首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Phospholipid metabolisms in rat mast cells activated by ionophore A23187 and compound 48/80 were examined with reference to 'phosphatidylinositol (PI) cycle'. The addition of A23187 to [3H]glycerol-prelabeled mast cells induced a marked accumulation of the radioactivity in 1,2-diacylglycerol(DG) and phosphatidic acid(PA) within 10 to 30 sec. A great enhancement of [3H]glycerol incorporation into PA and PI was also detected during histamine release. On the other hand, 48/80 was far less effective than A23187 both in producing 1,2- DG and PA and in accerelating [3H]glycerol incorporation into PA and PI, despite the comparable ability of histamine release. The activity of Ca2+ uptake into mast cells, as measured by pulse-labeling with 45Ca2+, was increased when exposed to both of two agents. These data provide circumstantial evidence that phospholipid metabolisms, mainly de novo PI synthesis, may be a part of the triggering events for Ca2+ mobilization and secretory process. The PI metabolism induced by two different stimulants appears to behave in a different manner.  相似文献   

2.
Rat peritoneal mast cells respond to various types of secretagogues, such as antigen (receptor-mediated), A23187 (calcium mobilizing), and compound 48/80 (membrane perturbing), and release arachidonic acid from membrane phospholipids prelabeled with [3H]arachidonate. The rate of arachidonic acid liberation varied from one stimulant to the other. Ionophore A23187 (0.1 micrograms/ml) appeared to be most potent in releasing arachidonate among the three stimulants at which doses each secretagogue caused almost equivalent histamine secretion. However, upon stimulation with these three secretagogues, the radioactivity of phosphatidylcholine (PC) was markedly reduced with a concomitant increase of arachidonate radioactivity. Hydrolysis of PC by phospholipase A2 is likely to be the major route of arachidonic acid liberation in either IgE-mediated or non-IgE activation in mast cells.  相似文献   

3.
Pretreatment of rat peritoneal mast cells, human basophils, bone marrow-derived mouse mast cells (BMMC) and mouse mast cell line PT-18 cells with 1 microgram/ml pertussis toxin (PT) failed to inhibit immunoglobulin E (IgE)-dependent histamine release from the cells. In BMMC and PT-18 cells, even 20-hr incubation of the cells with 1 microgram/ml PT, which ADP-ribosylates more than 97% of 41 kDa, alpha-subunit of Ni in the cells, failed to affect the IgE-dependent release of histamine or arachidonate. The results indicate that GTP-binding protein, Ni, is not involved in the transduction of triggering signals induced by cross-linking of IgE receptors. In contrast, pretreatment of rat mast cells with 1 ng/ml to 0.1 microgram/ml PT for 2 hr inhibited histamine release induced by compound 48/80 in a dose-dependent manner. A similar pretreatment with PT inhibited thrombin-induced histamine release from BMMC and N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced histamine release from human basophils in a similar dose-dependent fashion. However, even 20 hr of incubation of sensitized BMMC with 1 microgram/ml PT failed to inhibit either thrombin-induced or antigen-induced breakdown of phosphatidylinositides (PI), i.e., the formation of inositol triphosphate and diacylglycerol, Quin-2 signal, and the release of arachidonic acid. The results indicate that the inhibition of thrombin-induced histamine release by PT-treatment is not due to the inhibition of PI-turnover, and that Ni is not involved in thrombin-induced or antigen-induced (IgE-dependent) hydrolysis of phosphatidylinositides in mast cells.  相似文献   

4.
In an attempt to elucidate further the relationship between changes in phospholipid metabolism in, and histamine secretion from, purified rat peritoneal mast cells, the effects of the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) on these responses in stimulated and unstimulated cells was investigated. TPA caused a dose-dependent increase in the incorporation of 32PO4(3-) into the mast cell phospholipids; phosphatidic acid (PA) and phosphatidylcholine (PC), but not phosphatidylinositol (PI). TPA synergistically enhanced histamine release from cells stimulated by anti-immunoglobulin E (IgE) and the calcium ionophore A23187, reducing its ED50 from 150 nM to 40 nM, but did not alter histamine release from cells stimulated by compound 48/80. The effect of TPA on the changes in 32PO4(3-) incorporation into phospholipids associated with the above secretagogues did not, however, correlate well with the observed effects on histamine secretion induced by the same secretagogues. These observations are discussed in relation to the known effects of phorbol esters upon both secretory processes and phospholipid metabolism in other tissues.  相似文献   

