首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary Queen attendance behavior of workers from selected honey bee colonies with high and low worker retinue response to synthetic queen mandibular gland pheromone (QMP) was investigated. Antennating, licking, grooming, and feeding of the queen by workers from high and low responding colonies were examined. High and low QMP responding workers did not attend the queen differently. However, workers originating from different colonies antennated and licked the queen more frequently than others, suggesting there may be a genetic basis for queen attendance behavior not necessarily associated with response to QMP. The median age of queen attendance was independent of strain.  相似文献   

2.
Genetic and environmental influences on the worker honey bee retinue response to queen mandibular gland pheromone (QMP) were investigated. Worker progeny were reared from queens originating from four sources: Australia, New Zealand, and two locations in British Columbia, Canada (Simon Fraser University and Vancouver Island). Progeny from New Zealand queens responded significantly higher (P < 0.05) than progeny from Australia in a QMP retinue bioassay. Retinue response was not related to queen production of pheromone or colony environment, and the strain-dependent differences in retinue bioassay responses were maintained over a wide range of dosages. Selected high- and low-responding colonies were bioassayed over the course of 1 year. High-responding colonies contacted QMP lures more frequently than low-responding colonies (P < 0.05) throughout the year except in late summer. We conclude that there is a strong genetic component to QMP response by worker honey bees, as well as a seasonal effect on response.  相似文献   

3.
Anarchistic queen honey bees have normal queen mandibular pheromones   总被引:3,自引:0,他引:3  
Summary. Anarchistic honey bees are a line developed by recurrent selection in which workers frequently lay eggs. In unselected colonies, workers refrain from reproduction in response to pheromonal signals that indicate the presence of brood and a queen. We show that queen type (anarchistic or wild type) has no effect on rates of ovary activation of anarchistic or wild type workers. In addition, we show that an important component of the queens signalling system, the queen mandibular gland pheromone, is similar in wild type and anarchistic queens. Anarchistic larvae do not inhibit worker ovary development to the same degree as wild type larvae, however all colonies in this experiment contained only wild type larvae. Anarchistic workers had greater rates of ovary activation than wild type workers in colonies headed by either queen type. We therefore conclude that there must be differences in the transmission or reception of queen pheromones, or worker sensitivity to these compounds. These results clearly demonstrate that anarchy is a complex syndrome, not simply the result of reduced pheromone production by anarchist queens and larvae.Received 23 December 2003; revised 14 May 2004; accepted 1 June 2004.  相似文献   

4.
The mode of intranest transfer of the honey bee queen mandibular gland pheromone complex (QMP) was investigated in unpopulous and populous, slightly congested colonies, using synthetic QMP containing tritiated 9-keto-2(E)-decenoic acid, one of the QMP components. Radiolabel was rapidly transported from the center to the peripheral regions of the nest, and in a manner consistent with worker to worker transport. Population size and congestion had no effect on the relative rates of movement from the center to the periphery of the nest or on the mean amounts of radiolabel on individual bees. However, a significantly smaller proportion of the workers in the populous colonies received detectable amounts of radiolabel than in the uncongested colonies, and workers carrying especially large amounts of radiolabel were less numerous in the crowded colonies. It is suggested that, at the stage of colony development that the colonies were in, population size has more of an effect on intranest pheromone transmission than does crowding. Interference with pheromone transfer may occur only at higher levels of congestion than were created, and nearer to the reproductive phase of colony development. An alternative hypothesis is that colony crowding does not significantly affect QMP transport and that the onset of reproductive queen rearing may be associated more with changes in worker thresholds of response to QMP.  相似文献   

5.
Summary The role of the queen in relation to wax secretion and comb building in honeybees was analyzed with respect to queen status (mated, virgin and dead queens and queenlessness), and pheromones of the head and abdominal tergite of queens. Worker variables considered were colony size, percentage of bees bearing wax scales, wax scale weight, and weight of constructed combs.The amount of wax recovered from festoon bees and the percentage of festoon bees bearing wax were independent of queen status, the pheromones of queens and access to the queen. Colonies with full access to freely moving mated queens always constructed significantly more comb than those headed by virgin or dead queens as well as all permutations of caged and division board queens whose mandibular glands and/or abdominal tergite glands were operative or not.Despite pheromonal similarity of virgin queens to mated ones, colonies headed by virgin queens constructed as little comb as did queenless colonies. The bouquets of the mandibular glands did not differ significantly among queens nor was the amount of comb constructed correlated with pheromonal bouquet. Comb building is greatest among colonies having full access to freely moving queens but the stimulus for such building is not attributable to the 90DA, 9HDA and 10HDA components of the queen's mandibular gland secretions.  相似文献   

