首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J K Pal  J J Chen  I M London 《Biochemistry》1991,30(9):2555-2562
A highly purified preparation of heme-regulated inhibitor (HRI), an eIF-2 alpha kinase, from rabbit reticulocyte lysates has been used for generating monoclonal antibodies (mAB). Two hybridoma clones secreting HRI-specific antibodies (mAB A and mAB F) were obtained. Both antibodies immunoprecipitated biosynthetically labeled as well as phosphorylated HRI in reticulocyte lysates and also recognized denatured HRI in a Western blot. In in vitro protein kinase assays, preincubation of HRI with the antibodies significantly diminished both autokinase and eIF-2 alpha kinase activities. HRI from reticulocyte lysates could be quantitatively removed by immunoprecipitation with mAB F, and such HRI-depleted lysates were able to maintain protein synthesis under conditions of heme deficiency. With these monoclonal antibodies, HRI was detected only in the reticulocytes and bone marrow of anemic rabbits, among several rabbit tissues tested. The antibodies did not detect cross-reacting HRI in rat or human reticulocytes or in mouse erythroleukemic cells or human K562 cells even after induction of differentiation, although eIF-2 alpha kinase activity was detected in them. Polyclonal anti-rabbit HRI antibody detected HRI in rat reticulocytes. However, no cross-reacting HRI was detected by polyclonal antibody in human reticulocytes or other cell types tested. These findings suggest that HRI is not ubiquitous, and may be erythroid-specific, and that it is antigenically different in different species.  相似文献   

2.
Cultured mouse erythroleukemia (MEL) cells can be induced to erythroid differentiation by a variety of chemical agents. This differentiation process is marked by the onset of globin mRNA and hemoglobin synthesis. In rabbit reticulocytes, globin synthesis is regulated by a hemin-controlled translational inhibitor (HCI) which acts via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2). From both uninduced and induced MEL cells, hemin-controlled eIF-2 alpha kinases have been partially purified. They resemble HCI with respect to their chromatographic behaviour and their sensitivity towards physiological concentrations of hemin (5-10 microM). Further purification on phosphocellulose, however, reveals that the eIF-2 alpha kinase from uninduced MEL cells is chromatographically distinct from HCI, whilst the eIF-2 alpha kinase activity from induced MEL cells represents a mixture of the former and the HCI-type eIF-2 alpha kinase. The latter inhibits protein synthesis in a fractionated system from rabbit reticulocytes which is free of, but sensitive to, HCI, whereas the eIF-2 alpha kinase from uninduced MEL cells does not show any inhibitory activity. This observation is supported by the finding that induced MEL cells respond in vivo to iron depletion with a shut-off of protein synthesis (as do rabbit reticulocytes), whilst uninduced MEL cells do not.  相似文献   

3.
Phosphorylation of eukaryotic translation initiation factor-2alpha (eIF-2alpha) is one of the key steps where protein synthesis is regulated in response to changes in environmental conditions. The phosphorylation is carried out in part by three distinct eIF-2alpha kinases including mammalian double-stranded RNA-dependent eIF-2alpha kinase (PKR) and heme-regulated inhibitor kinase (HRI), and yeast GCN2. We report the identification and characterization of a related kinase, PEK, which shares common features with other eIF-2alpha kinases including phosphorylation of eIF-2alpha in vitro. We show that human PEK is regulated by different mechanisms than PKR or HRI. In contrast to PKR or HRI, which are dependent on autophosphorylation for their kinase activity, a point mutation that replaced the conserved Lys-614 with an alanine completely abolished the eIF-2alpha kinase activity, whereas the mutant PEK was still autophosphorylated when expressed in Sf-9 cells. Northern blot analysis indicates that PEK mRNA was predominantly expressed in pancreas, though low expression was also present in several tissues. Consistent with the high levels of mRNA in pancreas, the PEK protein was only detected in human pancreatic islets, and the kinase co-localized with somatostatin, a pancreatic delta cell-specific hormone. Thus PEK is believed to play an important role in regulating protein synthesis in the pancreatic islet, especially in islet delta cells.  相似文献   

