首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
The homogeneous distribution of the phytoplankton in a shallow (mean depth 8·6 m) unstratified lake, L. Neagh, Northern Ireland, facilitated the study of the interaction of components controlling gross photosynthesis per unit area. These included the photosynthetic capacity, the phytoplankton content of the euphotic zone, and a logarithmic function describing the effective radiation input. These factors were analysed for two sites, the open lake and Kinnego Bay, which respectively had standing crops of up to 90 and 300 mg chlorophyll a m?3 and maximum daily rates of gross integral photosynthesis of 11·7 and 15·6 g O2 m?2 day?1. Values are reduced by the high contribution to light attenuation by non-algal sources, which increases at low standing crops particularly in winter, when values of integral photosynthesis decrease to 0·5 g O2 m?2 day?1. This relative change is the result of self-shading behaviour of the phytoplankton altering the crop content of the euphotic zone at different population densities. Changes in the irradiance function, incorporating day length, are largely responsible for the changes in daily rates of integral gross photosynthesis; as daily irradiance is also a determinant of water temperature, it exerts further influence through the photosynthetic capacity which was strongly correlated with temperature. Much of the gain in gross photosynthesis resulting from higher photosynthetic capacity may not be reflected in a higher net column photosynthesis, because of the greater proportional rise in respiration with temperature. The balance in the water column between respiration losses and photosynthetic input may frequently alter since the ratio of illuminated to dark zones is between 1/4 to 1/5 in the open lake, and small shifts in any of the controlling features may result in conditions unfavourable for growth. This is analysed especially for the increase of diatoms in spring, when small modifications of the underwater light field can delay growth.  相似文献   

2.
The rates of net photosynthesis as a function of irradiance and temperature were determined for gametophytes and embryonic sporophytes of the kelp, Macrocystis pyrifera (L.) C. Ag. Gametophytes exhibited higher net photosynthetic rates based on oxygen and pH measurements than their derived embryonic sporophytes, but reached light saturation at comparable irradiance levels. The net photosynthesis of gametophytes reached a maximum of 66.4 mg O2 g dry wt?1 h?1 (86.5 mg CO2 g dry wt?1 h?1), a value approximately seven times the rate reported previously for the adult sporophyte blades. Gametophytes were light saturated at 70 μE m?2 s?1 and exhibited a significant decline in photosynthetic performance at irradiances 140 μE m?1 s?1. Embryonic sporophytes revealed a maximum photosynthetic capacity of 20.6 mg O2 g dry wt?1 h?1 (25.3 mg CO2 g dry wt?1 h?1), a rate about twice that reported for adult sporophyte blades. Embryonic sporophytes also became light saturated at 70 μE m?2 s?1, but unlike their parental gametophytes, failed to exhibit lesser photosynthetic rates at the highest irradiance levels studied; light compensation occurred at 2.8 μE m?2 s?1. Light-saturated net photosynthetic rates of gametophytes and embryonic sporophytes varied significantly with temperature. Gametophytes exhibited maximal photosynthesis at 15° to 20° C, whereas embryonic sporophytes maintained comparable rates between 10° and 20° C. Both gametophytes and embryonic sporophytes declined in photosynthetic capacity at 30° C. Dark respiration of gametophytes was uniform from 10° to 25° C, but increased six-fold at 30° C; the rates for embryonic sporophytes were comparable over the entire range of temperatures examined. The broader light and temperature tolerances of the embryonic sporophytes suggest that this stage in the life history of M. pyrifera is well suited for the subtidal benthic environment and for the conditions in the upper levels of the water column.  相似文献   

3.
The photosynthetic capabilities of the fern Pteris cretica var. ouvrardii were analysed by means of the light response curves of CO2 exchange. In control growth conditions (greenhouse, low-light: 20–32 W m?2); photosynthesis was shown to be saturated for low irradiance (20–25 W m?2); the saturating photosynthetic rate, very low as compared to higher plants, was due to an extremely high intracellular resistance. When irradiance during the photosynthesis measurement was higher than 60–80 W m?2, a constant decline of net CO2 exchange as a function of time was observed. When irradiance during growth was enhanced, whether in greenhouse (20–250 W m?2) or controlled (62 W m?2) conditions, the first fronds that had developed in the new condition from the crosier stage exhibited decreased net maximal photosynthesis and a decreased efficiency in low light, but saturating irradiance was unmodified. However, the fronds whose entire differentiation (from meristem) occurred under these moderate irradiances (plants defoliated of all fronds and crosiers at the time of transfer), possessed more efficient photosynthetic characteristics than control plants. Pteris is able to grow under extreme shade conditions (4–8 W m?2); light saturating photosynthesis and efficiency are higher under extreme shade than under control conditions. These adaptive characteristics indicate that Pteris is a well-adapted shade species.  相似文献   

