首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Alterations in the response of dark-grown seedlings to ethylene (the "triple response") were used to isolate a collection of ethylene-related mutants in Arabidopsis thaliana. Mutants displaying a constitutive response (eto1) were found to produce at least 40 times more ethylene than the wild type. The morphological defects in etiolated eto1-1 seedlings reverted to wild type under conditions in which ethylene biosynthesis or ethylene action were inhibited. Mutants that failed to display the apical hook in the absence of ethylene (his1) exhibited reduced ethylene production. In the presence of exogenous ethylene, hypocotyl and root of etiolated his1-1 seedlings were inhibited in elongation but no apical hook was observed. Mutants that were insensitive to ethylene (ein1 and ein2) produced increased amounts of ethylene, displayed hormone insensitivity in both hypocotyl and root responses, and showed an apical hook. Each of the "triple response" mutants has an effect on the shape of the seedling and on the production of the hormone. These mutants should prove to be useful tools for dissecting the mode of ethylene action in plants.  相似文献   

3.
Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.  相似文献   

4.
Dark-grown Arabidopsis seedlings develop an apical hook by differential cell elongation and division, a process driven by cross-talk between multiple hormones. Auxins, ethylene and gibberellins interact in the formation of the apical hook. In the light, a similar complexity of hormonal regulation has been revealed at the level of hypocotyl elongation. Here, we describe the involvement of brassinosteroids (BRs) in auxin- and ethylene-controlled processes in the hypocotyls of both light- and dark-grown seedlings. We show that BR biosynthesis is necessary for the formation of an exaggerated apical hook and that either application of BRs or disruption of BR synthesis alters auxin response, presumably by affecting auxin transport, eventually resulting in the disappearance of the apical hook. Furthermore, we demonstrate that ethylene-stimulated hypocotyl elongation in the light is largely controlled by the same mechanisms as those governing formation of the apical hook in darkness. However, in the light, BRs appear to compensate for the insensitivity to ethylene in hls mutants, supporting a downstream action of BRs. Hence, our results indicate that HLS1, SUR1/HLS3/RTY1/ALF1 and AMP1/HPT/COP2/HLS2/PT act on the auxin-ethylene interaction, rather than at the level of BRs. A model for the tripartite hormone interactions is presented.  相似文献   

5.
Regulation of differential growth in the apical hook of Arabidopsis.   总被引:12,自引:0,他引:12  
Arabidopsis seedlings develop a hook-like structure at the apical part of the hypocotyl when grown in darkness. Differential cell growth processes result in the curved hypocotyl hook. Time-dependent analyses of the hypocotyl showed that the apical hook is formed during an early phase of seedling growth and is maintained in a sequential phase by a distinct process. Based on developmental genetic analyses of hook-affected mutants, we show that the hookless mutants (hls1, cop2) are involved in an early aspect of hook development. From time-dependent analyses of ethylene-insensitive mutants, later steps in hook maintenance were found to be ethylene sensitive. Regulation of differential growth was further studied through examination of the spatial pattern of expression of two hormone-regulated genes: an ethylene biosynthetic enzyme and the ethylene receptor ETR1. Accumulation of mRNA for AtACO2, a novel ACC (1-aminocyclopropane-1-carboxylic acid) oxidase gene, occurred within cells predominantly located on the outer-side of the hook and was tightly correlated with ethylene-induced exaggeration in the curvature of the hook. ETR1 expression in the apical hook, however, was reduced by ethylene treatment. Based on the expression pattern of ETR1 and AtACO2 in the hook-affected mutants, a model for hook development and maintenance is proposed.  相似文献   

