSII, maximum carboxylation velocity, and maximum rate of electron transport. P N peaked early summer and declined in the fall, with trees in open grasslands lagging behind those in dense stand. Plasticity of this species may place it at a competitive advantage in the Sandhills, further altering grasslands vegetation and ecosystem processes.  相似文献   

7.
Anoectochilus roxburghii (Wall) Lindl. (Orchidaceae) is a precious raw material for medicine. However, the wild resource of A. roxburghii has been endangered, and artificial cultivation results in low yields. To provide rhizomes of A. roxburghii as alternative plant materials, the present study used continuous immersion bioreactor systems to investigate several factors affecting rhizome biomass and bioactive compound accumulation. The bioreactor with a net at the bottom of the sphere in the bioreactor was suitable for production of rhizomes. The rhizome biomass and kinsenoside and polysaccharide accumulation peaked at 30 days of the bioreactor culture. Thus, 30 days was the appropriate culture period. Maximum rhizome biomass and kinsenoside and polysaccharide accumulation were determined when a bioreactor was inoculated with 12.5 g L??1 (fresh weight) of rhizomes, aerated at 500 mL min??1, and maintained under 45 µmol m??2 s??1 light intensity. This process resulted in the production of 2980.5 mg L??1 of kinsenoside and 5672.9 mg L?1 of polysaccharides.  相似文献   

8.
MicroRNA171 (miR171) is a highly conserved miRNA family, crucial for plant growth and development, and has been reported in Arabidopsis thaliana and tomato (Solanum lycopersicum), but the role of miR171 has not been explored in pear. In this study, an effort was made to decipher the mechanism underlying dwarf in ‘Zhongai 3’, of which the shoot length and shoot growth rate during the growing season were much less than those of the vigorous cultivar ‘Zaosu’, and the same for the indole-3-acetic acid (IAA) content in shoot tips after May 22, 2016. We identified a member of the miR171 family, which was most sensitive to IAA and targeted two genes conformed by 5′-RACE, and we named Pyr-miR171f. The two targets were named as PyrSCL6 and PyrSCL22, and contained a GRAS-conserved domain and encoded nucleus proteins. Quantitative RT-PCR analysis revealed that Pyr-miR171f was more abundant in ‘Zaosu’ shoot tips than in ‘Zhongai 3’ shoot tips, whereas the PyrSCL6 and PyrSCL22 mRNAs were more abundant in ‘Zhongai 3’ shoot tips than in ‘Zaosu’ shoot tips. The abundance of Pyr-miR171f and PyrSCL6 and PyrSCL22 mRNAs increased, but the trends were opposite between Pyr-miR171f and its target mRNAs in tissue culture seedlings treated by IAA. Our results suggest that IAA-induced miR171f negatively regulates the IAA signaling cascade via the GRAS pathway to maintain apical dominance. This work reveals a role for the miR171-SCL pathway in the dwarfing of ‘Zhongai 3’, and provides a theoretical basis for dwarf pear breeding.  相似文献   

9.
10.
Ginseng (Panax ginseng C.A. Meyer) is a medicinal crop that requires a long culture time before it is ready to harvest, thus generating high economic and environmental costs. Symbiotic bacteria that live within the plant provide the host plant with many advantages in terms of metabolism and disease resistance. Here, we isolated endophytic bacteria from various tissues of P. ginseng seedlings using a culture-dependent method and we compared their tissue distribution. In addition, their antimicrobial activity against two fungal pathogens was investigated. Based on 16S rRNA sequencing, we identified 21 bacterial strains from ginseng seedlings. Leaves and rhizomes showed higher bacterial species diversity than root bodies and tails. While Bacillus strains were detected in all tissues, Xanthomonas and Micrococcaceae strains were specifically isolated from rhizome and leaf tissues, respectively. Fourteen bacterial strains showed antimicrobial activities against Cylindrocarpon destructans and/or Botrytis cinerea, with different activities. Among them, two strains (PgKB29 and PgKB35) showed strong antimicrobial activities against both fungi. Taken together, these results provide a better understanding of endophytic bacteria in P. ginseng seedlings and suggest the possibility of biological control of fungal pathogens using endophytic bacteria.  相似文献   

