首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Aquatic Botany》2005,83(2):129-140
Bisexual populations of the charophyte Chara canescens (Desv. et Loisel. in Loisel., 1810) containing male and female individuals are rarely found. Two experiments were carried out to study whether male and female algae from the same site exhibit different physiological capacities, especially with respect to light acclimation.Algae from two different shore levels and from laboratory cultures acclimated to six irradiance conditions (35–500 μmol photons m−2 s−1) were compared. Field measurements showed that both female and male algae of C. canescens are able to acclimate to daily changes in solar irradiance. The quantum yield of Photosystem II (PSII) decreased with increasing irradiance in the morning and increased with decreasing irradiance in the afternoon. Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼7 mg FW) up to 500 μmol photons m−2 s−1 (∼27 mg FW) in female and male C. canescens. The irradiance saturation point for photosynthesis (Ek) was about 140 μmol m−2 s−1 for both sexes within the whole range of acclimation irradiances. The maximum photosynthesis rate at saturating irradiances (Pmax) of male algae was highest at Ek, whereas Pmax of female algae was highest at 500 μmol photons m−2 s−1. The photosynthetic efficiency in the light-limited range (α) increased in female C. canescens and decreased in male C. canescens. The ratio of the non-photochemical quenching parameter (NPQ) to the relative electron transport rates rETR(MT) increased in both sexes with irradiance, but showed a steeper increase in male than in female algae. Pigment analysis showed similar acclimation pattern for male and female C. canescens. Chl a/Chl b ratios of both sexes were constant over the whole range of Eg, whereas Chl a/carotenoid ratios in male and female C. canescens decreased from 70 μmol photons m−2 s−1 upwards. Pigment analysis pointed out that the carotenes α-, β- and γ-carotene were more prominent in male than in female algae.Our results indicate that female C. canescens are more efficient in light acclimation than male algae from the same site. Nevertheless, further investigations of bisexual C. canescens populations resolving CO2-uptake mechanisms and/or genetic differences are needed.  相似文献   

2.
《Aquatic Botany》2004,79(2):111-124
The main aim of this study was to investigate if the charophyte species Chara baltica, Chara canescens (two populations from the Baltic Sea (BS) and the Gulf of Korinth, Greece (GK)), and Lamprothamnium papulosum exhibit different acclimation capacities to irradiance. Growth, photosynthesis and pigment content were examined in the laboratory under six irradiance conditions (35–500 μmol photons m−2 s−1). Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼10 mg fresh weight (FW)) up to 70 μmol photons m−2 s−1 (∼20 mg FW) in C. baltica, from 35 μmol photons m−2 s−1 (∼15 mg FW) up to 380 μmol photons m−2 s−1 (∼145 mg FW) in C. canescens (BS), and up to the highest growth irradiance in algae of L. papulosum (35 μmol: ∼5 mg FW; 500 μmol: ∼20 mg FW). The species were tested for their ability to acclimate to different growth irradiances (Eg) by calculating Pmax (maximum photosynthesis rate at saturating irradiances), α (the efficiency of light utilization at limiting irradiance), and Ek (the light saturation point of photosynthesis, Pmax/α). All species exhibited increasing Pmax with increasing Eg. Whereas both populations of C. canescens increased α with increasing Eg, L. papulosum and C. baltica did not acclimate α at all. Ek, the irradiance at which photosynthesis ceased to be light-limited, was constant for all Chara species within the range of irradiances tested. Chl a/Chl b ratios of all species were constant over the whole range of Eg. Chl a/carotenoid ratios were constant in C. baltica, whereas Chl a/carotenoid ratios in L. papulosum and C. canescens (BS) decreased from 250 and 70 μmol photons m−2 s−1 upwards, respectively. Pigmentation analysis showed that Chl a/carotenoid acclimation was mainly caused by species-specific capacity to raise the content of lutein and carotene (C. canescens (BS), C. canescens (GK)) and xanthophyll cycle pigments (XCP; L. papulosum). The non-photochemical quenching (NPQ) capacities of L. papulosum, C. canescens (BS), and C. canescens (GK) were dependent from preacclimation status of algae, whereas NPQ of C. baltica was independent from growth irradiance.Our results indicate that C. baltica and C. canescens (BS) were light saturated within the chosen irradiances, whereas C. canescens (GK) and L. papulosum did not reach their limits of high-light acclimation. The photosynthetic pigments lutein, α- and β-carotene are suggested to act as photo-protective pigments in L. papulosum and C. canescens.  相似文献   