4.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

5.
Summary The effects of irradiance during growth on biomass allocation, growth rates, leaf chlorophyll and protein contents, and on gas exchange responses to irradiance and CO2 partial pressures of the evergreen, sclerophyllous, chaparral shrub, Ceanothus megacarpus were determined. Plants were grown at 4 irradiances for the growth experiments, 8, 17, 25, 41 nE cm-2 sec-1, and at 2 irradiances, 9 and 50 nE cm-2 sec-1, for the other comparisons.At higher irradiances root/shoot ratios were somewhat greater and specific leaf weights were much greater, while leaf area ratios were much lower and leaf weight ratios were slightly lower than at lower irradiances. Relative growth rates increased with increasing irradiance up to 25 nE cm-2 sec-1 and then leveled off, while unit leaf area rates increased steeply and unit leaf weight rates increased more gradually up to the highest growth irradiance.Leaves grown at 9 nE cm-2 sec-1 had less total chlorophyll per unit leaf area and more per unit leaf weight than those grown at 50 nE cm-2 sec-1. In a reverse of what is commonly found, low irradiance grown leaves had significantly higher chlorophyll a/b than high irradiance grown leaves. High irradiance grown leaves had much more total soluble protein per unit leaf area and per unit dry weight, and they had much higher soluble protein/chlorophyll than low irradiance grown leaves.High irradiance grown leaves had higher rates of respiration in very dim light, required higher irradiances for photosynthetic saturation and had higher irradiance saturated rates of photosynthesis than low irradiance grown leaves. CO2 compensation irradiances for leaves of both treatments were very low, <5 nE cm-2 sec-1. Leaves grown under low and those grown under high irradiances reached 95% of their saturated photosynthetic rates at 65 and 85 nE cm-2 sec-1, respectively. Irradiance saturated rates of photosynthesis were high compared to other chaparral shrubs, 1.3 for low and 1.9 nmol CO2 cm-2 sec-1 for high irradiance grown leaves. A very unusual finding was that leaf conductances to H2O were significantly lower in the high irradiance grown leaves than in the low irradiance grown leaves. This, plus the differences in photosynthetic rates, resulted in higher water use efficiencies by the high irradiance grown leaves. High irradiance grown leaves had higher rates of photosynthesis at any particular intercellular CO2 partial pressure and also responded more steeply to increasing CO2 partial pressure than did low irradiance grown leaves. Leaves from both treatments showed reduced photosynthetic capability after being subjected to low CO2 partial pressures (100 bars) under high irradiances. This treatment was more detrimental to leaves grown under low irradiances.The ecological implications of these findings are discussed in terms of chaparral shrub community structure. We suggest that light availability may be an important determinant of chaparral community structure through its effects on water use efficiencies rather than on net carbon gain.  相似文献   

6.
Phenology, irradiance and temperature characteristics of a freshwater benthic red alga, Nemalionopsis tortuosa Yoneda et Yagi (Thoreales), were examined from Kagoshima Prefecture, southern Japan for the conservation of this endemic and endangered species. Field surveys confirmed that algae occurred in shaded habitats from winter to early summer, and disappeared during August through November. A net photosynthesis–irradiance (PE) model revealed that net photosynthetic rate quickly increased and saturated at low irradiances, where the saturating irradiance (Ek) and compensation irradiance (Ec) were 10 (8–12, 95% credible interval (CRI)) and 8 (6–10, 95% CRI) μmol photon m?2 s?1, respectively. Gross photosynthesis and dark respiration was determined over a range of temperatures (8–36°C) by dissolved oxygen measurements, and revealed that the maximum gross photosynthetic rate was highest at 29.5 (27.4–32.0, 95%CRI) °C. Dark respiration also increased linearly when temperature increased from 8°C to 36°C, indicating that the increase in dark respiration at higher temperature most likely caused decreases in net photosynthesis. The maximum quantum yield (Fv/Fm) that was determined using a pulse amplitude modulated‐chlorophyll fluorometer (Imaging‐PAM) was estimated to be 0.51 (0.50–0.52, 95%CRI) and occurred at an optimal temperature of 21.7 (20.1–23.4, 95%CRI) °C. This species can be considered well‐adapted to the relatively low natural irradiance and temperature conditions of the shaded habitat examined in this study. Our findings can be applied to aid in the creation of a nature‐reserve to protect this species.  相似文献   