11.
Acorus calamus Linn. of the family Araceae (Acoraceae), commonly known as Sweet Flag and Vacha. The rhizome of this plant has medicinal properties against bugs, moths, lice and emetic stomach in dyspepsia. Chemical composition of the hydro-distilled essential oil obtained from the rhizomes of A. calamus was analyzed by gas chromatography equipped with flame ionization detector and gas chromatography coupled with mass spectrometry. The essential oil of A. calamus and its major compound β-asarone were tested against five Gram-positive, eight Gram-negative bacteria, and three fungi by the tube-dilution method at a concentration rang of 5.0–0.009 mg/mL. Forty constituents were identified which comprised 98.3 % of the total oil. The major compound β-asarone (80.6 %) was identified and confirm by NMR (1H– & 13C–) in rhizome oil of A. calamus. The organism Micrococcus luteus was found to be more susceptible to the oil with minimum bactericidal concentration (MBC) value of 0.032 ± 0.004 mg/mL, followed by Aspergillus fumigatus, Aspergillus niger and Micrococcus flavus with MBC values of 0.104 ± 0.016, 0.117 ± 0.017 and 0.143 ± 0.013 mg/mL, respectively. The compound β-asarone was susceptible to the microorganism A. niger with MBC value 0.416 ± 0.065 mg/mL. The present study revealed that tetraploid variety of A. calamus is growing in this region with substantial amount of β-asarone. The oil showed bactericidal property against tested bacteria and fungi. The β-asarone exhibited poorer bactericidal activity against test microorganisms.  相似文献   

12.
13.

Key message

Only few genetic loci are sufficient to increase the variation of bolting time in Beta vulgaris dramatically, regarding vernalization requirement, seasonal bolting time and reproduction type.

Abstract

Beta species show a wide variation of bolting time regarding the year of first reproduction, seasonal bolting time and the number of reproduction cycles. To elucidate the genetics of bolting time control, we used three F3 mapping populations that were produced by crossing a semelparous, annual sugar beet with iteroparous, vernalization-requiring wild beet genotypes. The semelparous plants died after reproduction, whereas iteroparous plants reproduced at least twice. All populations segregated for vernalization requirement, seasonal bolting time and the number of reproduction cycles. We found that vernalization requirement co-segregated with the bolting locus B on chromosome 2 and was inherited independently from semel- or iteroparous reproduction. Furthermore, we found that seasonal bolting time is a highly heritable trait (h 2 > 0.84), which is primarily controlled by two major QTL located on chromosome 4 and 9. Late bolting alleles of both loci act in a partially recessive manner and were identified in both iteroparous pollinators. We observed an additive interaction of both loci for bolting delay. The QTL region on chromosome 4 encompasses the floral promoter gene BvFT2, whereas the QTL on chromosome 9 co-localizes with the BR 1 locus, which controls post-winter bolting resistance. Our findings are applicable for marker-assisted sugar beet breeding regarding early bolting to accelerate generation cycles and late bolting to develop bolting-resistant spring and winter beets. Unexpectedly, one population segregated also for dwarf growth that was found to be controlled by a single locus on chromosome 9.
  相似文献   

14.
Trillium govanianum Wall. ex D. Don, popularly known as Nagchhatri, is an important medicinal plant of northwestern Himalayas. No data exist on molecular characteristics of diosgenin biosynthesis, the main chemical component of T. govanianum. HPLC analysis revealed diosgenin content of 2.4 and 0.7% in hydrolyzed rhizome extracts of Chamba and Lahaul and Spiti, respectively. Quantitative real-time PCR analysis of five genes of steroid pathway in the rhizomes of two locations, differing for diosgenin content showed up to 3.2-fold increase in expression level of genes viz. hydroxymethylglutaryl Co-A reductase (HMGR), farnesyl pyrophosphate synthase (FPPS), squalene synthase (SQS), 26-O-beta-glucosidase (BETA) and cycloartenol synthase (CAS) in rhizomes of Chamba (2.4%) as compared to Lahaul and Spiti (0.7%), thus inferring their role in diosgenin biosynthesis. The present study delivers the first report where an elite chemotype of T. govanianum for diosgenin content was identified and partial sequences of five genes of steroid pathway were cloned and investigated for their potential role in diosgenin biosynthesis in T. govanianum. The result of this study has prospective applications in the genetic improvement of this medicinally important plant species.  相似文献   