3.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

4.
Green roofs can notably modify the thermal properties of the building envelope and adjacent air to bring environmental benefits. This study investigates the heat flux dynamics of the tropical green roof ecosystem to provide a scientific basis for design and management. Green roof experimental plots were established to monitor the total solar radiation, net radiation, and micrometeorological parameters. The data permit calculation of sensible and latent heat fluxes using the Bowen ratio energy balance (BREB) method. The results demonstrated the life cycle characteristics of heat flux components. The dynamic changes of sensible (H), latent (λE) and soil (G) heat fluxes were denoted by single-peak quadratic curves. Net radiation (Rn) was largely determined by quantity and variation trends of λE, reaching at 1300 h a maximum λE of 655 W m?2 and maximum H of 369 W m?2. Temporal heat-flux fluctuations were strongly correlated with meteorological variables. Extreme values of H and λE correlated well with precipitation and temperature (R2 = 0.78). Dynamics of heat-flux magnitude and partitioning demonstrated notable differences by daily and season periods. They displayed considerable variations in flux partitioning, with Bowen ratios strongly correlated with weather conditions and vegetation types. The energy budget of the green roof ecosystem is unbalanced with a heat loss of about 15.5% caused by soil and canopy heat reserve. The passive indoor cooling effect under the green roof is attributed to the unbalanced energy closure.  相似文献   

5.
《Aquatic Botany》2005,83(3):161-174
The photosynthetic and repiratory metabolism of Zostera marina and maerl communities was compared, in the same area of the Bay of Brest in March–April, using benthic chambers. PE curves for both oxygen and carbon were established for bottom irradiances between 0 and 525 μmol m−2 s−1. An exponential function was fitted to calculate daily production. Community metabolic quotients did not differ for maerl and seagrass beds. Community photosynthetic quotients were significantly higher (1.19) whereas community respiratory quotients were lower (0.70) than 1. Maerl and seagrass bed PE curves mainly differed by the minimum saturating irradiance (Ek). Net community production was estimated to 26.8 mmol C m−2 d−1 for Z. marina meadows and 8.6 mmol C m−2 d−1 for maerl beds. The two communities can, therefore, be considered as autotrophic during the March–April period. Community respiration did not differ between Z. marina meadows and maerl beds, with an average value of 53.8 mmol C m−2 d−1 during a day. In similar environmental conditions, the production of maerl beds corresponds to approximately one third that of seagrass meadows. The maerl communities, therefore, form productive ecosystems, relevant to temperate coastal ecosystems functioning.  相似文献   

