首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
Cancer stem cells (CSC) were postulated to exist many years ago as cells within a tumor that regenerate the tumor following treatment. A stochastic clonal evolution model was used to explain observed tumor heterogeneity. Recently, xenotransplantation studies have demonstrated that prospectively identifiable subpopulations from human cancers can initiate tumors in immune deficient mice, and these results along with recent advances in stem cell biology have generated much excitement in the cancer field. The modern CSC theory posits a hierarchy of cells analogous to normal stem cell development. Some controversy remains, however, as to whether these tumor initiating cells truly represent CSC, and whether the modern CSC field can live up to the promise of providing improved cancer treatments based on a novel model of cancer biology. Recent data from CSC investigators are discussed critically. J. Cell. Biochem. 106: 745–749, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The origins of the complex process of intratumoral heterogeneity have been highly debated and different cellular mechanisms have been hypothesized to account for the diversity within a tumor. The clonal evolution and cancer stem cell(CSC) models have been proposed as drivers of this heterogeneity. However, the concept of cancer stem cell plasticity and bidirectional conversion between stem and non-stem cells has added additional complexity to these highly studied paradigms and may help explain the tumor heterogeneity observed in solid tumors. The process of cancer stem cell plasticity in which cancer cel s harbor the dynamic ability of shifting from a non-CSC state to a CSC state and vice versa may be modulated by specific microenvironmental signals and cellular interactions arising in the tumor niche. In addition to promoting CSC plasticity, these interactions may contribute to the cellular transformation of tumor cells and affect response to chemotherapeutic and radiation treatments by providing CSCs protection from these agents. Herein, we review the literature in support of this dynamic CSC state, discuss the effectors of plasticity, and examine their role in the development and treatment of cancer.  相似文献   

4.
There is a growing acceptance that tumor-infiltrating myeloid cells play an active role in tumor growth and mast cells are one of the earliest cell types to infiltrate developing tumors. Mast cells accumulate at the boundary between healthy tissues and malignancies and are often found in close association with blood vessels within the tumor microenvironment. They express many pro-angiogenic compounds, and may play an early role in angiogenesis within developing tumors. Mast cells also remodel extracellular matrix during wound healing, and this function is subverted in tumor growth, promoting tumor spread and metastasis. In addition, mast cells modulate immune responses by dampening immune rejection or directing immune cell recruitment, depending on local stimuli. In this review, we focus on key roles for mast cells in angiogenesis, tissue remodelling and immune modulation and highlight recent findings on the integral role that mast cells play in tumor growth. New findings suggest that mast cells may serve as a novel therapeutic target for cancer treatment and that inhibiting mast cell function may lead to tumor regression.  相似文献   

5.
It is hypothesized that cancer stem cells arise either from normal stem cells or from progenitor cells that have gained the ability to self-renew. Here we determine whether mammary cancer stem cells can be isolated by using antibodies that have been used for the isolation of normal mammary stem cells. We show that BRCA1 mutant cancer cell lines contained a subpopulation of CD24+CD29+ or CD24+CD49f+ cells that exhibited increased proliferation and colony forming ability in vitro, and enhanced tumor-forming ability in vivo. The purified CD24+CD29+ cells could differentiate and reconstitute the heterogeneity found in parental cells when plated as a monolayer. Under low-attachment conditions, we detected “tumorspheres” only in the presence of double positive cells, which maintained their ability to self-renew. Furthermore, CD24+CD29+ cells could form tubular structures reminiscent of the mammary ductal tree when grown in three-dimensional cultures, implying that these cancer cells maintain some of the characteristics of the normal stem cells. Nevertheless, they could still drive tumor formation since as low as 500 double positive cells immediately after sorting from BRCA1 mutant primary tumors were able to form tumors with the same heterogeneity found in the original tumors. These data provide evidence that breast cancer stem cells originate from normal stem cells and advance our understanding of BRCA1-associated tumorigenesis with possible implications for future cancer treatment.  相似文献   

