首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival of alginate-entrapped cells of Azospirillum lipoferum was studied during dehydration using a dry air stream and during prolonged storage at various constant water activity values (aw). During the drying operation, the viability loss remained almost constant from the initial water content to 0.35 g water/g dry weight (DW) corresponding to a 98.5% water removal, strongly increased until a water content of 0.25 g/g DW and then stopped until the end of the drying operational (final aw 0.18). A water content of 0.25 g/g DW (aw=0.55) corresponded to the critical point of the moisture sorption isotherm curve from which water became restricted to the dry material. A high drying rate (5 g/g DW per hour) was shown to be more detrimental for cell viability than a low drying rate (1.18 g/g DW per hour). When the product was stored in a closed chamber with a regulated aw (0.23), the number of living cells decreased during a short period (less than 15 days) corresponding to the product aw stabilization, and then remained constant for more than 150 days. In addition, cell survival during storage was not affected by aw values in the range 0–0.55. Above aw=0.55, the higher the aw and the storage duration, the lower the residual survival percentage. The influence of the drying and storage conditions on the cell death rate are discussed with regard to both the mechanisms generally involved in viability loss and the hydration properties of water. Correspondence to: A. Pareilleux  相似文献   

2.
Effect of salt and soil water status on transpiration of Salsola kali L.   总被引:1,自引:1,他引:0  
Abstract Transpiration of Salsola kali L. plants, grown in small pots under controlled environmental conditions, was followed through a drying cycle of the soil. Three different nutrient solutions were used during the preconditioning growth period: control (C), half-strength Hoagland's nutrient solution; C plus 150mol m−3 NaCl; and C plus 150mol m−3 KCl. Soil water content at saturation at the beginning of the drying cycle was 20% (w/w). Both NaCl and KCl treatments modified the plants' response to changes in soil water status. The control plants transpired twice as much (per unit leaf dry weight) as the salt-treated plants, even when the soil was at maximal water capacity. Transpiration of the control plants remained high, until the soil water content declined to 5%. After that stage the stomata of these plants closed abruptly. Transpiration of the salt-treated plants started decreasing when the soil water content was approximately 16%, and did so gradually until all the available water was depleted. When transpiration was plotted against soil water potential a sharp decline in the transpiration of control plants was observed with the soil water potential decreasing from -0.04 to -1.2MPa. Transpiration of the salt-treated plants decreased gradually over a wide range of soil water potential (−0.8 to −7.0MPa).  相似文献   

3.
Electrical impedance measurements made on white spruce, Picea glauca (Moench) Voss, stems were related to shoot free sugar contents and to osmotic, turgor and water potential. During seasonal dormancy induction, there were commensurate increases in free sugar contents, osmotic potential at full turgor and impedance which resulted in linear relationships among these variables. When measured over the course of laboratory drying, impedance increased curvilinearly with decreasing relative water content. There was a linear increase in impedance with decreasing water potential, with a break point coincident with the turgor loss point, possibly attributed to disruption to current flow through broken plasmodesmatal connections between adjacent cells. This technique offers a non-destructive method to measure tissue free sugar content, and therefore, short- and long-term shifts in parameters historically derived from pressure-volume analysis.  相似文献   

4.
A method to produce dried granules of Cryptococcus flavescens (formerly Cryptococcus nodaensis) OH 182.9 was developed and the granules evaluated for storage stability. Small spherical granules were produced and dried using a fluidized-bed dryer. A drying and survival curve was produced for the process of fluidized-bed drying at 30°C. The granules were dried to different moisture contents (4, 7, 9 and 12%) and evaluated for storage stability at 4°C for up to a year. These different moisture contents granules had the following respective water activities (0.22, 0.38, 0.47 and 0.57 a w). The results show the storage stability varied significantly across this moisture content range. The 9% moisture content sample had the best short-term stability (up to 4 months), while 4% moisture content had the best long-term survival (1 year). A desorption isotherm of C. flavescens was determined and modeled. The results of the storage stability and drying studies are interpreted in context of the desorption isotherm.  相似文献   