7.
Microcystis aeruginosa Kütz. 7820 was cultured at 350 and 700 μL·L ? 1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom‐forming cyanobacterium. Doubling of CO2 concentration in the airflow enhanced its growth by 52%–77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light‐saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC‐saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3 ? levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 μL·L ? 1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3 ? concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.  相似文献   

8.
The survivorship of dipterocarp seedlings in the deeply shaded understorey of South‐east Asian rain forests is limited by their ability to maintain a positive carbon balance. Photosynthesis during sunflecks is an important component of carbon gain. To investigate the effect of elevated CO2 upon photosynthesis and growth under sunflecks, seedlings of Shorealeprosula were grown in controlled environment conditions at ambient or elevated CO2. Equal total daily photon flux density (PFD) (~7·7 mol m?2 d?1) was supplied as either uniform irradiance (~170 µmol m?2 s?1) or shade/fleck sequences (~30 µmol m?2 s?1/~525 µmol m?2 s?1). Photosynthesis and growth were enhanced by elevated CO2 treatments but lower under flecked irradiance treatments. Acclimation of photosynthetic capacity occurred in response to elevated CO2 but not flecked irradiance. Importantly, the relative enhancement effects of elevated CO2 were greater under sunflecks (growth 60%, carbon gain 89%) compared with uniform irradiance (growth 25%, carbon gain 59%). This was driven by two factors: (1) greater efficiency of dynamic photosynthesis (photosynthetic induction gain and loss, post‐irradiance gas exchange); and (2) photosynthetic enhancement being greatest at very low PFD. This allowed improved carbon gain during both clusters of lightflecks (73%) and intervening periods of deep shade (99%). The relatively greater enhancement of growth and photosynthesis at elevated CO2 under sunflecks has important potential consequences for seedling regeneration processes and hence forest structure and composition.  相似文献   

9.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

10.
Changes in photosynthetic pigment ratios showed that the Chlorophyll d-dominated oxyphotobacterium Acaryochloris marina was able to photoacclimate to different light regimes. Chl d per cell were higher in cultures grown under low irradiance and red or green light compared to those found when grown under high white light, but phycocyanin/Chl d and carotenoid/Chl d indices under the corresponding conditions were lower. Chl a, considered an accessory pigment in this organism, decreased respective to Chl d in low irradiance and low intensity non-white light sources. Blue diode PAM (Pulse Amplitude Modulation) fluorometry was able to be used to measure photosynthesis in Acaryochloris. Light response curves for Acaryochloris were created using both PAM and O2 electrode. A linear relationship was found between electron transport rate (ETR), measured using a PAM fluorometer, and oxygen evolution (net and gross photosynthesis). Gross photosynthesis and ETR were directly proportional to one another. The optimum light for white light (quartz halogen) was about 206 ± 51 μmol m− 2 s− 1 (PAR) (Photosynthetically Active Radiation), whereas for red light (red diodes) the optimum light was lower (109 ± 27 μmol m− 2 s− 1 (PAR)). The maximum mean gross photosynthetic rate of Acaryochloris was 73 ± 7 μmol mg Chl d− 1 h− 1. The gross photosynthesis/respiration ratio (Pg/R) of Acaryochloris under optimum conditions was about 4.02 ± 1.69. The implications of our findings will be discussed in relation to how photosynthesis is regulated in Acaryochloris.  相似文献   