5.
HCO-3 modulation of histamine release and its relationship with the Ca2+ signal were studied in serosal rat mast cells. Histamine release was induced by Ca2+ mobilizing stimuli, namely compound 48/80, thapsigargin, Ca2+ chelators, ionophore A23187, and PMA and ionophore A23187 in a HCO-3-buffered medium or a HCO-3-free medium. The presence of HCO-3 reduced histamine release by 48/80, Ca2+ chelators, A23187, and PMA/A23187, but increased histamine release induced by thapsigargin. Histamine release by PMA was significantly higher in a HCO-3-free medium than in a HCO-3-free medium, as it was the PMA potentiation of histamine release by A23187. [Ca2+]i changes induced by these drugs were measured in fura-2-loaded mast cells. In thapsigargin and EGTA or BAPTA preincubated mast cells [Ca2+]i increase was higher in a HCO-3-buffered medium than in a HCO-3-free medium in the presence of Ca2+. On the contrary, in compound 48/80 and PMA/A23187 activated mast cells the [Ca2+]i increase is the same both in the presence and in the absence of HCO-3. The effect of HCO-3 on histamine release in serosal rat mast cells depends on the stimulus, but it is not related to the presence of Cl-. In thapsigargin-stimulated mast cells the effect of HCO-3 on histamine release may be related to the Ca2+ signal, but in compound 48/80, EGTA, and PMA/A23187-activated mast cells there is no relationship between intracellular Ca2+ and the inhibitory effect of HCO-3 on histamine release. Additionally, the PKC pathway is implicated in the inhibitory effect of HCO-3 on histamine release, the higher the chelation of calcium rendering the higher the enhancement of the response after adding calcium in the absence of HCO-3.  相似文献   

6.
S Toda  M Kimura  K Tohya 《Jikken dobutsu》1989,38(2):135-137
Strain differences among BALB/c, BDF1, CDF1, C3 H/He, C57 BL/6, DBA/2, ddy and ICR mice were investigated with respect to the ratios of histamine release from mouse peritoneal mast cells induced by compound 48/80, a Ca2+ dependent histamine releaser, and the Ca2+ ionophore A23187. The ratios of histamine release from mouse peritoneal mast cells induced by compound 48/80 were found to be high in BALB/c, ddY and ICR mice, but low in BDF1, CDF1, C3 H/He, C57 BL/6 and DBA/2 mice. Those induced by Ca2+ ionophore A23187 were high in BALB/c, BDF1, CDF1, C3 H/He, DBA2, ddy and ICR mice but low in C57 BL/6 mice. These results indicate that differences in histamine release from mouse peritoneal mast cells are strain dependent.  相似文献   

7.
Phospholipid metabolism in rat mast cells activated by antigen was examined with reference to phosphatidylinositol (PI) turnover. Upon antigen stimulation, histamine release from passively sensitized mast cells with IgE was potentiated by adding phosphatidylserine (PS). The addition of antigen to [3H]glycerol-prelabeled and sensitized mast cells induced a marked loss of radioactivity of PI and a concurrent accumulation of 1,2-diacylglycerol (DG) and phosphatidic acid (PA) within 5 to 60 sec. Furthermore, this antigen-induced PI breakdown was enhanced in the presence of Mg2+. Histamine release occurred in parallel with PI breakdown. On the other hand, the transient Ca2+ influx into mast cells, as measured by uptake of 45Ca2+, was found to occur quickly after cells were activated by antigen, which was concerted with PI breakdown. These results suggest that enhanced PI turnover may be an important step in the biochemical sequence of events leading to release of histamine, and that not only Ca2+ but also Mg2+ appears to take a part in stimulus-response coupling in rat mast cells.  相似文献   