5.
E.-D. Schulze  M. Küppers 《Planta》1979,146(3):319-326
Short-term (hours) changes in plant water status were induced in hazel (Corylus avellana L.) by changing the evaporative demand on a major portion of the shoot while maintaining a branch in a constant environment. Stomatal conductance of leaves on the branch was influenced little by these short-term changes in water status even with changes in leaf water potential as great as 8 bars. Long-term (days) changes in plant water status were imposed by soil drying cycles. Stomatal conductance progessively decreased with increases in long-term water stress. Stomata still responded to humidity with long-term water stress but the range of the conductance response decreased. Threshold responses of stomata to leaf water potential were not observed with either short-term or long-term changes in plant water status even when leaves wilted. It is suggested that concurrent measurements of plant water status may not be sufficient for explaining stomatal and other plant responses to drought.  相似文献   

6.
Jojoba [ Simmondsia chinensis (Link) Schneider] cuttings were grown in pots under constant light intensity and vapour pressure deficit at wir temperatures of 18 and 27°C in climate-controlled cabinets. Leaf conductance and transpiration rate decreased exponentially as the xylen water potential (Ψx) decreased concurrently with the drying out of the soil. At high Ψx'leaf conductance and transpiration rate were much higher at the higher air temperature, and as Ψx declined both parameters decreased more rapidly at 27°C than at 18°C. When soil temperatures were decreased from 27 to 13°C, leaf water potential was not affected at either air temperatures, but transpiration rate was reduced. A linear negative correlation was found between transpiration rates and soil temperatures. It is suggested that the low soil temperature may restrict reducion of water flux in turn reduces stomatal conductance and transpiration without affecting the water potential in the shoot. The releavance of the response to changes in soil or air temperature to the performance of the plant in its semi-arid habitat is discussed.  相似文献   

7.
The permeability (P) of the gaseous diffusion barrier in the nodules of soybean [Glycine max (L.) Merr.] decreases when water deficits are extended over a 7 to 10 d period. The mechanism controlling P changes is unclear, but may result from the release of water to intercellular pathways, and an associated change in the nodule water potential. The purpose of these experiments was to impose water deficit treatments rapidly in order to determine the early sequence of the responses of nodule water potential and nodule gas exchange without the complications that arise from long-term water deficit treatments. A vertical, split-root system was used to separate nodule drying effects from plant water deficits by replacing humidified air that was passed over upper root nodules in well-watered plants with dry air, or by replacing the nutrient solution that surrounded lower roots with -1.0 MPa polyethylene glycol (PEG) solution, or by a combination of the dry air and PEG treatments. The PEG treatment caused large decreases in both the components of nodule water potential and nodule relative water content, but there was no indication that these factors had immediate, direct effects on either nitrogenase activity or P. After 7 h of the PEG treatment a significant decrease in nitrogenase activity was found but no decrease in P was detected. These results indicate that changes in nitrogenase activity in response to water deficits precede decreases in P. Exposure of nodules to dry air in well-watered plants had no significant effect on either nitrogenase activity or P during the 7 h treatment.  相似文献   