4.
Cytoplasmic stresses, including heat shock, osmotic stress, and oxidative stress, cause rapid inhibition of protein synthesis in cells through phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) by eIF2alpha kinases. We have investigated the role of heme-regulated inhibitor (HRI), a heme-regulated eIF2alpha kinase, in stress responses of erythroid cells. We have demonstrated that HRI in reticulocytes and fetal liver nucleated erythroid progenitors is activated by oxidative stress induced by arsenite, heat shock, and osmotic stress but not by endoplasmic reticulum stress or nutrient starvation. While autophosphorylation is essential for the activation of HRI, the phosphorylation status of HRI activated by different stresses is different. The contributions of HRI in various stress responses were assessed with the aid of HRI-null reticulocytes and fetal liver erythroid cells. HRI is the only eIF2alpha kinase activated by arsenite in erythroid cells, since HRI-null cells do not induce eIF2alpha phosphorylation upon arsenite treatment. HRI is also the major eIF2alpha kinase responsible for the increased eIF2alpha phosphorylation upon heat shock in erythroid cells. Activation of HRI by these stresses is independent of heme and requires the presence of intact cells. Both hsp90 and hsc70 are necessary for all stress-induced HRI activation. However, reactive oxygen species are involved only in HRI activation by arsenite. Our results provide evidence for a novel function of HRI in stress responses other than heme deficiency.  相似文献   

5.
In rabbit reticulocytes, globin synthesis is regulated by a haemin-controlled translational inhibitor (HCI) which acts by phosphorylating the alpha-subunit of eukaryotic initiation factor 2 (eIF-2). With purified eIF-2 as substrate, haemin-controlled eIF-2 alpha kinases could be partially purified from cultured mouse erythroleukaemia cells (MEL cells), which can be induced in vivo to erythroid differentiation. The eIF-2 alpha kinases from both uninduced and induced MEL cells are clearly distinct from the double-stranded-RNA-activated eIF-2 alpha kinase described for many mammalian cell types. A rough quantitative estimation indicates that, on a per-cell basis, induced MEL cells contain the same amount of haemin-controlled eIF-2 alpha kinase activity as rabbit reticulocytes, whereas uninduced MEL cells contain about one-tenth as much. As to their chromatographic behavior on CM-Sephadex and DEAE-cellulose and their sensitivity towards physiological concentrations of haemin (5-10 microM), the eIF-2 alpha kinases from MEL cells are indistinguishable from HCI. They differ from HCI with respect to their response towards activating stimuli such as prolonged incubation at 37 degrees C or brief exposure to the thiol reagent N-ethylmaleimide.  相似文献   

6.
To study the mechanism by which heme regulates the heme-regulated eIF-2 alpha kinase (HRI), the effects of various protoporphyrin IX (PP) compounds on the kinase activities and intersubunit disulfide formation of HRI and on protein synthesis in reticulocyte lysates were examined. Hemin and cobalt protoporphyrin (CoPP) are more effective than ZnPP, NiPP, SnPP, and metal-free PP in promoting intersubunit disulfide bond formation in HRI, in inhibiting the autokinase and eIF-2 alpha kinase activities of HRI, in inhibiting phosphorylation of eIF-2 alpha in rabbit reticulocytes, in maintaining protein synthesis, and in reversing the inhibition of protein synthesis in heme deficiency. There is an apparent correlation of in vitro intersubunit disulfide formation of HRI and the regulation of HRI kinase activities and protein synthesis by these porphyrin compounds. HRI in the reticulocyte lysate can be cross-linked by 1,6-bismaleimidohexane (bis-NEM). The formation of bis-NEM cross-linked dimers in lysates is prevented completely by N-ethylmaleimide (NEM) which alkylates free sulfhydryl groups and is diminished by hemin and CoPP. These results support the view that HRI in hemin-supplemented lysates is in equilibrium between the noncovalently linked dimer and the disulfide-linked dimer. The molecular size of HRI in control, hemin-supplemented, or NEM-treated hemin-supplemented lysates is identical to that of purified HRI; activation of HRI and changes in its thiol status do not significantly affect its molecular size.  相似文献   

7.
In heme deficiency, protein synthesis in reticulocytes is inhibited by activation of heme-regulated alpha-subunit of eukaryotic initiation factor-2alpha (eIF-2alpha) kinase (HRI). Previous studies indicate that HRI contains two distinct heme-binding sites per HRI monomer. To study the role of the N terminus in the heme regulation of HRI, two N-terminally truncated mutants, Met2 and Met3 (deletion of the first 103 and 130 amino acids, respectively), were prepared. Met2 and Met3 underwent autophosphorylation and phosphorylated eIF-2alpha with a specific activity of approximately 50% of that of the wild type HRI. These mutants were significantly less sensitive to heme regulation both in vivo and in vitro. In addition, the heme contents of purified Met2 and Met3 HRI were less than 5% of that of the wild type HRI. These results indicated that the N terminus was important but was not the only domain involved in the heme-binding and heme regulation of HRI. Heme binding of the individual HRI domains showed that both N terminus and kinase insertion were able to bind hemin, whereas the C terminus and the catalytic domains were not. Thus, both the N terminus and the kinase insertion, which are unique to HRI, are involved in the heme binding and the heme regulation of HRI.  相似文献   