6.
In the last decade extensive research has focused on the development of dose–response relationships based on stomatal plant ozone uptake (phytotoxic ozone dose, POD). So far most work has concentrated on crops and forest trees. This study provides a flux-based dose–response function for timothy (Phleum pratense), a widespread grassland species, which can be used in risk assessment for ground-level ozone. In 1996 and 2001 timothy was exposed in open-top chambers to ozone concentrations ranging from around 10 nmol mol−1 in the charcoal filtered treatments up to 60 nmol mol−1 in the fumigated treatments (08:00–20:00) in. In 1996 there was a negative effect of ozone on biomass production in the non-filtered treatment while in 2001 no such ozone effect in the non-filtered treatment could be seen. Measurements of stomatal conductance on four timothy genotypes in 2001 were used to calibrate a Jarvis-type multiplicative stomatal conductance model. The maximum conductance varied between the genotypes, from 477 to 589 mmol O3 m−2 s−1 (projected leaf area). The model includes functions describing the reduction of stomatal conductance of senescing leaves and the direct effects on stomatal conductance by light, temperature and water vapour pressure deficit. A function describing ozone induced senescence of the leaves was included since exposure to ozone is known to cause premature senescence. The function for ozone was applied when it suggested ozone to be more limiting to stomatal conductance than phenology. To avoid overestimation of stomatal conductance in days with high VPD, a function reflecting the effect on leaf water potential on stomatal conductance was included. Comparison between modelled and measured conductance for the four timothy genotypes resulted in an r2 value at 0.57 and a very small average deviation of observed from modelled values. The calibrated stomatal conductance model was used to estimate the accumulated POD, i.e. the accumulated stomatal flux of ozone, of the plants in the 1996 and 2001 experiments. The strongest relationship between ozone relative effects on biomass was obtained when POD was accumulated from 105 degree days after emergence to 1000 degree days after emergence, and integrated using an uptake rate threshold of 7 nmol m−2 s−1 (POD7). The response relationship between biomass and POD7 resulted in an r2 value of 0.71 over all four genotypes. This r2 value was somewhat higher than for the corresponding relationship based on the accumulated ozone exposure over 40 nmol mol−1 (AOT40; r2 = 0.66). With an uptake rate threshold at 7 nmol m−2 s−1, ozone concentrations above ∼20 nmol mol−1, contribute to reduce the biomass production of timothy if meteorological conditions promote maximum stomatal conductance.  相似文献   

7.
Salts inhibit the activity of sweet almond β-glucosidase. For cations (Cl salts) the effectiveness follows the series: Cu+2, Fe+2 > Zn+2 > Li+ > Ca+2 > Mg+2 > Cs+ > NH4+ > Rb+ > K+ > Na+ and for anions (Na+ salts) the series is: I > ClO4 > SCN > Br  NO3 > Cl  OAc > F  SO4 2. The activity of the enzyme, like that of most glycohydrolases, depends on a deprotonated carboxylate (nucleophile) and a protonated carboxylic acid for optimal activity. The resulting pH-profile of kcat/Km for the β-glucosidase-catalyzed hydrolysis of p-nitrophenyl glucoside is characterized by a width at half height that is strongly sensitive to the nature and concentration of the salt. Most of the inhibition is due to a shift in the enzymic pKas and not to an effect on the pH-independent second-order rate constant, (kcat/Km)lim. For example, as the NaCl concentration is increased from 0.01 M to 1.0 M the apparent pKa1 increases (from 3.7 to 4.9) and the apparent pKa2 decreases (from 7.2 to 5.9). With p-nitrophenyl glucoside, the value of the pH-independent (kcat/Km)lim (= 9 × 104 M 1 s 1) is reduced by less than 4% as the NaCl concentration is increased. There is a similar shift in the pKas when the LiCl concentration is increased to 1.0 M. The results of these salt-induced pKa shifts rule out a significant contribution of reverse protonation to the catalytic efficiency of the enzyme. At low salt concentration, the fraction of the catalytically active monoprotonated enzyme in the reverse protonated form (i.e., proton on the group with a pKa of 3.7 and dissociated from the group with a pKa of 7.2) is very small (≈ 0.03%). At higher salt concentrations, where the two pKas become closer, the fraction of the monoprotonated enzyme in the reverse protonated form increases over 300-fold. However, there is no increase in the intrinsic reactivity, (kcat/Km)lim, of the monoprotonated species. For other enzymes which may show such salt-induced pKa shifts, this provides a convenient test for the role of reverse protonation.  相似文献   