8.
Water loss from cut grass was studied to determine factors limiting the drying process. An apparatus, used to measure water loss at 28±1°C from blotting paper and from leaves and stem internodes of cocksfoot, consisted of four channels in which air speed was controlled at 25–80 cm s-1 and relative humidity at 7–68%. The maximum rate of water loss from wet blotting paper was 10500 mg water dm-2 h-1 but from leaves and stem internodes supplied with water it was less than 250 mg dm-2 h-1. The rate of loss from both plant specimens and blotting paper was linearly related to the vapour pressure differences between the specimen and the surrounding air but was not increased when air speed was changed from 40 to 80 cm s-1. Grass specimens supplied with water had lower rates of water loss than wet blotting paper because of tissue resistances which were calculated for (a) untreated leaf and stem specimens, (b) rubbed leaves, (c) cut leaves, (d) leaves exposed to steam for 60 s. Treatments (b)-(d) greatly reduced tissue resistances. The rates of drying of leaves and stem internodes not supplied with water changed only slightly in response to faster air speeds but were significantly increased by treatments (b), (c), (cs) (split stems), (d) and (e) (exposure to petroleum vapour for 60 s). The most effective treatments trebled the drying rates of leaves and increased the drying rates of stem internodes by 10 times. Reductions in relative humidity had little effect on drying rate following treatments (a), (b), (c) and (d), but when treatments (cs) and (e) were given, additional significant increases in drying rates were obtained when the relative humidity was reduced. Grass specimens given the most effective treatments and dried under the most favourable conditions did not utilize the full drying capacity of the environment, for the rates of water loss from these specimens were at least three times lower than those from wet blotting paper. The results indicate that high rates of drying could be achieved at 28 oC or similar temperatures if practical treatments were developed to remove or greatly reduce the high resistance to water loss in cut grass.  相似文献   

9.
We demonstrate that an adsorption potential at the gate adsorption pressure of soft porous crystals (SPCs) based on the Polanyi's potential theory of adsorption shows a constancy to temperature. This was done using grand canonical Monte Carlo simulations and free energy analysis, which were carried out with a simplified stacked-layer SPC model. This finding implies that the characteristic curve obtained from an experimental gate adsorption isotherm on SPCs can be used to predict the temperature dependence of the gate-opening pressure, even though the potential theory of adsorption does not take into account the deformation of porous solids during the adsorption. We develop a modified potential theory for gate adsorption and show that the derived relation has a form that the Gibbs free energy change due to the host framework deformation per guest molecule, ? ΔGhost/N, and a correction term, C, are added to the expression of the original potential theory of adsorption. The term C is not an empirical correction factor but is the difference of intermolecular interaction potential and entropy between the bulk liquid phase at the saturated state and the adsorbed phase, originating from spatial constraint of adsorbed guest molecules in the host. By evaluating the modified expression for gate adsorption using the simulation results, we demonstrate that the constancy of the adsorption potential to temperature results from a compensation effect between three terms: guest–host interaction potential per guest molecule, ? ΔGhost/N and C, which have a temperature dependence.  相似文献   

10.
Uptake of soil water by plants may result in significant gradients between bulk soil and soil in the vicinity of roots. Few experimental studies of water potential gradients in close proximity to roots, and no studies on the relationship of water potential gradients to the root and leaf water potentials, have been conducted. The occurrence and importance of pre-dawn gradients in the soil and their relation to the pre-dawn root and leaf water potentials were investigated with seedlings of four species. Pre-germinated seeds were grown without watering for 7 and lid in a silt loam soil with initial soil matric potentials of -0.02, -0.1 and -0.22 MPa. Significant gradients, independent of the species, were observed only at pre-dawn soil matric potentials lower than -0.25 MPa; the initial soil matric potentials were -0.1 MPa. At an initial bulk soil matric potential of -0.22 MPa, a steep gradient between bulk and rhizoplane soil was observed after 7 d for maize (Zea mays L. cv. Issa) and sunflower (Helianthus annuus L. cv. Nanus), in contrast to barley (Hordeum vulgare L. cv. Athos) and wheat (Triticum aestivum L. cv. Kolibri). Pre-dawn root water potentials were usually about the same as the bulk soil matric potential and were higher than the rhizoplane soil matric potential. Pre-dawn root and leaf water potentials tended to be much higher than rhizoplane soil matric potentials when the latter were lower than -0.5 MPa. It is concluded that plants tend to become equilibrated overnight with the wetter bulk soil or with wetter zones in the bulk soil. Plants can thus circumvent negative effects of localized steep pre-dawn soil matric potential gradients. This may be of considerable importance for water uptake and growth in drying soil.  相似文献   

