首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic map of five polymorphic markers in the area of the facioscapulohumeral muscular dystrophy (FSHD) gene on chromosome 4q35-qter has been constructed. With these five markers, a number of recombinants have been identified that allow ordering of the marker and the disease loci. The most likely locus order and the relative position of the FSHD gene supported by the recombinants is centromere-D4S171-F11-D4S187-D4S163-D4S139-FS HD-telomere. However, at least one recombination event appears to be inconsistent with this order and suggests a location of FSHD proximal to D4S139.  相似文献   

2.
3.
The human muscle adenine nucleotide translocator gene (ANT1) was previously assigned to chromosome 4. The gene has now been further localized to the long arm of chromosome 4 at 4q35 by fluorescence in situ hybridization. This result confirms the previous assignment and precisely maps the gene to a specific chromosome band.  相似文献   

4.
Fasioscapulohumeral muscular dystrophy (FSHD) has recently been localized to 4q35. We have studied four families with FSHD. Linkage to the 4q35 probes D4S163, D4S139, and D4S171 was confirmed. We found no recombinants helpful in detailed localization of the FSHD gene. Two of our families include males with a rapidly progressive muscle disease that had been diagnosed, on the basis of clinical features, as Duchenne muscular dystrophy. One of these males is available for linkage study and shares the haplotype of his FSHD-affected aunt and cousin.  相似文献   

5.
We have used a combination of classical RFLPs and PCR-based polymorphisms including CA repeats and single-strand conformation polymorphisms to generate a fine-structure genetic map of the distal long arm of chromosome 4q. This map is now genetically linked to the pre-existing anchor map of 4pter-4q31 and generates, for the first time, a complete linkage map of this chromosome. The map consists of 32 anchor loci placed with odds of greater than 1,000:1. The high-resolution map in the cytogenetic region surrounding 4q35 provides the order 4cen-D4S171-F11-D4S187-D4S163-D4S139-4q ter. When we used somatic cell hybrids from a t(X;4)(p21;q35) translocation, these five markers fell into three groups consistent with the genetic map-D4S171 and F11 in 4pter-4q35, D4S163 and D4S139 in 4q35-4qter, and D4S187 as a junction fragment between these two regions. These markers are in tight linkage to the gene for facioscapulo-humeral muscular dystrophy (FSHD) mapped to this region by several collaborating investigators and provide a framework for further detailed analysis of this region.  相似文献   

6.
7.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction theta of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

8.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromosome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction θ of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

9.
Facioscapulohumeral muscular dystrophy (FSHD) has been localized to the 4q35-qter region of chromosome 4. Linkage analyses of two polymorphic markers from the region, D4S139 and D4S163, have been carried out using four large multigenerational FSHD families. The results indicate that both markers are closely linked to FSHD, with D4S139 being the closest proximal marker to FSHD.  相似文献   

10.
The genetic locus for facioscapulohumeral muscular dystrophy (FSHD) has been mapped to chromosome 4. We have examined linkage to five chromosome 4q DNA markers in 22 multigenerational FSHD families. Multipoint linkage analyses of the segregation of four markers in the FSHD families and in 40 multigenerational mapping families from the Centre d'Etude du Polymorphisme Humaine enabled these loci and FSHD to be placed in the following order: cen-D4S171-factor XI-D4S163-D4S139-FSHD-qter. One interval, D4S171-FSHD, showed significant sex-specific differences in recombination. Homogeneity tests supported linkage of FSHD to these 4q DNA markers in all of the families we studied. The position of FSHD is consistent with that generated by other groups as members of an international FSHD consortium.  相似文献   

11.
12.
Four DNA markers on the distal long arm of chromosome 4 have been analyzed for their linkage to facioscapulohumeral muscular dystrophy locus (FSHD) in a series of 16 Italian families. We found that, in two families, the disease is not linked to the 4q35 markers, indicating the presence of genetic heterogeneity among Italian FSHD families. Linkage analysis in the remaining families supports the order cen-D4S171-D4S163-D4S139-D4S810-FSHD-qter, in agreement with the physical map from the literature. EcoRI digestion and hybridization with the distal marker p13E-11 (D4S810) detected DNA rearrangements in the affected members of both sporadic and familial cases of FSHD, with family-specific fragments ranging in size between 15 kb and 28 kb. In three sporadic FSHD cases, the appearance of a new small fragment not present in either parent was clearly associated with the development of FSHD disease. However, in the familial cases analyzed, we observed two recombinations between all four 4q35 markers and the disease locus in apparently normal subjects, leaving open the possibility of nonpenetrance of the FSHD mutation.
  相似文献   