6.
A J Cary  W Liu    S H Howell 《Plant physiology》1995,107(4):1075-1082
Cytokinins have profound effects on seedling development in Arabidopsis thaliana. Benzyladenine (BA) inhibits root elongation in light- or dark-grown seedlings, and in dark-grown seedlings BA inhibits hypocotyl elongation and exaggerates the curvature of apical hooks. The latter are characteristic ethylene responses and, therefore, the possible involvement of ethylene in BA responses was examined in seedlings. It was found that the inhibitory effects of BA on root and hypocotyl elongation were partially blocked by the action of ethylene inhibitors or ethylene-resistant mutations (ein1-1 and ein2-1). Ethylene production was stimulated by submicromolar concentrations of BA and could account, in part, for the inhibition of root and hypocotyl elongation. It was demonstrated further that BA did not affect the sensitivity of seedlings to ethylene. Thus, the effect of cytokinin on root and hypocotyl elongation in Arabidopsis appears to be mediated largely by the production of ethylene. The coupling between cytokinin and ethylene responses is further supported by the discovery that the cytokinin-resistant mutant ckr1 is resistant to ethylene and is allelic to the ethylene-resistant mutant ein2.  相似文献   

7.
Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.  相似文献   

8.
9.
10.
The transition from etiolated to green seedlings involves a shift from hypocotyl growth-promoting conditions to growth restraint. These changes occur through a complex light-driven process involving multiple and tightly coordinated hormonal signaling pathways. Nitric oxide (NO) has been lately characterized as a regulator of plant development interacting with hormone signaling. Here, we show that Arabidopsis (Arabidopsis thaliana) NO-deficient mutant hypocotyls are longer than those from wild-type seedlings under red light but not under blue or far-red light. Accordingly, exogenous treatment with the NO donor sodium nitroprusside and mutant plants with increased endogenous NO levels resulted in reduced hypocotyl length. In addition to increased hypocotyl elongation, NO deficiency led to increased anthocyanin levels and reduced PHYB content under red light, all processes governed by phytochrome-interacting factors (PIFs). NO-deficient plants accordingly showed an enhanced expression of PIF3, PIF1, and PIF4. Moreover, exogenous NO increased the levels of the gibberellin (GA)-regulated DELLA proteins and shortened hypocotyls, likely through the negative regulation of the GA Insensitive Dwarf1 (GID1)-Sleepy1 (SLY1) module. Consequently, NO-deficient seedlings displayed up-regulation of SLY1, defective DELLA accumulation, and altered GA sensitivity, thus resulting in defective deetiolation under red light. Accumulation of NO in wild-type seedlings undergoing red light-triggered deetiolation and elevated levels of NO in the GA-deficient ga1-3 mutant in darkness suggest a mutual NO-GA antagonism in controlling photomorphogenesis. PHYB-dependent NO production promotes photomorphogenesis by a GID1-GA-SLY1-mediated mechanism based on the coordinated repression of growth-promoting PIF genes and the increase in the content of DELLA proteins.  相似文献   

11.
The plant hormones gibberellin (GA), ethylene and auxin can promote hypocotyl elongation of Arabidopsis seedlings grown in the light on a low nutrient medium (LNM). In this study, we used hypocotyl elongation as a system to investigate interactions between GA and ethylene or auxin and analysed their influence on the development of stomata in the hypocotyl. When applied together, GA and ethylene or auxin exerted a synergistic effect on hypocotyl elongation. Stimulated cell elongation is the main cause of hypocotyl elongation. Furthermore, hypocotyls treated with GA plus either ethylene or auxin show an increased endoreduplication. In addition, a small but significant increase in cell number was observed in the cortical cell files of hypocotyls treated with ethylene and GA together. However, studies with transgenic seedlings expressing CycB1::uidA genes revealed that cell division in the hypocotyl occurs only in the epidermis and mainly to form stomata, a process strictly regulated by hormones. Stomata formation in the hypocotyl is induced by the treatment with either GA or ethylene. The effect of GA could be strongly enhanced by the simultaneous addition of ethylene or auxin to the growth medium. Gibberellin is the main signal inducing stomata formation in the hypocotyl. In addition, this signal regulates hypocotyl elongation and is modulated by ethylene and auxin. The implication of these three hormones in relation to cell division and stomata formation is discussed.  相似文献   