6.
The presence of the honey bee queen reduces worker ovary activation. When the queen is healthy and fecund, this is interpreted as an adaptive response as workers can gain fitness from helping the queen raise additional offspring, their sisters. However, when the queen is absent, workers activate their ovaries and lay unfertilized eggs that become males. Queen pheromones are recognised as a factor affecting worker ovary activation. Recent work has shown that queen mandibular pheromone composition changes with queen mating condition and workers show different behavioural responses to pheromone extracts from these queens. Here, we tested whether workers reared in colonies with queens of different mating condition varied in level of ovary activation. We also examined the changes in the chemical composition of the queen mandibular glands to determine if the pheromone blend varied among the queens. We found that the workers activated their ovaries when queens were unmated and had lower ovary activation when raised with mated queens, suggesting that workers detect and respond adaptively to queens of differing mating status. Moreover, variation in queen mandibular gland’s chemical composition correlated with the levels of worker ovary activation. Although correlative, this evidence suggests that queen pheromone may act as a signal of queen mating condition for workers, in response to which they alter their level of ovary activation.  相似文献   

7.
The roles of honey bee queen mandibular pheromone and colony congestion in the inhibition of swarming were investigated. Two colony siz.es were used: small, congested colonies and large, uncongested colonies. Both groups of colonies were treated with various dosages of the five-component, synthetic queen mandibular pheromone in the spring, and the extent and timing of swarming were followed. Most treatment groups received pheromone or a solvent blank (control) on a stationary slide; one group of the congested colonies received a pheromone treatment via an aerosol spray. The pheromone was not effective at delaying swarming in the congested colonies at any dosage applied on slides, but the aerosol spray-treated colonies swarmed significantly later in the season than the control colonies. The uncongested, pheromone-treated colonies exhibited a dose-dependent delay in swarming, with the highest dosage colonies swarming almost four weeks later than the control colonies. These results indicate an interaction between congestion and pheromone in the control of honey bee reproduction. While congestion may in itself be a factor stimulating swarming, these results are consistent with the interpretation that colony congestion reduces the transmission of queen pheromone within the nest, thereby removing the queen 's pheromone-based inhibition of queen rearing and subsequent swarming by workers.  相似文献   

8.
The behaviour of queen honeybees and their attendants   总被引:1,自引:0,他引:1  
Abstract. The behaviour of queen and worker honeybees (Apis mellifera L.) was observed using small colonies in observation hives. Workers paid more attention to queens which had been mated for 2 months or more than to those which were newly mated; virgin queens received least attention. Queens received most attention when they were stationary and least when they were walking over the comb; virgin queens were most active. Queen cells had as many attendants as virgin queens and queen larvae were inspected almost continuously. The queen pheromone component 9–oxo-trans-2–decenoic acid stimulated 'court' behaviour when presented on small polyethylene blocks, but workers responded aggressively to complete extracts of queens' heads. Both the heads and abdomens of mated queens received much attention from court workers but the abdomens were palpated by more workers for longer and were licked much more. The queens' thoraces were least attended. Abdominal tergites posterior to tergite glands were licked for longer than those anterior to the glands. Only worker bees very near to the queen reacted to her and joined her 'court'.
No evidence was found of a diel periodicity in the behaviour of a queen or her 'court'. During the winter the queen's court was smaller than in summer and she walked less and laid fewer eggs. When colonies were fed with sucrose syrup in winter, their queens laid more eggs and workers reared more brood but there was no change in the attention received by the queens.
The implications of these findings for the secretion and distribution of queen pheromones are discussed.  相似文献   

9.
Effects of insemination quantity on honey bee queen physiology   总被引:1,自引:0,他引:1  
Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.  相似文献   

10.
Responses to social cues, such as pheromones, can be modified by genotype, physiology, or environmental context. Honey bee queens produce a pheromone (queen mandibular pheromone; QMP) which regulates aspects of worker bee behavior and physiology. Forager bees are less responsive to QMP than young bees engaged in brood care, suggesting that physiological changes associated with behavioral maturation modulate response to this pheromone. Since 3′,5′-cyclic guanosine monophosphate (cGMP) is a major regulator of behavioral maturation in workers, we examined its role in modulating worker responses to QMP. Treatment with a cGMP analog resulted in significant reductions in both behavioral and physiological responses to QMP in young caged workers. Treatment significantly reduced attraction to QMP and inhibited the QMP-mediated increase in vitellogenin RNA levels in the fat bodies of worker bees. Genome-wide analysis of brain gene expression patterns demonstrated that cGMP has a larger effect on expression levels than QMP, and that QMP has specific effects in the presence of cGMP, suggesting that some responses to QMP may be dependent on an individual bees’ physiological state. Our data suggest that cGMP-mediated processes play a role in modulating responses to QMP in honey bees at the behavioral, physiological, and molecular levels.  相似文献   