15.
We tested the hypothesis that high root/shoot (R/S) in rice improves plant growth and yield when the shoot sink is expandable, and that in a genotype with exaggerated R/S ratio, the shoot growth is not limited by root resources. This study involved the three rice genotypes, Giza 178, PM12, and Moroberekan with a range of R/S ratios and shoot sink sizes. Root regrowth after trimming or high- and low-nitrogen treatments revealed that Moroberekan has consistently high root-favoured biomass partitioning than Giza 178 or PM12. Increasing the R/S ratios by detillering improved the culm growth in Giza 178 and PM12 (by 43.4 and 17.7% of control, respectively) but not Moroberekan, indicating that PM12 was closer to achieving its growth potential than Giza 178 but Moroberekan was operating at maximal shoot growth potential because of high R/S ratio and small sink size. Under drought, shoot growth, gas exchange, and grain yield correlated strongly with R/S ratio and root length density (RLD) in the droughted but not the well-watered plants. We further hypothesized that R/S ratio of Moroberekan was in excess of shoot requirement for optimum growth. Crossing Moroberekan to PM12 generated three F1 hybrids with intermediate R/S ratios but higher growth, gas exchange, and yield than either parent. We conclude that increasing the R/S ratio improved growth and yield in PM12 but not Moroberekan, because the shoot sink size was expandable in PM12. Moreover, lower R/S ratios than that of Moroberekan could support higher shoot growth if shoot sink is expandable.  相似文献   

16.
Elucidation of mechanisms underlying plant tolerance to cadmium, a widespread toxic soil pollutant, and accumulation of Cd in plants are urgent tasks. For this purposes, the pea (Pisum sativum L.) mutant SGECdt (obtained by treatment of the laboratory pea line SGE with ethylmethane sulfonate) was reciprocally grafted with the parental line SGE, and four scion/rootstock combinations were obtained: SGE/SGE, SGECdt/SGECdt, SGE/SGECdt, and SGECdt/SGE. They were grown in hydroponics in the presence of 1 μM CdCl2 for 30 d. The SGE and SGECdt scions on the SGECdt rootstock had a higher root and shoot biomass and an elevated root and shoot Cd content compared with the grafts having SGE rootstock. Only the grafts with the SGE rootstock showed chlorosis and roots demonstrating symptoms of Cd toxicity. The content of nutrient elements in roots (Fe, K, Mg, Mn, Na, P, and Zn) was higher in the grafts having the SGECdt rootstock, and three elements, namely Ca, Fe, and Mn, were efficiently transported by the SGECdt root to the shoot of these grafts. The content of other measured elements (K, Mg, Na, P, and Zn) was similar in the root and shoot in all the grafts. Then, the non-grafted plants were grown in the presence of Cd and subjected to deficit or excess concentrations of Ca, Fe, or Mn. Exclusion of these elements from the nutrient solution retained or increased differences between SGE and SGECdt in growth response to Cd toxicity, whereas excess of Ca, Fe, or Mn decreased or eliminated such differences. The obtained results assign a principal role of roots to realizing the increased Cd-tolerance and Cdaccumulation in the SGECdt mutant. Efficient translocation of Ca, Fe, and Mn from roots to shoots appeared to counteract Cd toxicity, although Cd was actively taken up by roots and accumulated in shoots.  相似文献   

17.
Net photosynthetic rate (PN), transpiration rate (E), water use efficiency (WUE), stomatal conductance (gs), and stomatal limitation (Ls) were investigated in two Syringa species. The saturation irradiance (SI) was 400 µmol m-2s-1 for S. pinnatifolia and 1 700 µmol m-2s-1 for S. oblata. Compared with S. oblata, S. pinnatifolia had extremely low g s . Unlike S. oblata, the maximal photosynthetic rate (Pmax) in S. pinnatifoliaoccurred around 08:00 and then fell down, indicating this species was sensitive to higher temperature and high photosynthetic photon flux density. However, such phenomenon was interrupted by the leaf development rhythms before summer. A relatively lower PN together with a lower leaf area and shoot growth showed the capacity for carbon assimilation was poorer in S. pinnatifolia.  相似文献   

18.

