首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azeez A  Sane AP  Bhatnagar D  Nath P 《Phytochemistry》2007,68(10):1352-1357
Programmed cell death during senescence in plants is associated with proteolysis that helps in remobilization of nitrogen to other growing tissues. In this paper, we provide one of the few reports for the expression of specific serine proteases during senescence associated proteolysis in Gladiolus grandiflorus flowers. Senescence in tepals, stamens and carpels results in an increase in total protease activity and a decrease in total protein content. Of the total protease activity, serine proteases account for about 67-70% while cysteine proteases account for only 23-25%. In-gel assays using gelatin as a substrate and specific protease inhibitors reveal the enhanced activity of two trypsin-type serine proteases of sizes 75 kDa and 125 kDa during the course of senescence. The activity of the 125 kDa protease increases not only during tepal senescence but also during stamen and carpel senescence indicating that it is responsive to general senescence signals.  相似文献   

2.
We characterized the senescence-associated proteases of postharvest broccoli (Brassica oleracea L. var Green King) florets, using class-specific protease inhibitors and gelatin-polyacrylamide gel electrophoresis. Different classes of senescence-associated proteases in broccoli florets were partially characterized for the first time. Protease activity of broccoli florets was depressed by all the inhibitors and showed different inhibition curves during postharvest. The hydrolytic activity of metalloprotease (EC 3.4.24. - ) and serine protease (EC 3.4.21. - ) reached a maximum, 1 day after harvest (DAH), then decreased, while the hydrolytic activity of cysteine protease (EC 3.4.22. - ) and aspartic protease (EC 3.4.23. - ) increased throughout the postharvest senescence based on the calculated inhibition percentage of protease activity. The senescence-associated proteases were separated into seven endoprotease (EP) groups by gelatin-polyacryamide gel electrophoresis and classified into EP1 (metalloprotease), EP2 (metalloprotease and cysteine protease), EP3 (serine protease and aspartic protease), EP4, EP5, EP7 (cysteine protease), and EP6 (serine protease) based on the sensitivity of class-specific protease inhibitors. The proteases EP2, EP3, and EP4 were present throughout the postharvest stages. EP3 was the major EP at all times during senescence; EP4 intensity of activity increased after 2 DAH; EP6 and EP7 clearly increased after 4 DAH. Our results suggest that serine protease activity contributes to early stage (0-1 DAH) and late stage (4-5 DAH) of senescence; metalloprotease activity was involved in the early and intermediate stages (0-3 DAH) of senescence; and cysteine protease and aspartic protease activities participated in the whole process of broccoli senescence.  相似文献   

3.
4.
A colour change and inrolling of the tepal edges are the first symptoms of senescence of Iris flowers ( Iris x hollandica Tub., cv. Blue Magic). Tepals showed an increase in leakage of both ions and anthocyanins, prior to the visible senescence symptoms. Increased leakage occurred irrespective of the time at which the tepals were severed and placed in water, indicating that the senescence process is inherent in the tepal cells. Net loss of proteins in the tepal edges started after flower opening, and after two more days, when the first symptoms of senescence were observed, the protein level was only 20% of that at harvest. Cycloheximide delayed senescence and resulted in a lower rate of protein loss. Phenylmethylsulfony fluoride (PMSF), a protease inhibitor, had a similar effect on protein levels but did not affect the time to visible senescence, and also several other protease inhibitors did not affect the time to senescence.
During senescence the rate of respiration of the tepals remained unchanged and their rate of ethylene production decreaased. The rate of ethane production, an indicator of lipid peroxidation, was very low and remained unaltered. Antioxidants ( l ascorbic acid, benzoic acid, butylated hydroxytoluene, diphenylamine, propyl gallate, propyl- p -hydroxybenzoate and sodium benzoate) had no effect on the time to tepal senescence. It is concluded that tepal wilting is due to transfer of solutes from the symplast to the apoplast. Although net protein degradation occurs early during the senescence process, its inhibition is not correlated with a delay in the time to senescence. Furthermore, the results do not support the hypothesis that the increase in solute leakage is due to (free radical-mediated) peroxidation of membrane lipids. The present results are in contrast with the ethylene-regulated petal senescence of carnation, which is accompanied by lipid peroxidation.  相似文献   