11.
Water movement between a root and the soil depends on the hydraulic conductances of the soil, the root, and the intervening root-soil air gap (Lgap) created as roots shrink during soil drying. To measure Lgap, segments of young cylindrical roots of Agave deserti about 3 mm in diameter were placed concentrically or eccentrically within tubes of moistened filter paper at a known water potential. As the width of the air gap between the filter paper and a concentrically located root was made smaller, measured Lgap increased less than did predicted Lgap based on isothermal conditions. For gaps of the size expected in the soil during water loss from roots (e.g., 10% of the root radius), the underprediction was about 70% and was primarily caused by a lowering of the root surface temperature accompanying water evaporation. As a root segment was eccentrically moved toward the filter paper, the measured Lgap increased. For the most eccentric case of touching the filter paper, the measured Lgap was 2.4-fold greater than for the concentric case, compared with an infinite Lgap predicted if the water potential were constant around the root surface. When a root touched soil with a water potential of -1.0MPa, Lgap estimated using a graphical method increased about 2.3-fold and the overall conductance of the root-soil system increased by 31% compared with the concentric case. For markedly eccentric locations of roots in air gaps, Lgap, which can be the principal conductance initially limiting water loss from roots to a drying soil, can be about 60% of the value predicted for the concentric isothermal case.  相似文献   

12.
The binding of the competitive inhibitor proflavin by bovine pancreatic α‐chymotrypsin in water‐tetrahydrofuran mixtures was studied in the entire range of thermodynamic water activities at 25°C. The data on the binding of proflavin were compared with the results on the storage stability of α‐chymotrypsin in water‐organic mixtures. An analysis of the concentration dependency of these characteristics demonstrated that, at low water activity values, the interprotein contacts in the enzyme formed during its drying largely govern its functional properties, while at high water activity, they are determined by the interaction of the enzyme with the organic solvent. The interplay of these two factors is responsible for the complex shape observed for the isotherm of binding of proflavin, with a maximum degree of binding being attained at medium water activity values.  相似文献   

13.
The effects of nitrogen (N) nutrition on growth, N uptake and leaf osmotic potential of rice plants (Oryza sativa L. ev. IR 36) during simulated water stress were determined. Twenty-one-day-old seedlings in high (28.6 × 10 ?4M) and low (7.14 × 10 4M) N levels were exposed to decreased nutrient solution water potentials by addition of polyethylene glycol 6000. The roots were separated from the solution by a semi-permeable membrane. Nutrient solution water potential was ?0.6 × 105 Pa and was lowered stepwise to ?1 × 105, ?2 × 105, ?4 × 105 and ?6 × 105 Pa at 2-day intervals. Plant height, leaf area and shoot dry weight of high and low nitrogen plants were reduced by lower osmotic potentials of the root medium. Osmotic stress caused greater shoot growth reduction in high N than in low N plants. Stressed and unstressed plants in 7.14 × 104M N had more root dry matter than the corresponding plants in 28.6 × 104M N. Dawn leaf water potential of stressed plants was 1 × 105 to 5.5 × 105 Pa lower than nutrient solution water potential. Nitrogen-deficient water-stressed plants, however, maintained higher dawn leaf water potential than high nitrogen water-stressed plants. It is suggested that this was due to higher root-to-shoot ratios of N deficient plants. The osmotic potentials of leaves at full turgor for control plants were about 1.3 × 105 Pa higher in 7.14 × 10?4M than in 28.6 × 10?4M N and osmotic adjustment of 2.6 × 105 and 4.3 × 105 Pa was obtained in low and high N plants, respectively. The nitrogen status of plants, therefore, affected the ability of the rice plant to adjust osmotically during water stress. Plant water stress decreased transpiration and total N content in shoots of both N treatments. Reduced shoot growth as a result of water stress caused the decrease in amount of water transpired. Transpiration and N uptake were significantly correlated. Our results show that nitrogen content is reduced in water-stressed plants by the integrated effects of plant water stress per se on accumulation of dry matter and transpiring leaf area as well as the often cited changes in soil physical properties of a drying root medium.  相似文献   