11.
Chrococcoid cyanobacteria of the genus Synechococcus are the important component of marine and freshwater ecosystems. Picocyanobacteria comprise even 80% of total cyanobacterial biomass and contribute to 50% of total primary cyanobacterial bloom production. Chlorophyll (Chl) fluorescence and photosynthetic light response (P-I) curves are commonly used to characterize photoacclimation of Synechococcus strains. Three brackish, picocyanobacterial strains of Synechococcus (BA-132, BA-124, BA-120) were studied. They were grown under 4 irradiances [10, 55, 100, and 145 μmol(photon) m?2 s?1] and at 3 temperatures (15, 22.5, and 30°C). Photosynthetic rate was measured by Clark oxygen electrode, whereas the Chl fluorescence was measured using Pulse Amplitude Modulation fluorometer. Based on P-I, two mechanisms of photoacclimation were recognized in Synechococcus. The maximum value of maximum rate of photosynthesis (P max) expressed per biomass unit at 10 μmol(photon) m?2 s?1 indicated a change in the number of photosynthetic units (PSU). The constant values of initial slope of photosynthetic light response curve (α) and the maximum value of P max expressed per Chl unit at 145 μmol(photon) m?2 s?1 indicated another mechanism, i.e. a change in PSU size. These two mechanisms caused changes in photosynthetic rate and its parameters (compensation point, α, saturation irradiance, dark respiration, P max) upon the influence of different irradiance and temperature. High irradiance had a negative effect on fluorescence parameters, such as the maximum quantum yield and effective quantum yield of PSII photochemistry (φPSII), but it was higher in case of φPSII.  相似文献   

12.
Leaves deep in canopies can suddenly be exposed to increased irradiances following e.g. gap formation in forests or pruning in crops. Studies on the acclimation of photosynthesis to increased irradiance have mainly focused on the changes in photosynthetic capacity (Amax), although actual irradiance often remains below saturating level. We investigated the effect of changes in irradiance on the photosynthesis irradiance response and on nitrogen allocation in fully grown leaves of Cucumis sativus. Leaves that fully developed under low (50 µmol m?2 s?1) or moderate (200 µmol m?2 s?1) irradiance were subsequently exposed to, respectively, moderate (LM‐leaves) or low (ML‐leaves) irradiance or kept at constant irradiance level (LL‐ and MM‐leaves). Acclimation of photosynthesis occurred within 7 days with final Amax highest in MM‐leaves, lowest in LL‐leaves and intermediate in ML‐ and LM‐leaves, whereas full acclimation of thylakoid processes underlying photosystem II (PSII) efficiency and non‐photochemical quenching occurred in ML‐ and LM‐leaves. Dark respiration correlated with irradiance level, but not with Amax. Light‐limited quantum efficiency was similar in all leaves. The increase in photosynthesis at moderate irradiance in LM‐leaves was primarily driven by nitrogen import, and nitrogen remained allocated in a similar ratio to Rubisco and bioenergetics, while allocation to light harvesting relatively decreased. A contrary response of nitrogen was associated with the decrease in photosynthesis in ML‐leaves. Net assimilation of LM‐leaves under moderate irradiance remained lower than in MM‐leaves, revealing the importance of photosynthetic acclimation during the leaf developmental phase for crop productivity in scenarios with realistic, moderate fluctuations in irradiance that leaves can be exposed to.  相似文献   

13.
SUMMARY The effects of photosynthetically active radiation (PAR) and temperature on the photosynthesis of two Vietnamese brown algae, Sargassum mcclurei and S. oligocystum (Fucales), were determined by field and laboratory measurements. Dissolved oxygen sensors and pulse‐amplitude modulated (PAM) fluorometry were used for the measurements of photosynthetic efficiency. A Diving‐PAM revealed that underwater measurements of the effective quantum yield (Φ PSII ) of both species declined with increasing incident PAR, with minimum Φ PSII occurring during noon to early afternoon. Φ PSII recovered in the evening, indicating photo‐adaptation to excessive PAR. In laboratory experiments, Φ PSII also decreased under continuous exposure to 1000 μmol photons m?2 s?1; and full recovery occurred after 12 h of dark acclimatization. The net photosynthesis – PAR experiments of S. mcclurei and S. oligocystum conducted at 28°C revealed that the net photosynthetic rate quickly increased at PAR below the saturation irradiance of 361 and 301 μmol photons m?2 s?1 and nearly saturated to maximum net photosynthetic rates of 385 and 292 μg O2 gww ? 1 min?1 without photoinhibition, respectively. Gross photosynthesis and dark respiration experiments determined over a range of temperatures (12–40°C), revealed that the maximum gross photosynthetic rates of 201 and 147 μg O2 gww ? 1 min?1 occurred at 32.9 and 30.7°C for S. mcclurei and S. oligocystum, respectively. The dark respiration rates increased exponentially over the temperature ranges examined. The estimated maximum value of the maximum quantum yield occurred at 19.3 and 20.0°C and was 0.76 and 0.74, respectively. Similar to the natural habitat of the study site, these two species tolerated the relatively high temperatures and broad range of PAR. The ability of these species to recover from exposure to high PAR is one of the mechanisms that allow them to flourish in the shallow water environment.  相似文献   