8.
《Aquatic Botany》2005,83(3):187-192
We investigated the effect of intraspecific competition on growth parameters and photosynthesis of the salt marsh species Atriplex prostrata Boucher in order to distinguish the effects of density-dependent growth inhibition from salt stress. High plant density caused a reduction of 30% in height, 82% in stem dry mass, 80% in leaf dry mass, and 95% in root dry mass. High density also induced a pronounced 72% reduction in leaf area, 29% decrease in length of mature internodes and 50% decline in net photosynthetic rate. The alteration of net photosynthesis paralleled growth inhibition, decreasing from 7.6 ± 0.9 μmol CO2 m−2 s−1 at low density to 3.5 ± 0.4 μmol CO2 m−2 s−1 at high density, indicating growth inhibition caused by intraspecific competition is mainly due to a decline in net photosynthesis rate. Plants grown at high density also exhibited a reduction in stomatal conductance from 0.7 ± 0.1 mol H2O m−2 s−1 at low density to 0.3 ± 0.1 mol H2O m−2 s−1 at high density and a reduction in transpiration rate from 6.0 ± 0.3 mmol H2O m−2 s−1 at low density to 4.3 ± 0.3 mmol H2O m−2 s−1 at high density. Biomass production was inhibited by an increase in plant density, which reduced the rate of photosynthesis, stomatal conductance and leaf area of plants.  相似文献   

9.
《Aquatic Botany》2005,82(1):55-70
A study of the meadows of the invasive Caulerpa racemosa var. cylindracea (Sonder) Verlaque, Huisman et Boudouresque was carried out over one year at Marseilles (Provence, France) where the alga is thriving, probably since 1994, in the cold waters of the north western Mediterranean Sea. At an early phase of colonisation, the C. racemosa meadow is characterized by a patchy distribution pattern. Several years are necessary to obtain a dense and continuous meadow. In one area colonized for more than 4 years, C. racemosa has developed a continuous meadow with wide seasonal variations. Maximum development was reached in autumn (biomass: 82 ± 3 g DW m−2; length of stolons: 1162 ± 86 m m−2; number of apices: 8360 ± 405 m−2; number of erect axes: 20955 ± 1499 m−2) and the minimum from winter to early spring (respectively, 0.3 ± 0.1 g DW m−2; 3 ± 1 m m−2; 220 ± 55 apices m−2; 35 ± 15 erect axes m−2). Seasonal variations in the growth rate were highly significant. The season of high growth lasted from June to October. The apical growth rate of a stolon reached a maximum of 7.5 ± 0.3 mm day−1 in early October, then began to decrease significantly from the end of October to December, before becoming nearly nil from January to early May. Annual net production rate expressed in terms of stolon length and biomass was estimated as 5801 m m−2 a−1 and 612 g DW m−2 a−1, respectively. During the growth period, the turnover rate of the C. racemosa stolons was estimated at from 25 to 46 days. The growth rate was closely correlated to the seawater temperature (R2 = 0.83), whereas no significant correlation was found between growth and irradiance. During the growth period, a decrease in temperature rapidly affects the growth rate, which soon recovers its earlier level when the temperature rises again. In winter, the growth rate decreased rapidly with the seasonal drop in the seawater temperature. Grazing by fish (Sarpa salpa and Boops boops) can also affect the growth rate from September to December by consumption of the erect axes and stolon apices, enhancing the ramification of stolons. Seasonal changes at Marseilles are much sharper than those reported for warmer Mediterranean localities (French Riviera, Italy, Croatia): in winter and early spring C. racemosa meadows decreased and locally disappeared, leaving a barren substrate. C. racemosa survives the lower winter seawater temperatures of the north-western Mediterranean Sea probably in the form of zygotes and/or small fragments (rhizoids, stolons, propagules).  相似文献   