5.
6.
Extracellular proteases were isolated from the cell-free culture supernatant of the oyster-pathogenic protozoan, Perkinsus marinus, by bacitracin–sepharose affinity chromatography. The purified protease fractions contained >75% of the protease activity initially loaded onto the column with very high specific activity that corresponded to 8–11-fold level of protease enrichment. The isolated proteases hydrolysed a variety of protein substrates including oyster plasma. All of the isolated P. marinus proteases belonged to the serine class of proteases. Inhibitor studies involving spectrophotometric assay and gelatin gel electrophoresis showed high levels of inhibition in the presence of the serine protease inhibitors PMSF, benzamidine and chymostatin, whereas inhibitors of cysteine, aspartic, and metalloproteases showed little or no inhibition. Spectrophotometric assays involving serine-specific peptide substrates further revealed that the isolated proteases belong to the class of chymotrypsin-like serine proteases. A 41.7 kDa monomeric, N-glycosylated, serine protease (designated Perkinsin) has been identified as the major P. marinus extracellular protease.  相似文献   

7.
Although mite major group 1 allergens, Der p 1 and Der f 1, were first isolated as cysteine proteases, some studies reported that natural Der p 1 exhibits mixed cysteine and serine protease activity. Clarifying whether the serine protease activity originates from Der p 1 or is due to contamination is important for distinguishing between the pathogenic proteolytic activities of group 1 allergens and mite-derived serine proteases. Recombinant mite group 1 allergens would be useful tool for addressing this issue, because they are completely free from contamination by mite serine proteases. Recombinant Der p 1 and Der f 1, and highly purified natural forms exhibited only cysteine protease activity. However, commercially available natural forms exhibited both activities, but the two activities were eluted into different fractions in size-exclusion column chromatography. The substrate specificity associated with the serine protease activity was similar to that of Der f 3. These results indicate that the serine protease activity does not originate from group 1 allergens.  相似文献   

8.
Harvest-induced senescence of broccoli results in tissue wilting and sepal chlorosis. As senescence progresses, chlorophyll and protein levels in floret tissues decline and endo-protease activity (measured with azo-casein) increases. Protease activity increased from 24 h after harvest for tissues held in air at 20 degrees C. Activity was lower in floret tissues from branchlets that had been held in solutions of sucrose (2% w/v) or under high carbon dioxide, low oxygen (10% CO(2), 5% O(2)) conditions. Four protease-active protein bands were identified in senescing floret tissue by zymography, and the use of chemical inhibitors of protease action suggests that some 44% of protease activity in senescing floret tissue 72 h after harvest is due to the action of cysteine and serine proteases. Four putative cysteine protease cDNAs have been isolated from broccoli floret tissue (BoCP1, BoCP2, BoCP3, BoCP4). The cDNAs are most similar (73-89% at the amino acid level) to dehydration-responsive cysteine proteases previously isolated from Arabidopsis thaliana (RD19, RD21). The mRNAs encoded by the broccoli cDNAs are expressed in floret tissue during harvest-induced senescence with mRNA accumulating within 6 h of harvest for BoCP1, 12 h of harvest for BoCP4 and within 24 h of harvest for BoCP2 and BoCP3. Induction of the cDNAs is differentially delayed when broccoli branchlets are held in solutions of water or sucrose. In addition, the expression of BoCP1 and BoCP3 is inhibited in tissue held in atmospheres of high carbon dioxide/low oxygen (10% CO(2), 5% O(2)). The putative cysteine protease mRNAs are expressed before measurable increases in endo-protease activity, loss of protein, chlorophyll or tissue chlorosis.  相似文献   

9.
The effect of different protease inhibitors on the proteolytic processing of the plum pox potyvirus (PPV) polyprotein has been analyzed. Human cystatin C, an inhibitor of cysteine proteases, interfered with the outoprocessing of the viral papain-like cysteine protease HCPro. Unexpectedly, it also had an inhibitory effect on the autocatalytic cleavage of the Nla protease which, although it has a Cys residue in its active center, has been described as structurally related to serine proteases. Other protease inhibitors tested had no effect on any of the cleavage events analyzed.  相似文献   