14.
Aims: To compare an ultra‐rapid hand dryer against warm air dryers, with regard to: (A) bacterial transfer after drying and (B) the impact on bacterial numbers of rubbing hands during dryer use. Methods and Results: The Airblade? dryer (Dyson Ltd) uses two air ‘knives’ to strip water from still hands, whereas conventional dryers use warm air to evaporate moisture whilst hands are rubbed together. These approaches were compared using 14 volunteers; the Airblade? and two types of warm air dryer. In study (A), hands were contaminated by handling meat and then washed in a standardized manner. After dryer use, fingers were pressed onto foil and transfer of residual bacteria enumerated. Transfers of 0–107 CFU per five fingers were observed. For a drying time of 10 s, the Airblade? led to significantly less bacterial transfer than the other dryers (P < 0·05; range 0·0003–0·0015). When the latter were used for 30–35 s, the trend was for the Airblade to still perform better, but differences were not significant (P > 0·05, range 0·1317–0·4099). In study (B), drying was performed ± hand rubbing. Contact plates enumerated bacteria transferred from palms, fingers and fingertips before and after drying. When keeping hands still, there was no statistical difference between dryers, and reduction in the numbers released was almost as high as with paper towels. Rubbing when using the warm air dryers inhibited an overall reduction in bacterial numbers on the skin (P < 0·05). Conclusions: Effective hand drying is important for reducing transfer of commensals or remaining contaminants to surfaces. Rubbing hands during warm air drying can counteract the reduction in bacterial numbers accrued during handwashing. Significance and Impact of the Study: The Airblade? was superior to the warm air dryers for reducing bacterial transfer. Its short, 10 s drying time should encourage greater compliance with hand drying and thus help reduce the spread of infectious agents via hands.  相似文献   

15.
Sequence of drought response of maize seedlings in drying soil   总被引:2,自引:0,他引:2  
Leaf elongation in monocotyledonous plants is sensitive to drought. To better understand the sequence of events in plants subjected to soil drying, leaf elongation and transpiration of maize seedlings ( Zea mays L.) of 4 cultivars were monitored continuously and the diurnal courses of the root and leaf water relations were determined. Results from this study indicate the following sequence of drought response: Leaf elongation decreased before changes in the leaf water relations of non‐growing zones of leaf blades were detected and before transpiration decreased. Reductions in leaf elongation preceded changes in the root water potential (ψw). Root ψw was not a very sensitive indicator of soil dryness, whereas the root osmotic potential (ψs) and root turgor (ψp) were more sensitive indicators. The earliest events observed in drying soil were a significant increase in the largest root diameter class (1 720 to 1 960 gm) and a decrease in leaf elongation ( P = 0.08) 2 days after withholding water. Significant increases in root length were observed 2 days later. Soil drying increased the number of fine roots with diameters of <240 µm. Slight increases in soil strength did not affect leaf elongation in the drying soil.  相似文献   

16.
Studies on the effect of soil temperature on internal water relations of well watered soybean (Glycine max L.) at constant air temperature under controlled conditions were carried out. A specially designed thermogradient tank was used for obtaining a range of soil temperatures. Data on shoot height, shoot weight, root length, root weight, leaf area and leaf water potential were obtained at 41 days after sowing and the highest values of these parameters were recorded at 28.6°C. The air temperature during the course of these investigations was 25±1°C and it may be concluded that slightly warmer soil temperatures than air temperatures were optimal for soybean with regard to the above measured parameters.  相似文献   