12.
Larsen PB  Chang C 《Plant physiology》2001,125(2):1061-1073
By screening for enhanced ethylene-response (eer) mutants in Arabidopsis, we isolated a novel recessive mutant, eer1, which displays increased ethylene sensitivity in the hypocotyl and stem. Dark-grown eer1 seedlings have short and thick hypocotyls even in the absence of added ethylene. This phenotype is suppressed, however, by the ethylene biosynthesis inhibitor 1-aminoethoxyvinyl-glycine. Following ethylene treatment, the dark-grown eer1 hypocotyl response is greatly exaggerated in comparison with the wild type, indicating that the eer1 phenotype is not simply due to ethylene overproduction. eer1 seedlings have significantly elevated levels of basic-chitinase expression, suggesting that eer1 may be highly sensitive to low levels of endogenous ethylene. Adult eer1 plants display exaggerated ethylene-dependent stem thickening, which is an ethylene response previously unreported in Arabidopsis. eer1 also has enhanced responsiveness to the ethylene agonists propylene and 2,5-norbornadiene. The eer1 phenotype is completely suppressed by the ethylene-insensitive mutation etr1-1, and is additive with the constitutive ethylene-response mutation ctr1-3. Our findings suggest that the wild-type EER1 product acts to oppose ethylene responses in the hypocotyl and stem.  相似文献   

13.
A. L. Silverstone  PYA. Mak  E. C. Martinez    T. Sun 《Genetics》1997,146(3):1087-1099
We have identified a new locus involved in gibberellin (GA) signal transduction by screening for suppressors of the Arabidopsis thaliana GA biosynthetic mutant ga1-3. The locus is named RGA for repressor of ga1-3. Based on the recessive phenotype of the digenic rga/ga1-3 mutant, the wild-type gene product of RGA is probably a negative regulator of GA responses. Our screen for suppressors of ga1-3 identified 17 mutant alleles of RGA as well as 10 new mutant alleles at the previously identified SPY locus. The digenic (double homozygous) rga/ga1-3 mutants are able to partially repress several defects of ga1-3 including stem growth, leaf abaxial trichome initiation, flowering time, and apical dominance. The phenotype of the trigenic mutant (triple homozygous) rga/spy/ga1-3 shows that rga and spy have additive effects regulating flowering time, abaxial leaf trichome initiation and apical dominance. This trigenic mutant is similar to wild type with respect to each of these developmental events. Because rga/spy/ga1-3 is almost insensitive to GA for hypocotyl growth and its bolting stem is taller than the wild-type plant, the combined effects of the rga and spy mutations appear to allow GA-independent stem growth. Our studies indicate that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of the GA response pathway.  相似文献   

14.
By screening etiolated Arabidopsis seedlings for mutants with aberrant ethylene-related phenotypes, we identified a mutant that displays features of the ethylene-mediated triple response even in the absence of ethylene. Further characterization showed that the phenotype observed for the dark-grown seedlings of this mutant is reversible by prevention of ethylene perception and is dependent on a modest increase in ethylene production correlated with an increase in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) activity in the hypocotyl. Molecular characterization of leaves of the mutant revealed severely impaired induction of basic chitinase (chiB) and plant defensin (PDF)1.2 following treatment with jasmonic acid and/or ethylene. Positional cloning of the mutation resulted in identification of a 49-bp deletion in RCE1 (related to ubiquitin 1 (RUB1)-conjugating enzyme), which has been demonstrated to be responsible for covalent attachment of RUB1 to the SCF (Skpl Cdc 53 F-box) ubiquitin ligase complex to modify its activity. Our analyses with rce1-2 demonstrate a previously unknown requirement for RUB1 modification for regulation of ethylene biosynthesis and proper induction of defense-related genes in Arabidopsis.  相似文献   