8.
When applied to the skin, phorbol esters (PEs) elicit signs of acute inflammation, suggesting they may induce the release of mediators from mast cells. Therefore, we have studied the effects of PEs on purified rat peritoneal and thoracic mast cells both alone and in conjunction with the calcium ionophore, A23187, and various other secretagogues that interact with immunoglobulin E (e.g., anti-IgE and Con A) or other cell surface receptors, e.g., somatostatin and compd 48/80. PEs alone caused little or no release of histamine. However, the PE 12-O-tetradecanoylphorbol-13-acetate (TPA, 10 ng/ml) tremendously potentiated release induced by the calcium ionophore A23187, reducing the EC50 for A23187 from 832 ng/ml to 56 ng/ml. In the presence of suboptimal A23187 (50 ng/ml), only active tumor promoting PEs elicited histamine release. The EC50 values of the various active PEs were: TPA 5 ng/ml; 4 beta-PDD, 83 ng/ml; and 4-O-methyl-TPA, 807 ng/ml, with maximal histamine release ranging from 54 to 80%. TPA synergistically enhanced stimulation of histamine release by anti-IgE and Con A over the entire concentration-response range. In contrast, this synergism was absent when cells were stimulated with somatostatin and compd 48/80. Phorbol esters may act by increasing the activity of a calcium/phospholipid-dependent protein kinase (Ca/PL-PK). Mast cells do have Ca/PL-PK activity, and TPA in the presence of suboptimal A23187 induces protein phosphorylation comparable with other secretagogues. These results suggest that in the purified mast cell, PE-induced mediator release increases the sensitivity of release mechanisms for calcium, acts syngergistically with secretagogues interacting with IgE, and as suggested from structure-activity relationships, occurs via a specific mechanism of action perhaps involving the Ca/PL-PK.  相似文献   

9.
The effect of diethylstilbestrol, a synthetic estrogen, on mast cell secretion was investigated. The results showed that 50 microM diethylstilbestrol inhibited histamine release from rat peritoneal mast cells in the presence and absence of glucose, but did not affect 45Ca uptake stimulated by concanavalin A. Diethylstilbestrol also inhibited histamine release induced by compound 48/80, exogenous ATP, or ionophore A23187. Since estradiol benzoate, hexestrol and daidzein were not inhibitory, the inhibitory action of diethylstilbestrol must be independent of its estrogenic activity. The ATP content of mast cells decreased to less than 0.1 nmol/10(6) cells on treatment with 50 microM diethylstilbestrol at 37 degrees C for 15 min. This effect of diethylstilbestrol in decreasing the ATP content of mast cells correlated well with its inhibitory effect on histamine release. Diethylstilbestrol at 50 microM depleted the cells of ATP at 37 degrees C, but not at 0 degrees C, whereas [3H]diethylstilbestrol ( [monoethyl-3H]diethylstilbestrol) binding to rat mast cells was the same at 0 and 37 degrees C. It is concluded that diethylstilbestrol reduced the ATP content of rat mast cells by inhibiting metabolism of the cells, and consequently inhibited degranulation.  相似文献   

10.
The release of arachidonic acid from thrombin-stimulated platelets can be attributed to the action of phospholipase A2 on membrane phospholipid. Previously, analysis of individual subclasses of phospholipid demonstrated that 1-acyl-2-[3H]arachidonoyl-sn-glycerophosphocholine and to a lesser degree 1-acyl-2-[3H]arachidonoyl-sn-glycerophosphoethanolamine were the main source of [3H]arachidonic acid in thrombin-stimulated cells. In the present work, 1,2-diacyl phospholipid subclasses were analyzed as 1,2-diacylglycerobenzoates by high-pressure liquid chromatography in order to analyze arachidonate release as mass changes in individual molecular species of phospholipid. Following thrombin stimulation (5 U/ml, 5 min, 37 degrees C) all arachidonoyl-containing molecular species of 1,2-diacyl-sn-glycerophosphocholine decreased in mass and [3H]arachidonate content by almost 50%, while those of 1,2-diacyl-sn-glycerophosphoethanolamine decreased by 20%. The mass change was substantial and indicated that these phospholipids are a major source of arachidonate in stimulated cells. No variation was seen in the other non-arachidonate-containing molecular species of either subclass. Thus, deacylation of membrane 1,2-diacylglycerophosphocholine and 1,2-diacylglycerophosphoethanolamine by phospholipase A2 is selective for those molecular species of phospholipid containing arachidonic acid, suggesting that a certain proportion of arachidonoyl-containing molecular species of phospholipid are compartmentalized with the platelet membrane proximal to the site of action of this enzyme. These studies demonstrate that the human platelet is a cell poised and specialized to release rapidly substantial amounts of arachidonic acid upon stimulation.  相似文献   

11.
The involvement of extracellular free Ca2+ in histamine release was investigated in rat peritoneal mast cells. Incubation of non-antigenized cells in a media with high extracellular potassium did not increase histamine release. Secretion induced by A23187 and compound 48/80 in the presence of Ca2+ requires metabolic energy. In the absence of external free Ca2+ (2.5 microM) histamine release induced by A23187 is reduced but not abolished. Secretion induced by compound 48/80 is independent of extracellular Ca2+. These results lead us to suggest that mast cell plasma membranes probably lack voltage-gated Ca2+ channels and that external Ca2+ may not be an absolute requisite for histamine secretion.  相似文献   