8.
Although the physiological role of tissue-specific translational control of gene expression in mammals has long been suspected on the basis of biochemical studies, direct evidence has been lacking. Here, we report on the targeted disruption of the gene encoding the heme-regulated eIF2alpha kinase (HRI) in mice. We establish that HRI, which is expressed predominantly in erythroid cells, regulates the synthesis of both alpha- and beta-globins in red blood cell (RBC) precursors by inhibiting the general translation initiation factor eIF2. This inhibition occurs when the intracellular concentration of heme declines, thereby preventing the synthesis of globin peptides in excess of heme. In iron-deficient HRI(-/-) mice, globins devoid of heme aggregated within the RBC and its precursors, resulting in a hyperchromic, normocytic anemia with decreased RBC counts, compensatory erythroid hyperplasia and accelerated apoptosis in bone marrow and spleen. Thus, HRI is a physiological regulator of gene expression and cell survival in the erythroid lineage.  相似文献   

9.
10.
11.
Besides heme deficiency, protein synthesis in rabbit reticulocyte lysates becomes inhibited upon exposure to a variety of agents that mimic conditions which induce the heat shock response in cells. This inhibition has been demonstrated to be due primarily to the activation of the heme-regulated eIF-2 alpha kinase (HRI) which causes an arrest in the initiation of translation. In this report, the sensitivity of protein synthesis in hemin-supplemented lysates to inhibition by Hg2+, GSSG, methylene blue, and heat shock was examined in six different reticulocyte lysate preparations. The extent to which translation was inhibited in response to Hg2+, GSSG, methylene blue, and heat shock correlated inversely with the relative levels of the 70-kDa heat shock proteins (hsp 70) and a 56-kDa protein (p56) present in the lysates determined by Western blotting. The ability of hemin to restore protein synthesis upon addition to heme-deficient lysates was also examined. While the restoration of protein synthesis correlated roughly with the levels of hsp 90 present, the results also suggest that the heme regulation of HRI probably involves the interaction of HRI with several factors present in the lysate besides hsp 90. A comparison of two lysate preparations, which had a 2-fold difference in their protein synthesis rates, indicated that the slower translational rate of the one lysate could be accounted for by its low level of constitutive eIF-2 alpha phosphorylation, with its accompanying decrease in the eIF-2B activity and lower level of polyribosome loading. The present study supports the notion that the previously demonstrated interaction of HRI with hsp 90, hsp 70, and p56 in reticulocyte lysates may play a direct role in regulating HRI activation or activity. We hypothesize that the competition of denatured protein and HRI for the binding of hsp 70 may be a molecular signal that triggers the activation of HRI in reticulocyte lysates in response to stress. Possible functions for p56 in the regulation of HRI activity are also discussed.  相似文献   

12.
Oxidative stress leads to perturbation of a variety of cellular processes resulting in inhibition of cell proliferation. This study has determined the effect of oxidative stress on protein synthesis in human K562 cells using a hydrophilic peroxyl radical initiator, AAPH and H2O2. The results indicated that oxidative stress leads to a significant decrease in the rate of protein synthesis caused due to induced activation as well as expression of the erythroid cell-specific eIF-2α kinase, called the Heme Regulated Inhibitor (HRI). Elevated levels of HRI expression and activity were accompanied by increased lipid peroxidation and decreased cell proliferation. Further, oxidative stress also caused inactivation of p34cdc2 kinase, thereby arresting cell division leading to apoptosis. Thus, the data provides the mechanism of inhibition of protein synthesis and perturbation of a cell cycle regulatory protein leading to inhibition of cell proliferation in K562 cells during oxidative stress.  相似文献   