10.
The larvae of Schistosoma mansoni invade their mammalian host by utilizing a serine protease, cercarial elastase (SmCE), to degrade macromolecular proteins in host skin. The catalytic activity of serine and cysteine proteases can be regulated after activation by serpins. SmSrpQ, one of two S. mansoni serpins found in larval secretions, is only expressed during larval development and in the early stages of mammalian infection. In vitro, (35)S-SmSrpQ was able to form an SDS-stable complex with a component of the larval lysate, but no complex was detected when (35)S-SmSrpQ was incubated with several mammalian host proteases. Formation of a complex was sensitive to the protease active site inhibitors PMSF, Z-AAPF-CMK, and Z-AAPL-CMK. Western blot analysis of parasite lysates from different life stages detected a complex of comparable size to SmCE bound to SmSrpQ using anti-SmSrpQ or anti-SmCE antibodies. SmSrpQ and SmCE are located in adjacent but discrete compartments in the secretion glands of the parasite. Fluorescence immunohistochemical analysis of simulated infection showed co-localization of SmCE and SmSrpQ in host tissue suggesting a post release regulation of parasite protease activity during skin transversal. The results of this study suggest that cercarial elastase degradation of skin tissue is carefully regulated by SmSrpQ.  相似文献   

11.
Lysosomal serine and cysteine proteases are reported to play a role in collagen degradation. In this study, the activities of the lysosomal cysteine proteases cathepsin B and H, dipeptidyl peptidase I, and the serine protease tripeptidyl peptidase I and dipeptidyl peptidase II, all ascribed a role in collagen digestion, were compared with those of the aspartate protease cathepsin D, and lysosomal glycosidases in leukocytes from rheumatoid arthritis patients at different stages of the disease. In all patients the activities of cysteine protease cathepsin B, dipeptidyl peptidase I, aspartate protease cathepsin D, and two glycosidases were elevated, but the activities of the serine proteases tripeptidyl peptidase I, dipeptidyl peptidase II, and the cysteine protease cathepsin H was unchanged. The magnitude of the increased activity was correlated with the duration of the disease. Patients with long-standing RA (10 years or more) had higher cysteine protease activity in their leukocytes than did those with disease of shorter duration. This tendency suggests that elevated lysosomal cysteine protease activities, together with aspartate protease cathepsin D and lysosomal glycosidases (but not serine proteases), are associated with progression of rheumatoid arthritis.  相似文献   

12.
Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease‐mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions.  相似文献   

13.
Co‐expression of protease inhibitors like the tomato cystatin SlCYS8 is useful to increase recombinant protein production in plants, but key proteases involved in protein proteolysis are still unknown. Here, we performed activity‐based protein profiling to identify proteases that are inhibited by SlCYS8 in agroinfiltrated Nicotiana benthamiana. We discovered that SlCYS8 selectively suppresses papain‐like cysteine protease (PLCP) activity in both apoplastic fluids and total leaf extracts, while not affecting vacuolar‐processing enzyme and serine hydrolase activity. A robust concentration‐dependent inhibition of PLCPs occurred in vitro when purified SlCYS8 was added to leaf extracts, indicating direct cystatin–PLCP interactions. Activity‐based proteomics revealed that nine different Cathepsin‐L/‐F‐like PLCPs are strongly inhibited by SlCYS8 in leaves. By contrast, the activity of five other Cathepsin‐B/‐H‐like PLCPs, as well as 87 Ser hydrolases, was unaffected by SlCYS8. SlCYS8 expression prevented protein degradation by inhibiting intermediate and mature isoforms of granulin‐containing proteases from the Resistant‐to‐Desiccation‐21 (RD21) PLCP subfamily. Our data underline the key role of endogenous PLCPs on recombinant protein degradation and reveal candidate proteases for depletion strategies.  相似文献   

14.
15.
Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 Å resolution were obtained using hanging drop method by vapor diffusion at 18 °C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function.  相似文献   

16.
Cellular proteins are extensively degraded during leaf senescence, and this correlates with an up-regulation of protease gene expression, particularly cysteine proteases. The objectives of this work were (i) to detect cysteine proteases associated with senescence of wheat leaves under different conditions and (ii) to find out their subcellular location. Activity labelling of cysteine proteases with the biotinylated inhibitor DCG-04 detected five bands at 27, 36, 39, 42, and 46 kDa in leaves of wheat senescing under continuous darkness. In-gel activity assays showed that these proteases are only active in an acid milieu (pH 4), and their activity increased several-fold in senescing leaves. Fractionation experiments showed that the senescence-associated cysteine proteases of 36, 39, 42, and 46 kDa localize to a vacuolar-enriched fraction. The vacuolar cysteine proteases of 36, 39, and 42 kDa increased in activity in attached flag leaves senescing naturally during post-anthesis, and in attached leaves of plants subjected to a period of water deficit. Thus, the activity of these vacuolar cysteine proteases is associated with developmental (post-anthesis) senescence and with senescence induced by stress factors (i.e. protracted darkness or drought). This suggests that vacuoles are involved in senescence-associated cellular degradation, and that different senescence-inducing factors may converge on a single degradation pathway.  相似文献   