14.
Strebeyko  P. 《Photosynthetica》2000,38(1):159-160
On the basis of literature and my calculations it was established that a chlorophyll (Chl) particle anchored with a phytol chain to the thylakoid membrane takes up about 1 nm2 of the surface area. At an irradiance of 287 W m-2 the leaves of cabbage seedlings become saturated with photosynthetically active radiation (PAR) thus reaching the maximum photosynthetic rate of 100 µg(C) m-2 s-1, that is 5 CO2 molecules per 1 nm2 per second, and the maximum power with which the Chl particle supplies the process of photosynthesis is 15 aJ.  相似文献   

15.
Geitlerinema amphibium (BA-13), mat-forming cyanobacterium from the southern Baltic Sea, was grown at three irradiances [5, 65, and 125 μmol(photon) m?2 s?1] and three temperatures (15, 22.5, and 30°C). To determine the effect of the investigated factors and their interaction on culture concentration, pigment content, and photosynthetic parameters of cyanobacterium, factorial experiments and two-way analysis of variance (ANOVA) were carried out. Both chlorophyll (Chl) a and phycobilins (PB) were influenced by the irradiance and temperature, but stronger effect was noted in the case of the former one. Chl a and PB concentration per 100 μm of filament dropped above 4-fold with the increasing irradiance. The ratios between individual carotenoids [β-carotene, zeaxanthin, and myxoxanthophyll (Myx)] and Chl a increased significantly with an increase in the irradiance. The greatest fluctuations were observed in the ratio of Myx to Chl a (above 10-fold). Thus, Myx was suggested as the main photoprotective carotenoid in G. amphibium. Based on photosynthetic light response (PI) curves, two mechanisms of photoacclimation in G. amphibium were recognized: a change of photosynthetic units (PSU) number and a change of PSU size. These two mechanisms constituted the base of significant changes in photosynthetic rate and its parameters, such as the compensation point (P C), the initial slope of photosynthetic curve (α), saturation irradiance (E K), maximal photosynthetic rate (P max), and dark respiration rate (R D). The greatest changes were observed in P C values (about 15-fold within the range of the factors tested). Studied parameters showed a wide range of changes, which might indicate G. amphibium ability to acclimatize well to irradiance and temperature, and indirectly might explain the successful growth of cyanobacterium in dynamically changing environmental conditions.  相似文献   

16.
Cells of potato (Solanum tuberosum L.) were obtained which were capable of photoautotrophic growth in liquid suspension culture under a photon flux density of 90–110 μmol m?2 s?1 PAR and in an atmosphere enriched with 2% CO2. These photoautotrophic cells contained between 100 to 200 μg Chl (g fresh weight)?1 and fixed CO2 at a maximum rate of 16 μmol CO2 (g fresh weight)?1h?1. In order to obtain cells capable of photoautotrophic growth it was necessary to adapt highly chlorophyllous heterotrophic cells (>50 μg Chl (g fresh weight)?1) for growth in medium with 2.5 g sucrose 1?1 (photomixotrophic cells). The photomixotropic cells had a Chl content of ca 100 μg Chl (g fresh weight)?1 and were capable of photosynthetic activity which allowed them to survive after sugars had been depleted from the medium. It was from the photomixotrophic cells that cells capable of photoautotrophic growth were obtained. Heterotrophic cells initially established in liquid medium with 25 g sucrose I?1 from chlorophyllous callus contained about 50 to 150 μg Chl (g fresh weight)?1. However, after 5 to 10 passages the Chl content decreased to a maximum of 15 μg Chl (g fresh weight)?1. These cells could not be adapted to photomixotrophic or photoautotrophic growth. These cells also were not able to regain Chl or initiate high rates of CO2 fixation during the stationary phase of growth as did photomixotrophic cells or chlorophyllous heterotrophic cells. The loss of Chl exhibited by the cells during adaption to heterotrophic growth could be attributed at least in part to unbalanced growth (when cell division and growth exceeds Chl accumulation). Sucrose appeared to have an inhibitory effect directly on photosynthesis independent of Chl accumulation.  相似文献   