10.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a form of seafood poisoning that is widespread in tropical, subtropical and temperate regions worldwide. The distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3 have been reported for the waters surrounding the main island of Japan. To explore the bloom dynamics and the vertical distribution of these Japanese species and phylotypes of Gambierdiscus, the effects of light intensity on their growth were tested, using a photoirradiation-culture system. The relationship between the observed growth rates and light intensity conditions for the four species/phylotypes were formulated at R > 0.92 (p < 0.01) using regression analysis and photosynthesis-light intensity (P-L) model. Based on this equation, the optimum light intensity (Lmax) and the semi-optimum light intensity range (Ls-opt) that resulted in the maximum growth rate (μmax) and ≥80% μ max values of the four species/phylotypes, respectively, were as follows: (1) the Lmax and Ls-opt of G. australes were 208 μmol photons m−2 s−1 and 91–422 μmol photons m−2 s−1, respectively; (2) those of G. scabrosus were 252 and 120–421 μmol photons m−2 s−1, respectively; (3) those of Gambierdiscus sp. type 2 were 192 and 75–430 μmol photons m−2 s−1, respectively; and (4) those of Gambierdiscus sp. type 3 were ≥427 and 73–427 μmol photons m−2 s−1, respectively. All four Gambierdiscus species/phylotypes required approximately 10 μmol photons m−2 s−1 to maintain growth. The light intensities in coastal waters at a site in Tosa Bay were measured vertically at 1 m intervals once per season. The relationships between the observed light intensity and depth were formulated using Beer’s Law. Based on these equations, the range of the attenuation coefficients at Tosa Bay site was determined to be 0.058–0.119 m−1. The values 1700 μmol photons m−2 s−1, 500 μmol photons m−2 s−1, and 200 μmol photons m−2 s−1 were substituted into the equations to estimate the vertical profiles of light intensity at sunny midday, cloudy midday and rainy midday, respectively. Based on the regression equations coupled with the empirically determined attenuation coefficients for each of the four seasons, the ranges of the projected depths of Lmax and Ls-opt for the four Gambierdiscus species/phylotypes under sunny midday conditions, cloudy midday conditions, and rainy midday conditions were 12–38 m and 12–54 m, 1–16 m and 1–33 m, and 0 m and 0–16 m, respectively. These results suggest that light intensity plays an important role in the bloom dynamics and vertical distribution of Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

11.
The effect of aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor was investigated. B. trispora formed hyphae, zygophores and zygospores during the fermentation. The zygospores were the morphological form responsible for β-carotene production. Both aeration and agitation significantly affected β-carotene concentration, productivity, biomass and the volumetric mass transfer coefficient (KLa). The highest β-carotene concentration (1.5 kg m−3) and the highest productivity (0.08 kg m−3 per day) were obtained at low impeller speed (150 rpm) and high aeration rate (1.5 vvm). Also, maximum productivity (0.08 kg m−3 per day) and biomass dry weight (26.4 kg m−3) were achieved at high agitation speed (500 rpm) and moderate aeration rate (1.0 vvm). Conversely, the highest value of KLa (0.33 s−1) was observed at high agitation speed (500 rpm) and high aeration rate (1.5 vvm). The experiments were arranged according to a central composite statistical design. Response surface methodology was used to describe the effect of impeller speed and aeration rate on the most important fermentation parameters. In all cases, the fit of the model was found to be good. All fermentation parameters (except biomass concentration) were strongly affected by the interactions among the operation variables. β-Carotene concentration and productivity were significantly influenced by the aeration, agitation, and by the positive or negative quadratic effect of the aeration rate. Biomass concentration was principally related to the aeration rate, agitation speed, and the positive or negative quadratic effect of the impeller speed and aeration rate, respectively. Finally, the volumetric mass transfer coefficient was characterized by the significant effect of the agitation speed, while the aeration rate had a small effect on KLa.  相似文献   