12.
This study evaluated the effect of inhibitors of transmethylation on histamine release from rat mast cells and rat basophilic leukemia cells. IgE-mediated histamine release from rat basophilic leukemia cells (RBL-2H3 cells) was inhibited by 3-deazaadenosine (DZA) in the presence of L-homocysteine thiolactone (Hcy) or the combination of adenosine, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), and Hcy in a dose-dependent fashion. There were no significant changes in the cellular cAMP levels by these inhibitors. Histamine release induced by anti-IgE or dextran from normal rat mast cells was also blocked by DZA plus Hcy in a dose-dependent manner. DZA at 10(-3) M in the presence of 10(-4) M Hcy or the combination of 10(-3) M adenosine, 10(-4) M EHNA, and 10(-3) M Hcy inhibited lipid (perhaps phospholipid) methylation into RBL-2H3 cells without affecting choline incorporation. In the presence of 10(-3) M DZA plus 10(-4) M Hcy there was a 170-fold increase in [35S]AdoHcy with the concomitant appearance of 3-deaza-AdoHcy when the cells were incubated with [35S]methionine, thus indicating that these drugs inhibited methylation reaction(s) through the intracellular accumulation of AdoHcy and 3-deaza-AdoHcy. In contrast, histamine release from rat mast cells induced by the calcium ionophore A23187, compound 48/80, polymyxin B, or ATP was not inhibited by these compounds. These results suggest that IgE- or dextran-mediated histamine release involves methylation reactions(s), whereas the other secretagogues bypass this early step.  相似文献   

13.
Neutrophils respond to chemoattractants by aggregating, degranulating, remodelling of phospholipids and releasing arachidonic acid. To determine whether ligand-induced remodelling of phospholipids depends on redistribution of intracellular organelles (degranulation), we compared phospholipid remodelling of human neutrophils with that of neutrophil-derived cytoplasts. Cytoplasts, organelle-depleted vesicles of cytosol surrounded by plasmalemma, cannot degranulate. Without a stimulus, [3H]arachidonate was incorporated preferentially into phosphatidylinositol (PI) and phosphatidylcholine (PC). Exposure of cytoplasts and neutrophils prelabelled with [3H]arachidonate or [14C]glycerol to fMet-Leu-Phe (10(-7) M) induced rapid changes in distribution of label and mass of individual phospholipids: [3H]arachidonate in phosphatidic acid (PA) increased 500% (120 s), [14C]glycerol incorporation and mass of PA approached 200% of unstimulated values, and [3H]arachidonate in PI decreased continuously; these data are compatible with activity of a PI/PA cycle. However, the mass of PI in both preparations and [14C]glycerol label in intact neutrophils increased initially (5 s), suggesting net synthesis and mobilization of more than one pool of PI. Heterogeneity of PC pools was also observed: [3H]arachidonate was lost from PC immediately upon addition of stimulus, whereas mass and [14C]glycerol values increased. Thus, net phospholipid synthesis, redistribution of arachidonate and activation of the PI/PA cycle are immediate responses of the neutrophil to receptor occupancy by chemoattractants. Furthermore, the similarity in response to fMet-Leu-Phe of neutrophils and granule-free cytoplasts indicates that these processes are independent of degranulation.  相似文献   

14.
Several Ca2+ antagonists with either Ca2+-entry blocking or calmodulin (CaM) antagonistic properties and antiallergic drugs were investigated for their effects on mediator release from mast cells induced by different secretagogues (compound 48/80, concanavalin A, antigen-IgE and Ca2+ ionophore A23187) and for their ability to inhibit the function of CaM or phospholipid/Ca2+-dependent protein kinase (C-kinase). The effects of the different agents--with the only exception of cromolyn sodium--on histamine release elicited by compound 48/80 correlated well with their actions on two CaM-dependent enzymes whereas the activity of C-kinase was far less altered, or not altered at all. CaM antagonism of cloxacepride, picumast, oxatomide, fendiline and bepridil correlated not only with the inhibition of exocytosis evoked by compound 48/80 but also with that induced by A23187, concanavalin A and antigen-IgE. This indicates an action of these substances distal to the generation of the Ca2+ signal since the various secretagogues elevate the intracellular Ca2+ concentration by different mechanisms. However, prenylamine and thioridazine inhibited concanavalin A- and antigen-IgE-induced mediator release more potently and more effectively than that elicited by compound 48/80 or A23187. Therefore inhibition of allergic histamine release by these drugs may in part be dependent on an impairment of the Ca2+ signal. Since for each of two agents inhibition of histamine release (evoked by different releasers) parallels that of serotonin release it may be concluded that these mediators are secreted via the same mechanism. The results obtained with agents exhibiting different pharmacological properties but which share one common property, namely antagonism of CaM, strengthen the view that CaM is involved in exocytosis of mediators from mast cells.  相似文献   