13.
The addition of a chemical inducer, such as dimethylsulfoxide (DMSO), to cultures of mouse Friend erythroleukemic cells results in the induction of a number of late erythroid events, including the accumulation of globin mRNA, the inducation of hemoglobin synthesis, the appearance of erythrocyte membrane antigens (EMA), and the cessation of cell division. The experiments presented in this study demonstrate that heme is necessary but not sufficient for the loss of proliferative capacity associated with DMSO-induced Friend cell differentiation, whereas the accumulation of globin mRNA and EMA can occur in the absence of heme synthesis or heme itself. These conclusions were reached by selectively inhibiting heme synthesis in DMSO-treated cells in two independent ways: (i) Inducible cells were treated with 3-amino-1,2,4-triazole (AT), a drug which inhibits the induction of heme synthesis in Friend cells in a dose-dependent manner. Treatment of inducible Friend cells with 1.5% DMSO for five days caused the plating efficiency in methyl cellulose to decrease to 1% of that in untreated cultures. However, treatment of the cells with DMSO plus AT almost totally prevented this decrease in plating efficiency. The addition of exogenous hemin, which alone had no significant effect on plating efficiency, largely reversed the effect of AT in DMSO-treated cells, reducing the plating efficiency to below 5%. In contrast to the marked effects of AT on the proliferative capacity of differentiating Friend cells, the levels of globin mRNA and EMA were only partially decreased in cells treated with DMSO plus AT, compared to cells treated with DMSO alone. (ii) The relationship between heme synthesis, terminal cell division, and the induction of globin mRNA was investigated further through the use of non-inducible Friend cell variant clones. One such non-inducible clone, M18, appears to be a phenotypic analog of inducible cells treated with DMSO plus AT. Clone M18 did not accumulate heme or hemoglobin, as detected by benzidine staining, nor lose its proliferative capacity in response to DMSO. However, globin mRNA was induced by DMSO in this clone. Treatment of clone M18 with DMSO plus hemin overcame the block in hemoglobin accumulation suggesting that M18 has a defect in the induction of heme biosynthesis. In addition, exposure of M18 cells to DMSO plus hemin caused a gradual decrease in plating efficiency which was not due to non-specific toxicity. Prior incubation of M18 cells in DMSO for three to five days was necessary before hemin caused a rapid loss of proliferative capacity. Thus, these results, in agreement with the AT studies on inducible Friend cells and previous studies on the induction of EMA in clone M18, indicate that there may be both heme-dependent and heme-independent events in the program of Friend cell differentiation.  相似文献   

14.
During dimethyl sulfoxide (DMSO)-stimulated differentiation of murine erythroleukemia (MEL) cells, one of the early events is the induction of the heme biosynthetic pathway. While recent reports have clearly demonstrated that GATA-1 is involved in the induction of erythroid cell-specific forms of 5-aminolevulinate synthase (ALAS-2) and porphobilinogen (PBG) deaminase and that cellular iron status plays a regulatory role for ALAS-2, little is known about regulation of the remainder of the pathway. In the current study, we have made use of a stable MEL cell mutant (MEAN-1) in which ALAS-2 enzyme activity is not induced by DMSO, hexamethylene bisacetamide (HMBA), or butyric acid. In this cell line, addition of 2% DMSO to growing cultures results in the normal induction of PBG deaminase and coproporphyrinogen oxidase but not in the induction of the terminal two enzymes, protoporphyrinogen oxidase and ferrochelatase. These DMSO-treated cells did not produce mRNA for beta-globin and do not terminally differentiate. In addition, the cellular level of ALAS activity declines rapidly after addition of DMSO, indicating that ALAS-1 must turn over rapidly at this time. Addition of 75 microM hemin alone to the cultures did not induce cells to terminally differentiate or induce any of the pathway enzymes. However, the simultaneous addition of 2% DMSO and 75 microM hemin caused the cells to carry out a normal program of terminal erythroid differentiation, including the induction of ferrochelatase and beta-globin. These data suggest that induction of the entire heme biosynthetic pathway is biphasic in nature and that induction of the terminal enzymes may be mediated by the end product of the pathway, heme. We have introduced mouse ALAS-2 cDNA into the ALAS-2 mutant cell line (MEAN-1) under the control of the mouse metallothionein promoter (MEAN-RA). When Cd and Zn are added to cultures of MEAN-RA in the absence of DMSO, ALAS-2 is induced but erythroid differentiation does not occur and cells continue to grow normally. In the presence of metallothionein inducers and DMSO, the MEAN-RA cells induce in a fashion similar to that found with the wild-type 270 MEL cells. Induction of the activities of ALAS, PBG deaminase, coproporphyrinogen oxidase, and ferrochelatase occurs. In cultures of MEAN-RA where ALAS-2 had been induced with Cd plus Zn 24 h prior to DMSO addition, onset of heme synthesis occurs more rapidly than when DMSO and Cd plus Zn are added simultaneously. This study reveals that induction of ALAS-2 alone is not sufficient to induce terminal differentiation of the MEAN-RA cells, and it does not appear that ALAS-2 alone is the rate-limiting enzyme of the heme biosynthetic pathway during MEL cell differentiation.  相似文献   