12.
The purpose of this study was to investigate the effect of active pre-warming combined with three regimens of fluid ingestion: (1) fluid replacement equal to sweat rate (FF), (2) fluid replacement equal to half the sweat rate (HF), and (3) no fluid replacement (NF). Eight males cycled to voluntary fatigue at 70% of peak power output (PPO) in 31.3±0.4°C, 63.3±1.2% relative humidity in a randomised fashion in either of FF, HF or NF conditions. For each trial the time to fatigue test was preceded by 2×20 min active pre-warming periods where subjects also cycled at 70% PPO. Subjects commenced each exercise period with identical rectal temperatures (Tre). The rate of increase in Tre for each condition during the first 20 min of active pre-warming was not different. However, the rate of increase in Tre was significantly reduced in the second active pre-warming period for all fluid conditions but no differences between conditions were noted. During the fatigue test, the rate of increase in Tre for FF was 0.29°C h−1 and 0.58°C h−1 for HF but were not significantly different. The rate of increase in Tre for the NF trial was 0.92°C h−1 and was significantly higher compared to the FF trial. Overall mean skin temperatures and mean body temperatures were higher for NF compared to FF and HF. The rate of heat storage during the fatigue test was similar for FF (80.1±11.7 W m−2) and HF (73.0±13.7 W m−2) conditions but increased to 155.8±31.2 W m−2 (P<0.05) in the NF trial. The results indicate that fluid ingestion equal to sweat rate has no added benefit over fluid ingestion equal to half the sweat rate in determining time to fatigue over 40 min of sub-maximal exercise in warm humid conditions. Fluid restriction accelerates the rate of increase in Tre after 40 min of exercise, thereby reducing the time to fatigue. The data support the model that anticipation of impending thermal limits reduces efferent command to working skeletal muscle ensuring cellular preservation.  相似文献   

13.
BackgroundIn the last years, food grade antioxidants are used safely as an alternative to traditional fungicides to control fungal growth in several food and agricultural products.AimsIn this work, the effect of butylated hydroxyanisole (BHA) and propyl paraben (PP) on two hydrolytic enzyme activity (β-d-glucosidase and α-d-galactosidase) by Aspergillus section Nigri species under different water activity conditions (aW; 0.98, 0.95 and 0.93) and incubation time intervals (24, 48, 72 and 96 h) was evaluated on peanut-based medium.MethodsThe activity of two glycosidases, β-d-glucosidase and α-d-galactosidase, was assayed using as substrates 4-nitrophenyl-β-d-glucopyranosido and 4-nitrophenyl-α-d-galactopyranosido, respectively. The enzyme activity was determined by the increase in optical density at 405 nm caused by the liberation of p-nitrophenol by enzymatic hydrolysis of the substrate. Enzyme activity was expressed as micromoles of p-nitrophenol released per minute.ResultsThe major inhibition in β-d-glucosidase activity of A. carbonarius and A. niger was found with 20 mmol l−1 of BHA or PP at 0.98 and 0.95 aW, respectively, whereas for α-d-galactosidase activity a significant decrease in enzyme activity with respect to control was observed in A. carbonarius among 5 to 20 mmol l−1 of BHA or PP in all conditions assayed. Regarding A. niger, the highest percentages of enzyme inhibition activity were found with 20 mmol l−1 of BHA or PP at 0.95 aW and 96 h.ConclusionsThe results of this work provide information about the capacity of BHA and PP to inhibit in vitro conditions two of the most important hydrolytic enzymes produced by A. carbonarius and A. niger species.  相似文献   