15.
Enzymatically isolated dog lung and gut mast cells were stimulated with compound 48/80, ionophore A23187, concanavalin A and FNa-Ca. Cell response elicited by A23187, concanavalin A or 48/80 is almost completely inhibited by isoproterenol. Concanavalin A induced histamine release on gut mast cells is high, indicating an elevated degree of sensitization of these cells. Results point to the existence of beta adrenergic inhibitory activity on dog lung and gut mast cells.  相似文献   

16.
RBL 2H3 cells (a model of mast cell function) were sensitized with anti-TNP IgE (0.5 micrograms/ml) and triggered to secrete both histamine and arachidonic acid (AA) metabolites by the addition of TNP-OVA (0 to 100 ng/ml). After a 3-min delay, the release of both groups of mediators proceeded in a parallel manner. In cells labeled with [14C]-AA, TNP-OVA produced a rapid increase in phosphatidic acid (PA), and subsequently, 1,2-diacylglycerol (DAG) and intracellular AA levels. Concurrently, there was a decrease in [14C]-AA labeled phosphatidylcholine. The release of labeled AA from phosphatidylcholine in response to TNP-OVA was paralleled by a liberation of free choline but no evidence of liberation of phosphorylcholine. When ethanol (0.05 to 2% v/v) was included in the culture medium, phosphatidylethanol was synthesized at the expense of PA and DAG, with a resulting inhibition of secretion. D,1 propranolol, an inhibitor of PA phosphohydrolase, inhibited the IgE-dependent production of [14C]-DAG, and [14C]-free fatty acid but not [14C]-PA. The IgE-dependent release of both histamine and AA metabolites was completely inhibited by pretreatment with propranolol. Taken together, the above results suggest that phospholipase D is activated upon cross-bridging of IgE receptors on the surface of RBL 2H3 cells and that this may be a pivotal step in the signal transduction cascade leading to the release of both presynthesized and de novo synthesized mediators.  相似文献   

17.
Proliferative potential of degranulated mast cells was investigated. Mast cells were collected from the peritoneal cavity of mice, and degranulation was induced by compound 48/80, substance P, 12-O-tetradecanoylphorbol 13-acetate (TPA), or calcium ionophore A23187. The potentiality of colony formation in methylcellulose was not reduced by treatment of various concentrations of compound 48/80, substance P and TPA. When degranulation was induced by compound 48/80, substance P or TPA, proportion of highly degranulated mast cells containing less than five granules was rather small. In contrast, considerable proportion of highly degranulated mast cells was obtained after the treatment with the low concentration (0.1 microgram/ml) of A23187. These highly degranulated mast cells, which were individually picked up by the micromanipulator, proliferated not only in methylcellulose but also in the skin of mast cell-deficient WBB6F1-W/Wv mice. Inasmuch as we have already shown the proliferation of IgE-sensitized and Ag-stimulated mast cells, degranulated mast cells appear to retain the proliferative potential in general.  相似文献   

18.
Activation of mast cells, the key cells of allergic inflammation, causes typical morphological changes associated with an increase in volume, that is a function of area and perimeter. The purpose of this study was to evaluate the effect of mast cell activation to degranulate, carried out by the secretagogue Compound 48/80, and of inhibition of this activation carried out by Nedocromil sodium, a mast cell stabilizing drug, on mast cell area, perimeter and shape factor by a computerized image analyzer. Mast cells were isolated and purified by peritoneal lavage of rats (purity >98%) and co-cultured with mouse 3T3 fibroblasts to which they adhere. Cultures were incubated for 10 min at 37 degrees C with culture medium alone (Enriched Medium) or Enriched Medium containing either Nedocromil (10(-4) M) or Compound 48/80 (0.3 microg/ml) or Compound 48/80 and Nedocromil (0.3 microg/ml and 10(-4) M respectively). Supernatants were then assessed for histamine release, as a marker of mast cell activation and the cell monolayers were fixed and stained with an alcoholic-acidic toluidine blue solution and examined with a computerized image analyzer connected with a light microscope. Mast cells incubated in Enriched Medium or Nedocromil possessed similar morphometric parameters. Mast cells activated with Compound 48/80 (70% histamine release) had a significant increase in area and perimeter and a decrease in shape factor in comparison to mast cells in Enriched Medium alone. Simultaneous incubation of mast cells with Compound 48/80 and Nedocromil significantly inhibited their histamine release (36% histamine release) and the increase in area and perimeter, but did not affect significantly their shape factor, in comparison with mast cells incubated with Compound 48/80 alone. These data clearly show that there is a relationship between mast cell activation, consequent histamine release and changes in cell area, perimeter and shape factor and that Nedocromil not only inhibits mast cell histamine release but also the activation induced morphometric changes in mast cells.  相似文献   