15.
Rat liver catalase mRNA was translated in a rabbit reticulocyte lysates and wheat germ cell-free system in the presence or absence of hemin and/or a translational inhibitor prepared from reticulocytes, liver cells, and wheat germs. Failure to add hemin to the lysates, or the addition of a hemin-regulated translational inhibitor (HRI) to the hemin-supplemented lysates caused a repressed translation. A preparation of inhibitor from rat liver showed activity similar to that of HRI for this translating system. The translation repression by rat liver inhibitor was reversed by eIF-2 (initiation factor) or GTP, but ATP enhanced the repression. The translation of catalase mRNA in the wheat germ system was not affected by the addition of hemin. An inhibitor prepared from wheat germ extracts, as well as the rat liver inhibitor, markedly decreased the rate of translation. eIF-2, GTP, and ATP behaved in the manner described above. Catalase synthesis in a cell-free system derived from rat liver (using endogenous mRNA) was not influenced by either hemin or the inhibitor. The possibilities are discussed that the synthesis of catalase in liver cells is controlled by a translational inhibitor at the level of chain initiation, and that the formation of the inhibitor from its inactive proinhibitor is regulated by the amount of heme.  相似文献   

16.
The effects of the tetra benzamidine serine-proteinase inhibitor 1,3-di-(p-amidinophenoxy) -2,2- bis- (p-amidinophenoxymethyl)propane (TAPP-H) and related compounds, including halo-derivatives, were determined on the erythroid differentiation of murine erythroleukemic cells induced by trypsin and kallikrein. These aromatic poly-amidines and their halo derivatives were found to be strong inhibitors of both trypsin and kallikrein mediated induction of commitment of MEL cells to erythroid differentiation, hemoglobin synthesis and accumulation, globin mRNA production. No inhibitory effects were detected by treating proteinase-induced MEL cells with benzamidine. Only slight inhibitory activity was found after treatment of trypsin-induced MEL cells with other antiproteinase compounds widely used in the control of proteinase-dependent functions, including leupeptin, antipain and Bowman-Birk proteinase inhibitor. MEL cells induced to erythroid differentiation by proteinases could be proposed as an experimental system to test the biological activity of proteinase inhibitors.  相似文献   

17.
The effect of imidazole on DMSO-induced murine erythroleukemia (MEL) cell differentiation has been examined. While imidazole does inhibit heme, globin mRNA, and hemoglobin accumulation in DMSO-induced MEL cells, it does not affect the commitment of MEL cells to the specific limitation of proliferative capacity associated with the in vitro differentiation program. Furthermore, imidazole treatment does not affect DMSO-induced changes in cell volume, in the relative proportion of nuclear protein IP25, and in the specific activity of the enzyme cytidine deaminase. A clonal analysis in the presence of imidazole indicated that the drug prevents heme accumulation even in MEL cells already committed to terminal differentiation. These observations suggest that imidazole effectively dissociates two aspects of the erythroid differentiation program of MEL cells: globin gene expression and commitment to loss of proliferative capacity.  相似文献   

18.
19.
We studied the effect of staurosporine on two well characterised mammalian eIF-2alpha kinases, the heme-regulated translational inhibitor (HRI), and interferon-inducible double-stranded RNA-activated protein kinase (PKR). Both pure eIF-2 and a synthetic peptide used to measure the activity of purified or immunoprecipitated enzymes (sequence ILLSELSRRRIRAI) were phosphorylated with purified enzymes and crude preparations of tissues or cells in the presence of the inhibitor. In the presence of 0.25 microM staurosporine (a concentration which completely inhibits a wide range of Ser/Thr protein kinases), the phosphorylation of eIF-2alpha by HRI and PKR was not inhibited. The lack of response of eIF-2alpha kinases to staurosporine allowed us to measure PKR activity in salt washed postmicrosomal supernatants without previous purification of the enzyme. In the presence of poly(I):poly(C), the PKR activator, we detected both an increased phosphorylation of eIF-2alpha and an increment in the autophosphorylation of PKR. We also confirmed an induction of PKR in cultured neuronal cells after treatment with interferon. The results obtained following phosphorylation of the synthetic peptide with crude extracts are less conclusive. Although its phosphorylation is specific because it displaces eIF-2 phosphorylation, and the presence of staurosporine prevents its phosphorylation by other serine/threonine kinases, it is a rather poor substrate for PKR.  相似文献   

20.
The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号