Key message

Although exposure to multiple cutting cycles reduces stored reserves, shoot diameter and shoot length, it, however, increases shoot production per resprouting stump and foliar nitrogen.

Abstract

In disturbance-prone environments with fluctuating seasonal rainfall such as savannas, the repeated cutting of the same trees eventually results in a possible decline in tree abundance. The effects of subjecting Terminalia sericea trees to one, two and multiple (eight) cutting events over a period of 2 years on coppice response were investigated in a savanna woodland in South Africa. Resprout shoot diameter, shoot length and the total cumulative diameter were lower in trees exposed to a high number of cutting events compared to trees exposed to one cutting event. Increasing the number of cutting events significantly reduced stem total non-structural carbohydrate levels in trees indicating a depletion of stored reserves. Foliar carbon content remained largely the same, while leaf nitrogen and phosphorus concentrations significantly increased with each cutting event, relative to uncut trees. Results indicate that trees cut once had not replenished depleted carbohydrate reserves even after a period of 18 months during which no cutting took place. Sustainable utilization of this tree species must allow for at least more than 18 months of undisturbed growth between harvests to allow for the replenishing of reserves.
  相似文献   

19.

Background and aims

Invasive weeds may exert negative impact on other plant species and soil processes. The observed negative impact of an invasive weed species may be driven by allelopathy or nutrient availability.

Methodology

Sorghum halepense is one of the worst invasive weeds in crop fields. We quantified the species richness in the S. halepense-invaded communities and communities not yet invaded by the weed. Sorghum soil and no-sorghum soil were analysed for total phenolics, microbial activity, available nitrogen (N) and organic carbon. Manipulative experiments were carried out to understand the interference potential of S. halepense. Soil was amended with root or shoot leachate of S. halepense, and its impact on plant growth and soil properties was studied.

Results

Out of four S. halepense-sites, lower plant species richness was observed in one site compared to uninvaded sites. S. halepense-invaded soil had higher levels of total phenolics and lower levels of available N. Higher inhibition in the root growth of Brassica juncea or Bidens pilosa was observed in root leachate-amended soil than shoot leachate-amended soil. Shoot leachate-amended soil had higher levels of total phenolics and available N than root leachate-amended soils. Significant reduction in the available N was observed in soil amended with root leachate. Significant decline in the total phenolics over a period of time was observed in soil amended with root leachate or shoot leachate of S. halepense. Higher CO2 release was observed 24 h after amending soil with root leachate or shoot leachate of S. halepense.

Conclusions

Sorghum halepense interference potential in its soil is likely due to lower levels of available N. Greater reduction in root dry weight of assay species in root leachate amended soil compared to shoot leachate amended soil was likely due to lower levels of available N in root leachate-amended soil. Relative interference potential of both root and shoot leachates or extracts should be evaluated in allelopathy bioassays and further experiments should be designed to distinguish the role of allelochemicals and nutrient availability in plant growth inhibition.
  相似文献   

20.
Posidonia oceanica is a seagrass endemic to the Mediterranean Sea. Most of the primary production of the P. oceanica meadow is not directly consumed by herbivores and plays a role as dead rhizomes and roots, dead leaves and drift epibionts (hereafter necromass). The fate of this necromass is (i) sequestration within the matte, (ii) consumption by detritus-feeders within the meadow, (iii) export towards other marine ecosystems, where it constitutes a source for food webs, (iv) export towards beaches, where it constitutes banquettes, reduces the impact of waves and contributes to the beach ecosystem, and (v) export towards the terrestrial dune ecosystem. These five stocks can exchange necromass. The ecosystem services of the P. oceanica necromass are pivotal. For example, the role of P. oceanica banquettes is fundamental in protecting beaches from erosion, and the carbon sequestration within the matte contributes to the mitigation of emissions of CO2. Human impact on each of these stocks can affect the other stocks and their ecosystem services. The removal of banquettes from beaches can have a dramatic negative impact on P. oceanica ecosystem services, including the sustaining of beaches. The erosion of matte due to trawling and anchoring can remobilize the sequestrated carbon stock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号