19.
To clarify the signal transduction mechanism of the erbB gene (virus oncogene) products leading to cell growth and transformation, the alteration of signal transduction induced by enhanced inositol phospholipid metabolism was studied in chick embryo fibroblast cells (CEF cells) transformed by gag-fused erbB gene-carrying virus (GEV cells). The incorporations of 32P into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate were markedly increased in GEV cells. In GEV cells, the activities of lipid kinases such as phosphatidylinositol (PI), PIP, and diacylglycerol (DG) kinases were also increased. The activities of other important enzymes involved in inositol phospholipid metabolism, such as CDP-DG:myo-inositol transferase and phospholipase C, were not changed in GEV cells. Increased inositol phospholipid metabolism might lead to the production of second messengers, such as 1,2-DG and inositol 1,4,5-trisphosphate. Indeed, the 1,2-DG content was also increased in GEV cells. Moreover, the activity of protein kinase C (the Ca2+/phospholipid-dependent enzyme), which should be stimulated by 1,2-DG, was elevated in GEV cells; the protein kinase C activity in the membrane fraction of GEV cells was especially high. When CEF cells were treated with tetradecanoylphorbol acetate, protein kinase C activator, plus Ca2+ ionophore, [3H]thymidine incorporation was markedly stimulated, and maximal stimulation was observed with 1 nM Ca2+ ionophore A23187 plus 100 nM TPA. On the other hand, when GEV cells were treated with TPA plus Ca2+ ionophore A23187, [3H]thymidine incorporation was consistently inhibited. Next, studies were made to determine whether the erbB gene product itself had kinase activity on PI, PIP, and DG after membranes were mildly solubilized with Triton X-100 to prevent inactivation of these kinases. Immunoprecipitates of a GEV cell lysate with antisera that reacted with the erbB gene product had PI kinase activity, whereas no activity was detected in those of lysates of uninfected CEF cells. However, the activity was very weak compared with the total cellular activity. No difference in the PIP and DG kinase activities of immunoprecipitates of cell lysates of uninfected CEF cells and GEV cells was observed. These results suggest that the erbB gene product enhances inositol phospholipid metabolism and subsequent signal transduction, but that the erbB gene product is not involved directly in lipid kinases, although it is closely associated with lipid kinase.  相似文献   

20.
In this study we investigated the effects of long wave ultraviolet light (UVA) and various doses of protoporphyrin (PP) on the release of histamine from rat peritoneal and cutaneous mast cells. We also correlated these results with morphologic characteristics and viability of the cells. PP at a dose of 30 ng/ml plus UVA-induced negligible histamine release from rat peritoneal mast cells (RPMC), but was able to suppress the ability of the cells to release histamine in response to subsequent exposure to the calcium ionophore A23187, compound 48/80, or the combination of Ag and IgE. This functional change was associated with an increase in cell size, and cell lysis that gradually occurred during 24 h in culture. PP at a dose of 3 ng/ml plus UVA also significantly inhibited secretogogue-induced histamine release from rat peritoneal mast cells, but this dose was not associated with significant changes in morphology or viability. These various effects of PP plus UVA were also observed with mast cell preparations obtained by the enzymatic dispersion of rat skin. The suppression of secretogogue-induced histamine release in rat peritoneal mast cells treated with PP (3 ng/ml) and UVA could not be reversed by culturing the cells in the dark for 24 h in the absence of PP. Unlike the direct cytotoxic histamine releasing action of high doses of PP plus UVA, the suppressive effect of low PP doses could not be inhibited by catalase, but could be reduced by the absence of calcium. Our results indicate that PP plus UVA has dual effects on mast cells, apparently involving distinct mechanisms. This implies the possibility that PP and UVA at appropriate doses could be used in photochemotherapy of mast cell-mediated skin diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号