17.
Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48 kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process.  相似文献   

18.
Despite their central importance in cell metabolism, little is known about proteases in marine phytoplankton. We surveyed caseinolytic and leucine aminopeptidase (LAP) activities in log-phase cultures of the chlorophyte Dunaliella tertiolecta Butcher, the diatom Thalassiosira weissflogii (Gru.) Fryxell et Hasle, the chrysophyte Isochrysis galbana Parke, the coccolithophorid Emiliania huxleyi (Lohm.) Hay et Mohler, and the cyanobacterium Synechococcus sp. (WH 5701). LAP activity was very low at pH < 6 and peaked between pH 7.5 and 8.5 in all species, whereas caseinolytic activity in most species showed only minor peaks in the pH 4–5 range and broad maxima above pH 8. Thus, acidic vacuolar proteases apparently represented only a small fraction of total protease activity. Attempts to classify proteases using selective inhibitors were inconclusive. Neither the serine/cysteine protease inhibitor leupeptin nor the aspartic protease inhibitor pepstatin. A inhibited caseinolytic or LAP activity in any species. The metalloprotease inhibitor EDTA was only effective against LAP activity in some species, causing average decreases of 30–50%, whereas the cysteine/serine protease inhibitor phenyl methyl sulfonylfluoride achieved at best a 30–60% decrease in caseinolytic activity. Caseinolytic activities were remarkably stable. At pH 7.5 and 25°C, extracts of D. tertiolecta, E. huxleyi, and Synechococcus showed no changes in activity after 24 h, whereas activity declined by less than 50% in the other species. Incubation of cell extracts for 1 h at 25°C in pH 7.5 buffer did not alter patterns of cell proteins, suggesting that endogenous proteases did not effectively degrade endogenous proteins. Casein zymograms were used to identify >200-and <20-kDa proteases in homogenates of log-phase T. weissflogii; only the smaller protease was found in D. tertiolecta. Antibodies to the ATPase subunit (C) of the conserved, chloroplastic Clp protease from Pisum cross-reacted with proteins in Synechococcus, D. tertiolecta, and I. galbana, but no cross-reactions were found for any species with antibodies against the ClpP subunit from either E. coli or Nicotiana. Our results show that phytoplankton contain a diverse complement of proteases with novel characteristics.  相似文献   

19.
The nematophagous fungus Arthrobotrys oligospora produced extracellular proteases when grown in a liquid culture, as revealed by measuring the hydrolysis of the chromogenic substrate Azocoll. The extracellular protease activity was inhibited by phenylmethylsulfonyl fluoride (PMSF) and other serine protease inhibitors and partly inhibited by the aspartate protease inhibitor pepstatin and by a cysteine protease inhibitor [l-trans-epoxysuccinyl-leucylamide-(4-guanidino)-butane, or E-64]. Substrate gel electrophoresis showed that the fungus produced several different proteases, including multiple serine proteases. The function of proteases in the infection of nematodes was examined by treating the fungus with various protease inhibitors. None of the inhibitors tested affected the adhesion of nematodes to the traps, but incubating trap-bearing mycelium with a serine protease inhibitor, PMSF, antipain, or chymostatin, or the metalloprotease inhibitor phenanthroline significantly decreased the immobilization of nematodes captured by the fungus. Inhibitors of cysteine or aspartic proteases did not affect the immobilization of captured nematodes. The effects of PMSF on the immobilization of nematodes were probably due to serine proteases produced by the fungus, since the effects were observed when unbound inhibitor was washed away from the fungus before the nematodes were added to the system. No effects were observed when the nematodes only were pretreated with PMSF.  相似文献   

20.
Digestive endoprotease activities of the rice water weevil, Lissorhoptrus brevirostris Suffrian (Coleoptera: Curculionidae), were characterized based on the ability of gut extracts to hydrolyze specific synthetic substrates, optimal pH, and hydrolysis sensitivity to protease inhibitors. Larvae of this species were found to use a complex proteolytic system that includes cathepsin D-, cathepsin B-, trypsin-, and chymotrypsin-like activities. Trypsin-like activity was evenly distributed among the anterior, middle, and posterior portions of the gut, whereas cathepsin B- and cathepsin D-like activities were mainly located in the anterior and middle sections, and the chymotrypsin-like activity was highest in the middle and posterior sections. Gelatin-containing native-PAGE gels indicated the presence of several aspartyl, cysteine, and serine protease forms and confirmed the spatial organization of the proteolytic digestive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号