14.
Cumulative ozone uptake (COU, mmol m−2) and O3 flux (FO3, nmol m−2 s−1) were related to physiological, morphological and biochemical characteristics of field-grown mature evergreen Norway spruce [Picea abies (L.) Karst.], Cembran pine [Pinus cembra L.], and deciduous European larch [Larix decidua Mill.] trees at treeline. The threshold COU causing a statistically significant decline in photosynthetic capacity (Amax) ranged between 19.6 mmol m−2 in current-year needles of evergreen conifers and 22.0 6 mmol m−2 in short-shoot needles of deciduous L. decidua subjected to exposure periods of ≥84 and ≥43 days, respectively. The higher O3 sensitivity of deciduous L. decidua than of evergreen P abies and P. cembra was associated with differences in FO3 and specific leaf area (SLA), both being significantly higher in L. decidua. FO3 was 5.9 nmol m−2 s−1 in L. decidua and 2.7 nmol m−2 s−1 in evergreen conifers. Species-dependent differences were also related to detoxification capacity expressed through total surface area based concentrations of reduced ascorbate and α-tocopherol that both increased with SLA. Findings suggest that differences in O3 sensitivity between evergreen and deciduous conifers can be attributed to foliage type specific differences in SLA, the latter determining physiological and biochemical characteristics of the treeline conifers.  相似文献   

15.
We developed a computer-based system for controlling the photoperiod and irradiance of UV-B and white light from a 5 × 5 light-emitting diode (LED) matrix (100 × 100 mm). In this system, the LED matrix was installed in each of four irradiation boxes and controlled by pulse-width modulators so that each box can independently emit UV-B and white light at irradiances of up to 1.5 and 4.0 W m−2, respectively, or a combination of both light types. We used this system to examine the hatchabilities of the eggs of four Tetranychus spider mite species (T. urticae, T. kanzawai, T. piercei and T. okinawanus) collected from Okinawa Island under UV-B irradiation alone or simultaneous irradiation with white light for 12 h d−1 at 25 °C. Although no eggs of any species hatched under the UV-B irradiation, even when the irradiance was as low as 0.02 W m−2, the hatchabilities increased to >90% under simultaneous irradiation with 4.0 W m−2 white light. At 0.06 W m−2 UV-B, T. okinawanus eggs hatched (15% hatchability) under simultaneous irradiation with white light, whereas other species showed hatchabilities <1%. These results suggest that photolyases activated by white light may reduce UV-B–induced DNA damage in spider mite eggs and that the greater UV-B tolerance of T. okinawanus may explain its dominance on plants in seashore environments, which have a higher risk of exposure to reflected UV-B even on the undersurface of leaves. Our system will be useful for further examination of photophysiological responses of tiny organisms because of its ability to precisely control radiation conditions.  相似文献   

16.
Ca2+ and Cl? ions are essential elements for the oxygen evolution activity of photosystem II (PSII). It has been demonstrated that these ions can be exchanged with Sr2+ and Br?, respectively, and that these ion exchanges modify the kinetics of some electron transfer reactions at the Mn4Ca cluster level (Ishida et al., J. Biol. Chem. 283 (2008) 13330–13340). It has been proposed from thermoluminescence experiments that the kinetic effects arise, at least in part, from a decrease in the free energy level of the Mn4Ca cluster in the S3 state though some changes on the acceptor side were also observed. Therefore, in the present work, by using thin-layer cell spectroelectrochemistry, the effects of the Ca2+/Sr2+ and Cl?/Br? exchanges on the redox potential of the primary quinone electron acceptor QA, Em(QA/QA?), were investigated. Since the previous studies on the Ca2+/Sr2+ and Cl?/Br? exchanges were performed in PsbA3-containing PSII purified from the thermophilic cyanobacterium Thermosynechococcus elongatus, we first investigated the influences of the PsbA1/PsbA3 exchange on Em(QA/QA?). Here we show that i) the Em(QA/QA?) was up-shifted by ca. + 38 mV in PsbA3-PSII when compared to PsbA1-PSII and ii) the Ca2+/Sr2+ exchange up-shifted the Em(QA/QA?) by ca. + 27 mV, whereas the Cl?/Br? exchange hardly influenced Em(QA/QA?). On the basis of the results of Em(QA/QA?) together with previous thermoluminescence measurements, the ion-exchange effects on the energetics in PSII are discussed.  相似文献   