13.
14.
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominantly inherited neuromuscular disorder affecting facial and shoulder girdle muscles with subsequent progression to the pelvic girdle and lower extremities. The major gene involved has been localized to chromosome 4q35 (FSHD1A). The 4q35 DNA marker p13E-11 (D4F104S1) detects a de novo EcoRI DNA rearrangement of < 30 kb in isolated and familial cases. The intrafamilial size of the fragment is constant, inversely correlated with the severity, and directly correlated with the age of onset of the condition. There has been evidence of parental mosaicism in FSHD1A for the D4F104S1 locus. Four female and three male clinically unaffected parents have been described to be carriers of EcoRI fragments of the same size as their affected offspring, but with a markedly less intensive hybridization signal (semi-quantitative evidence). In our total sample of 42 FSHD1A families, we found semi-quantitative evidence of parental D4F104S1 mosaicism in 11 families (EcoRI fragment size range: 12–27 kb). On analysis with adjacent 4q35 probes (D4S163, D4S139), additional qualitative evidence of germline mosaicism could be obtained in two families. In our mosaic families and in the families reported in the literature, a female predominance of mosaicism carriers (13 females versus 5 males) could be noted. In our sample, mosaicism was observed in multigeneration families, in families with isolated cases, and in families with two and three affected children from seemingly unaffected parents. A short EcoRI fragment once having emerged in a mosaicism carrier was found to be transmitted autosomal dominantly to subsequent generations. Of all reported sporadic patients, 19% have a mosaic parent. Finding evidence of parental mosaicism in all our families with more than one affected child of seemingly unaffected parents suggests that there is no autosomal recessively inherited form of FSHD1A. Received: 5 March 1996 / Revised: 14 May 1996  相似文献   

15.
16.
This paper investigates the nuclear localization of human telomeres and, specifically, the 4q35 subtelomere mutated in facioscapulohumeral dystrophy (FSHD). FSHD is a common muscular dystrophy that has been linked to contraction of D4Z4 tandem repeats, widely postulated to affect distant gene expression. Most human telomeres, such as 17q and 17p, avoid the nuclear periphery to reside within the internal, euchromatic compartment. In contrast, 4q35 localizes at the peripheral heterochromatin with 4p more internal, generating a reproducible chromosome orientation that we relate to gene expression profiles. Studies of hybrid and translocation cell lines indicate this localization is inherent to the distal tip of 4q. Investigation of heterozygous FSHD myoblasts demonstrated no significant displacement of the mutant allele from the nuclear periphery. However, consistent association of the pathogenic D4Z4 locus with the heterochromatic compartment supports a potential role in regulating the heterochromatic state and makes a telomere positioning effect more likely. Furthermore, D4Z4 repeats on other chromosomes also frequently organize with the heterochromatic compartment at the nuclear or nucleolar periphery, demonstrating a commonality among chromosomes harboring this subtelomere repeat family.  相似文献   

17.
18.
19.
In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD.  相似文献   

20.
Members of an international consortium for linkage analysis of the facioscapulohumeral muscular dystrophy (FSHD) gene have pooled data for joint analyses, in an attempt to determine the precise location of the FSHD gene and the order of four DNA markers on 4q35 region. Six laboratories determined a total of 3,078 genotypes in 65 families, consisting of a total of 504 affected subjects and 559 unaffected subjects. For each marker, a mean of 648 meioses were informative. D4S139 and D4S163 were identified as the closest linked markers to the FSHD locus, with 99% upper confidence intervals of recombination fractions of .08 and .10, respectively. We have used the CRI-MAP program to construct the most likely order of cen-D4S171-F11-D4S163-D4S139-FSHD-tel, with favorable odds of 10(8)-10(114) over all other orders except that in which F11 and D4S171 are reversed, for which the odds ratio was 191:1. With this order, the genetic map of this region extends 25.5 cM in males and 13.8 cM in females (averaging 19.5 cM for sexes combined); the sex difference was statistically significant (P = .0013). Comparison between families for the two-point and multipoint lod scores involving FSHD showed no evidence for heterogeneity of this disorder. However, after the completion of this analysis, one large family which might show heterogeneity was identified. In view of this and the fact that all of the linked markers reside on the same side of the FSHD locus, the clinical application of these markers is not recommended at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号