17.
L. M. Bates  A. E. Hall 《Oecologia》1982,54(3):304-308
Summary Previously we reported that leaf conductance of cowpea (Vigna unguiculata) decreased with small changes in soil water status without associated changes in leaf water status. In these studies a larger range of soil water deficits was imposed in a rain-free environment by prolonged soil drying, and by weekly irrigation with different amounts of water. With progressive soil water deficits, leaf conductance and xylem pressure potential both declined, but in a manner which indicated that they were not related. Diurnal courses of leaf conductance usually indicated that stomatal opening occurred in the morning, and partial or complete stomatal closure occurred during midday and afternoon. This stomatal closure was associated with increases in air vapor pressure deficit. Day-to-day increases in leaf conductance, at times when radiation was not limiting stomatal opening, were associated with decreases in air vapor pressure deficits. However, maximum leaf conductances and their responses to vapor pressure deficit were generally smaller for plants subjected to greater depletion of soil water.  相似文献   

18.
Summary Growth and water relations of 10-year-old sweet gum (Liquidambar styraciflua L.) street trees were studied in sites with low and high potential evapotranspiration to determine how these differences are integrated by growth and water relations over time. The trees were located in the parking strip between the curb and sidewalk at a partially vegetated urban park and an urban plaza in Seattle, Washington. Crown size, and seasonal and diurnal stomatal conductance and water potential, as well as diurnal air temperature and humidity, were measured over 2 growing seasons. Yearly trunk growth since transplanting was measured from increment cores. Vapor pressure deficits and air temperatures averaged 18% greater at the plaza, but whole-tree water loss appeared to be much lower than the park trees due to more restricted stomatal conductance and crown size. In addition, yearly diameter increment declined progressively once the plaza trees were established in the existing soil several years after transplanting. Lower water potential in the plaza trees indicated greater internal moisture deficits than the park trees, and tissue analysis revealed lower nutritional status, particularly nitrogen. A manipulative study of water and fertilizer to several additional plaza trees showed an interaction between water and nutrient deficiencies in the coarse and shallow soil that apparently limited growth. Furthermore, soil limitations probably interacted with paved surface conditions over time by reducing nutrient recycling from leaf litter, and generating higher vapor pressure deficits that would contribute to prolonged stomatal closure. Restricted growth and water relations status of the plaza trees represented an equilibrium between chronic high-resource demand above ground and limited below ground.  相似文献   

19.
Wang L  Zhang T  Ding S Y 《农业工程》2006,26(7):2073-2078
Field experiments were conducted on soybean Glycine max, yudou29, a major cultivated variety in the Henan Province of China to study the relationship between photosynthetic characteristics and other physioecological parameters of its leaves under soil drying and rewatering treatments. The study showed that the dawn water potential of soybean leaves under the drying treatment was very close to that of soybean leaves under well-watered treatments (CK) when soil water content was higher than 47% of field water capacity (FWC). But when soil water content dropped below 47% of FWC, the leaf water potential decreased rapidly, indicating a significant threshold reaction. The dawn water potential threshold of soybean leaves was about ?1.02 MPa. Below this, the leaf water potential and net photosynthesis ratio dropped rapidly. When the soil water content was 47%, the leaf water potential and net photosynthesis ratio were nearly as high as those in CK, but the transpiration ratio was 67% lower, indicating that transpiration was more sensitive to drought than photosynthesis. After rewatering, the water status of soybean leaves improved, the net photosynthesis ratio and transpiration ratio increased linearly, and leaf stomata conductance (Gs) also recovered quickly. These results showed that after stress removal, soybean had fast-growing characteristics.  相似文献   

20.
Abstract Concurrent estimates of stem density, leaf and stem water potential, stomatal conductance and ultrasonic acoustic emissions (cavitations) in an excised sapling of Thuja occidentalis L. were made. As the sapling dehydrated in air, the decline in leaf water potential to about - 2.0 MPa was followed by apparent rehydration of the foliage while the stem showed no sign of rehydration. The rate of acoustic emissions peaked prior to the onset of rehydration which coincided with virtual stomatal closure. There was a significant decline in stem density until maximum foliage rehydration level was reached. From this point, leaf water potential, stem water potential and stem density continued a relatively slow decline while acoustic emission rate and stomatal conductance remained low. Removal of the bark and majority of foliage from the sapling resulted in increased cavitation and more rapid deelines in leaf and stem water potential and stem density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号