11.
Queen honeybees of Apis mellifera ligustica and Apis mellifera syriaca were raised to investigate physiological and reproductive characteristics and to determine the most suitable time for queen rearing under semi‐arid conditions in Jordan. The queen rearing season as well as the origin of the queens affected the queens’ weight, acceptance, preoviposition period, volume of the spermatheca, and quantity and quality of sperm in the spermatheca. Italian bees were heavier than Syrian bees at emergence. The introduced queen acceptance rate appeared to be a genetic influence of the queen: A. m. ligustica virgin queens were accepted at a higher rate than were A. m. syriaca queens. There were large seasonal variations in the acceptance rate. Experimental bee colonies accepted their virgin queens during spring with good honey flows at a higher rate compared to the other rearing periods. The greatest mating success was achieved in May and the smallest was during July and August. The preoviposition period was shorter in the Syrian than in the Italian queens, and was longer during summer for both honeybee subspecies. The volume of the spermatheca was smaller in Syrian bees and the spermatheca had lower numbers of spermatozoa compared with Italian bees. Thus, under semi‐arid Mediterranean region conditions, it is highly recommended to raise virgin queens in the spring months only to obtain their highest quality.  相似文献   

12.
ABSTRACT. Providing queenless colonies with five queen cells containing larvae or pupae diminished the number of queen cells and queen cell cups subsequently produced, but not as effectively as the provision of a mated laying queen. Immature queens were more effective than the mature queens in stimulating pollen collection, but were less effective in stimulating nectar collection.  相似文献   

13.
During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de‐queened colonies and determined the maternity of larvae and pupae that were reared as queens. This allowed us to determine how soon after queen loss workers contribute to the production of new queens. We were further interested to see if workers would preferentially raise new queens from queen‐laid brood if this was introduced later. We performed our manipulations in two different settings: an apiary setting where colonies were situated close together and a more natural situation in which the colonies were well separated. This allowed us to determine how the vicinity of other colonies affects the presence of parasites. We found that workers do indeed contribute to queen cell production immediately after the loss of their queen, thus demonstrating that some workers either have activated ovaries even when their colony has a queen or are able to activate their ovaries extremely rapidly. Queen‐laid brood introduced days after queen loss was ignored, showing that workers do not prefer to raise new queens from queen brood when given a choice. We also detected non‐natal parasitism of queen cells in both settings. We therefore conclude that some A. m. capensis genotypes specialize in parasitizing queen cells.  相似文献   

14.
Summary In the polyandrous honey bee, Apis mellifera, workers can potentially increase their inclusive fitness by rearing full-sister queens. If the mother queen dies suddenly, workers feed a few larvae in worker cells with royal jelly and rear them into queens (emergency queen rearing). Using DNA microsatellite markers we determined the patriline of emergency queens reared in two colonies headed by naturally-mated queens before being made queenless. We found that some patrilines were reared more than others in one colony, but not in the other. These differences between colonies suggest that selective rearing is not always present and this might explain the mixed results of previous nepotism studies in the honey bee.Received 10 February 2003; revised 7 March 2003; accepted 17 March 2003.  相似文献   

15.
ABSTRACT. Virgin queens are as effective as mated laying queens at inhibiting colonies from rearing queens but not from producing queen cell cups. Colonies without brood produce fewer queen cell cups than similar colonies that have brood. Colonies without queens forage much less and collect less pollen than with either a mated or virgin queen. Colonies with virgin queens forage as much as those with mated queens but collected less pollen.  相似文献   

16.
The poison sac of the fire ant Solenopsis invicta is the only identified glandular source of pheromones produced by a functional ant queen. This structure, which contains the poison gland, has previously been shown to be the source of a releaser pheromone that mediates queen recognition and tending by workers. The poison sac has also been demonstrated to be the source of a primer pheromone that inhibits winged, virgin queens from shedding their wings (dealating) and developing their ovaries. To determine if the poison sac was the only source of these pheromones, we excised the poison sac from queens and observed whether operated queens retained their pheromonal effects. In a first experiment, the poison sac was removed from functional (egg-laying) queens which were then paired with unoperated nestmate queens in small colonies. Counts of the workers surrounding each queen two weeks after the operation showed that queens without poison sac were as effective as their unoperated nestmates in attracting worker retinues. In a second experiment, we removed the poison sacs of virgin queens which had not yet begun laying eggs and thus had not begun producing queen pheromone. After allowing them to develop their ovaries, these individuals produced amounts of queen recognition pheromone comparable to those secreted by unoperated or sham operated virgin queens as determined by bioassay. Testing the head, thorax and abdomens of functional queens separately revealed that the head was the most attractive region in relation to its relative surface area. Bioassays of extracts of two cephalic glands-the mandibular gland and postpharyngeal gland-showed that the postpharyngeal gland is a second source of the queen recognition pheromone. Finally, we found that virgin queens whose poison sacs were removed before they began producing queen pheromone initiated production of a primer pheromone that inhibits winged virgin queens from dealating, indicating that this pheromonal effect also has an additional but as yet undetermined source. These results parallel those on the honey bee in which several of the pheromonal effects of functional queens appear to have multiple glandular sources.  相似文献   