17.
By revisiting theoretical concepts in biogeography and the importance of thermodynamic laws in biosphere-atmosphere interactions, ecological sustainability in agricultural systems may be better defined. In this case study, we employed a multidisciplinary methodology for exploring agroecosystem sustainability by using eddy covariance (EC) data to compute thermodynamic entropy production (σ) and relate it to water, energy and carbon cycling in croplands and grasslands of the Central US. From 2002 to 2012, the biophysical metric of σ was compared across AmeriFlux sites, each with site-specific land management practices of irrigation, crop rotation, and tillage. Results show that σ is most correlated with net ecosystem exchange (NEE) of carbon, and when cropland and grassland sites are close to being carbon neutral, σ values range from 0.51–1.0 W K−1 m−2 for grasslands, 0.81–1.0 W K−1 m−2 for rainfed croplands, and 0.81–1.1 W K−1 m−2 for irrigated croplands. Irrigated maize stressed by hydrologic and high temperature anomalies associated with the 2012 drought exhibit the greatest increase in σ, indicating the possibility of decreased sustainability compared to rainfed croplands and grasslands. These results suggest that maximizing carbon uptake with irrigation and fertilizer use tends to move agroecosystems further away from thermodynamic equilibrium, which has implications for ecological sustainability and greenhouse gas (GHG) mitigation in climate-smart agriculture. The underlying theoretical concepts, multidisciplinary methodology, and use of eddy covariance data for biophysical indicators in this study contribute to a unique understanding of ecological sustainability in agricultural systems.  相似文献   

18.
《Aquatic Botany》2007,87(1):43-48
CH4 and CO2 fluxes across the water–atmosphere interface were measured over a 24 h day–night cycle in a shallow oxbow lake colonized by the water chestnut (Trapa natans L.) (Lanca di Po, Northern Italy). Only exchanges mediated by macrophytes were measured, whilst gas ebullition was not considered in this study. Measurements were performed from 29 to 30 July 2005 with short incubations, when T. natans stands covered the whole basin surface with a mean dry biomass of 504 ± 91 g m−2. Overall, the oxbow lake resulted net heterotrophic with plant and microbial respiration largely exceeding carbon fixation by photosynthesis. The water chestnut stand was a net sink of CO2 during the day-light period (−60.5 ± 8.5 mmol m−2 d−1) but it was a net source at night (207.6 ± 6.1 mmol m−2 d−1), when the greatest CO2 efflux rate was measured across the water surface (28.2 ± 2.4 mmol m−2 h−1). The highest CH4 effluxes (6.6 ± 1.8 mmol m−2 h−1) were determined in the T. natans stand during day-time, whilst CH4 emissions across the plant-free water surface were greatest at night (6.8 ± 2.1 mmol m−2 h−1). Therefore, we assumed that the water chestnut enhanced methane delivery to the atmosphere. On a daily basis, the oxbow lake was a net source to the atmosphere of both CO2 (147.1 ± 10.8 mmol m−2 d−1) and CH4 (116.3 ± 8.0 mmol m−2 d−1).  相似文献   

19.
Energetics of the catalysis of Class II α-mannosidase (E.C.3.2.1.24) from Aspergillus fischeri was studied. The enzyme showed Kcat/Km for Man (α1-3) Man, Man (α1-2) Man and Man (α1-6) Man as 7488, 5376 and 3690 M?1 min?1, respectively. The activation energy, Ea was 15.14, 47.43 and 71.21 kJ/mol for α1-3, α1-2 and α1-6 linked mannobioses, respectively, reflecting the energy barrier in the hydrolysis of latter two substrates. The enzyme showed Kcat/Km as 3.56 × 105 and 4.61 × 105 M?1 min?1 and Ea as 38.7 and 8.92 kJ/mol, towards pNPαMan and 4-MeUmbαMan, respectively. Binding of Swainsonine to the enzyme is stronger than that of 1-deoxymannojirimycin.  相似文献   

20.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号