15.
Phytohormones regulate plant development via a poorly understood signal response network. Here, we show that the phytohormone ethylene regulates plant development at least in part via alteration of the properties of DELLA protein nuclear growth repressors, a family of proteins first identified as gibberellin (GA) signaling components. This conclusion is based on the following experimental observations. First, ethylene inhibited Arabidopsis root growth in a DELLA-dependent manner. Second, ethylene delayed the GA-induced disappearance of the DELLA protein repressor of ga1-3 from root cell nuclei via a constitutive triple response-dependent signaling pathway. Third, the ethylene-promoted "apical hook" structure of etiolated seedling hypocotyls was dependent on the relief of DELLA-mediated growth restraint. Ethylene, auxin, and GA responses now can be attributed to effects on DELLA function, suggesting that DELLA plays a key integrative role in the phytohormone signal response network.  相似文献   

16.
Ethylene and gibberellins have a synergistic stimulatory effect on hypocotyl elongation of light-grown Arabidopsis thaliana (L.) Heynh. seedlings. A screen for mutants with decreased response to these hormones led to the isolation of a novel allele (amp1-7) of the ALTERED MERISTEM PROGRAM (AMP) 1 locus. The amp1-7 allele contains a missense mutation causing a phenotype, which is weaker than that of the amp1-1 mutant that carries a nonsense mutation. The mutant phenotype prompted the hypothesis that AMP1 is involved in ethylene and GA signalling pathways or in a parallel pathway-controlling cell and hypocotyl elongation and cellular organization. Amp1 mutants contain higher zeatin concentrations causing enlargement of the apical meristem, which was confirmed by cytokinin application to wild type seedlings. Light grown amp1 seedlings have shorter hypocotyls than wild type; however, application of cytokinins promotes hypocotyl elongation of both Col-0 and amp1. We suggest that in amp1 mutants either zeatin overproduction or its action is strictly localized. Nelson J. M. Saibo and Wim H. Vriezen contributed equally to this work.  相似文献   

17.
Hypocotyl growth during seedling emergence is a crucial developmental transition influenced by light and phytohormones such as ethylene. Ethylene and light antagonistically control hypocotyl growth in either continuous light or darkness. However, how ethylene and light regulate hypocotyl growth, including seedling emergence, during the dark‐to‐light transition remains elusive. Here, we show that ethylene and light cooperatively stimulate a transient increase in hypocotyl growth during the dark‐to‐light transition via the light‐mediated stabilization of 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthases (ACSs), the rate‐limiting enzymes in ethylene biosynthesis. We found that, in contrast to the known inhibitory role of light in hypocotyl growth, light treatment transiently increases hypocotyl growth in wild‐type etiolated seedlings. Moreover, ACC, the direct precursor of ethylene, accentuates the effects of light on hypocotyl elongation during the dark‐to‐light transition. We determined that light leads to the transient elongation of hypocotyls by stabilizing the ACS5 protein during the dark‐to‐light transition. Furthermore, biochemical analysis of an ACS5 mutant protein bearing an alteration in the C‐terminus indicated that light stabilizes ACS5 by inhibiting the degradation mechanism that acts through the C‐terminus of ACS5. Our study reveals that plants regulate hypocotyl elongation during seedling establishment by coordinating light‐induced ethylene biosynthesis at the post‐translational level. Moreover, the stimulatory role of light on hypocotyl growth during the dark‐to‐light transition provides additional insights into the known inhibitory role of light in hypocotyl development.  相似文献   

18.
Subhook swelling of 4-day-old etiolated pea seedlings (var. Alaska), caused by 0.5 microliter per liter ethylene, was prevented by preincubation and continued growth in 0.1 mm gibberellic acid (GA). The subhook region exhibited normal elongation and cell size and volume. However, inhibition of elongation and cessation of cell division caused by 0.5 microliter per liter ethylene in the apical hook region of the etiolated pea stem were not overcome by GA. Most of the arrested cells were in G(2). These data suggest a possible interaction of GA and ethylene in cell enlargement in the subhook region of the etiolated pea seedlings. They also suggest a different mode of action by ethylene in the apical hook region where the ethylene effect was not counteracted by GA.  相似文献   

19.
20.
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号