17.
蜜蜂蜂王信息素研究进展   总被引:8,自引:2,他引:6  
胡福良  玄红专 《昆虫知识》2004,41(3):208-211
综述了蜂王信息素的化学组成、特性、作用 ,以及与幼虫信息相互关系的研究进展 ,对蜂王信息素在养蜂和植物授粉中的应用做了介绍。西方蜜蜂的蜂王上颚腺信息素 (queen’smandibularglandpheromone,QMP)。QMP包含了 5种成分 :(E) -9-氧 -2 -癸烯酸 ( 9 ODA)、(R ,E) ( ) 和 (S,E) ( +) 9 羟基 -2 -癸烯酸 ( -9 HDA和 +9 HDA)、甲基p -羟基安息香酸盐 (HOB)、4-羟基 -3 -甲氧苯乙醇 (也称香草醇 ,HVA) ,9 ODA是其中最重要的成分 ;QMP的组分与蜜蜂的进化程度有关 ,进化程度越高则组分越复杂 ;QMP通过抑制保幼激素的产生来调节青年工蜂的个体发育。  相似文献   

18.
ABSTRACT. Immediately after visiting cells containing immature queens, workers of Apis mellifera L. were observed to engage in prolonged cleaning, particularly of their tongues when they had visited larvae, and of their antennae when they had visited pupae. Thereafter other workers usually initiated and made antennal contacts with them. During such antennal contact the bee that had visited the queen larva often donated food. The implication of these findings on the distribution of pheromone produced by immature queens is discussed. Workers were stimulated to make antennal contact with the excised heads of bees from a queen's court, providing further evidence that queen pheromone is transferred between workers' antennae.  相似文献   

19.
Cooperative brood care is highly developed in the honey bee such that workers called nurses use their hypopharyngeal and mandibular glands to biosynthesize proteinaceous secretions that are progressively provisioned to larvae. The role that honey bee primer pheromones play in the functional physiology of food producing glands was examined. The combined and separate effects of queen mandibular pheromone (QMP) and brood pheromone (BP) on amount of protein extractable from hypopharyngeal and mandibular glands of workers reared for 12 days with and without pollen diets was measured. In rearing environments with a pollen diet, BP, and QMP + BP pheromone treatments significantly increased extractable protein from both glands. Bees reared with QMP + pollen had amounts of protein extractable from both glands that were not significantly different from control bees (no pheromones, no pollen). Pollen in the diet alone significantly increased amounts of protein extractable from glands versus control. In rearing environments without pollen, QMP + BP had a synergizing effect on amount of protein in both glands. The QMP + BP treatment was the only rearing environment without a pollen diet where protein amounts were significantly greater than the control. The synergizing effect of QMP + BP on extractable mandibular and hypopharyngeal gland protein suggests a highly derived role for the combined effect of these two primer pheromones on honey bee cooperative brood care. Mandibular gland area was significantly and positively correlated with extractable protein. Amounts of extractable protein from both glands declined significantly with age of workers in all treatments. However, treatment significantly affected rate of decline. The adaptive significance of gland protein amounts in response to pheromones and pollen diet are discussed.  相似文献   

20.
Queen substances from the abdomen of the honey bee queen   总被引:1,自引:0,他引:1  
Summary The secretion of the mandibular glands of a honey bee queen enables the worker bees to react to the presence of their queen. Extirpating the mandibular glands of the queen does not prevent that she is accepted by her colony. Hitherto this was attributed to contamination of the queen's body by mandibular gland substances during or preceding the extirpation. When, however, these glands are extirpated before they have secreted any material and the queens are inseminated artificially, the colonies still accept these queens. A normal-sized retinue, the absence of emergency cell building and the absence of activation of the worker's ovaries indicate that such a queen is still able to maintain her social position. This supports Verheijen-Voogd's (1959) conclusion that the queen's influence on her workers has a behavioural basis (chemoreception) rather than a biochemical one.Laboratory experiments reveal that apart from the mandibular gland substances other queen pheromones are produced in glands on the abdomen, most probably in the glands described by Renner and Baumann (1964).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号