17.
The present study investigated the interaction of growth irradiance (Qint) with leaf capacity for and kinetics of adjustment of the pool size of xanthophyll cycle carotenoids (sum of violaxanthin, antheraxanthin and zeaxanthin; VAZ) and photosynthetic electron transport rate (Jmax) after changes in leaf light environment. Individual leaves of lower‐canopy/lower photosynthetic capacity species Tilia cordata Mill. and upper canopy/higher photosynthetic capacity species Populus tremula L. were either illuminated by additional light of 500–800 µmol m?2 s?1 for 12 h photoperiod or enclosed in shade bags. The extra irradiance increased the total amount of light intercepted by two‐fold for the upper and 10–15‐fold for the lower canopy leaves, whereas the shade bags transmitted 45% of incident irradiance. In control leaves, VAZ/area, VAZ/Chl and Jmax were positively associated with leaf growth irradiance (Qint). After 11 d extra illumination, VAZ/Chl increased in all cases due to a strong reduction in foliar chlorophyll, but VAZ/area increased in the upper canopy leaves of both species, and remained constant or decreased in the lower canopy leaves of T. cordata. The slope for VAZ/area changes with cumulative extra irradiance was positively associated with Qint only in T. cordata, but not in P. tremula. Nevertheless, all leaves of P. tremula increased VAZ/area more than the most responsive leaves of T. cordata. Shading reduced VAZ content only in P. tremula, but not in T. cordata, again demonstrating that P. tremula is a more responsive species. Compatible with the hypothesis of the role of VAZ in photoprotection, the rates of photosynthetic electron transport declined less in P. tremula than in T. cordata after the extra irradiance treatment. However, foliar chlorophyll contents of the exposed leaves declined significantly more in the upper canopy of P. tremula, which is not consistent with the suggestion that the leaves with the highest VAZ content are more resistant to photoinhibition. This study demonstrates that previous leaf light environment may significantly affect the adaptation capacity of foliage to altered light environment, and also that species differences in photosynthetic capacity and acclimation potentials importantly alter this interaction.  相似文献   

18.
Here, we report the first‐ever measurements of light CO2 respiration rate (CRR) by seaweeds. We measured the influence of temperature (15–25°C) and light (irradiance from 60 to 670 μmol · m?2 · s?1) on the light CCR of two subtropical seaweed species, and measured the CRR of seven different seaweed species under the same light (150 μmol · m?2 · s?1) and temperature (25°C). There was little effect of irradiance on light CRR, but there was an effect of temperature. Across the seven species light CRR was similar to OCR (oxygen consumption rate in the dark), with the exception of a single species. The outlier species was a coralline alga, and the higher light CRR was probably driven by calcification. CRR could be estimated from OCR, as well as carbon photosynthetic rates from oxygen photosynthetic rates, which suggests that previous studies have probably provided good estimations of gross photosynthesis for seaweeds.  相似文献   

19.
In aquaculture, particularly in bivalve hatcheries, the biochemical composition of algal diets has a strong influence on larval and post-larval development. Biochemical composition is known to be related to culture conditions, among which light represents a major source of variation. The effects of blue light on biochemical composition and photosynthetic rate of Isochrysis sp. (T-iso) CCAP 927/14 were assessed in chemostat at a single irradiance (300 μmol photons m?2 s?1) and compared with white light. Two different dilution (renewal) rates were also tested: 0.7 and 0.2 d?1. Relative carbohydrate content was lower under blue light than under white light at both dilution rates, whereas chlorophyll a and photosynthesis activity were higher. In contrast, carbon quota was lower and protein content higher under blue light than under white light, but only at 0.7 d?1. Despite these metabolic differences, cell productivity was not significantly affected by the spectrum. However, the nitrogen to carbon ratio and photosynthetic activity were higher at 0.7 d?1 than at 0.2 d?1, while carbon quota and carbohydrate content were lower. Our results show that blue light may influence microalgal metabolism without reducing productivity for a given growth rate, a result that should be of great interest for microalgal production in aquaculture.  相似文献   

20.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号