6.
Increasing evidence of intratumor heterogeneity and its augmentation due to selective pressure of microenvironment and recent achievements in cancer therapeutics lead to the need to investigate and track the tumor subclonal structure. Cell sorting of heterogeneous subpopulations of tumor and tumor-associated cells has been a long established strategy in cancer research. Advancement in lasers, computer technology and optics has led to a new generation of flow cytometers and cell sorters capable of high-speed processing of single cell suspensions. Over the last several years cell sorting was used in combination with molecular biological methods, imaging and proteomics to characterize primary and metastatic cancer cell populations, minimal residual disease and single tumor cells. It was the principal method for identification and characterization of cancer stem cells. Analysis of single cancer cells may improve early detection of tumors, monitoring of circulating tumor cells, evaluation of intratumor heterogeneity and chemotherapeutic treatments. The aim of this review is to provide an overview of major cell sorting applications and approaches with new prospective developments such as microfluidics and microchip technologies.  相似文献   

7.
The cancer stem cell (CSC) hypothesis has provided insights into the initiation and recurrence of brain tumor. Specific identification and targeted elimination of these CSCs within the tumor mass represents a promising therapeutic strategy for refractory brain tumors. In this study, we attempted to identify CSCs in the rat C6 glioma cell line by three different identification methods. It is interesting to note that single-cell clonal analysis showed most C6 cells are cancer stem-like cells with characteristics of self-renewal, multilineage differentiation potentials in vitro, and tumorigenic capacity in vivo. It is surprising to note that CD133 failed to identify the total cancer stem-like cell population in the C6 line, since both CD133 (+) and CD133 (-) C6 cells have cancer stem-like cell fractions. Moreover, Hoechst 33342 staining, which is used in flow cytometry to isolate the side population (SP), was found to be harmful to C6 cells. Therefore, CD133 (-) and non-SP C6 cells may also harbor cancer stem-like cells. These results imply the limitation of using current identification methods in C6 line and underscore the importance of defining the genetic and molecular basis of CSCs.  相似文献   

8.
Dendritic cells (DCs) are the most efficient antigen-presenting cells and play a key role in a cellular antitumor immune response. In this study we investigated the exact localization of DCs within colorectal tumors and their relationship to tumor-infiltrating lymphocytes as well as clinical outcome of the patients. Primary tumor specimens of 104 patients with a diagnosis of colorectal cancer were identified retrospectively and analyzed with the dendritic cell markers S-100 protein and human leukocyte antigens (HLA) class II. The markers were individually combined with laminin as a second marker to facilitate the observation of the different tumor localizations. S-100 or HLA class II positive cells were found in the three different compartments of colorectal tumors: tumor epithelium, tumor stroma, and advancing tumor margin, but mainly present in tumor stroma and advancing tumor margin. S-100-positive tumor-infiltrating DCs in direct contact with tumor cells, i.e., in tumor epithelium, significantly correlated to the intraepithelial infiltration of CD4+ (p=0.02) and CD8+ (p=0.01) lymphocytes. High HLA class II+ cell infiltration in the tumor stroma correlated to a lower intraepithelial infiltration of CD8+ (p=0.02) lymphocytes. High intraepithelial infiltration of S-100-positive DCs suggested increased disease-free survival, but was not statistically significant, while high amounts of HLA class II+ cells in the tumor stroma correlated with an adverse survival outcome. Our results show that the infiltration of DCs in colorectal cancer, depending on both location and type of marker, is correlated with local immune interactions and patient prognosis, suggesting a central role for DCs in controlling local tumor immunity.  相似文献   

9.
Genetically and phenotypically identical immune cell populations can be highly heterogenous in terms of their immune functions and protein secretion profiles. The microfluidic chip-based single-cell highly multiplexed secretome proteomics enables characterization of cellular heterogeneity of immune responses at different cellular and molecular layers. Increasing evidence has demonstrated that polyfunctional T cells that simultaneously produce 2+ proteins per cell at the single-cell level are key effector cells that contribute to the development of potent and durable cellular immunity against pathogens and cancers. The functional proteomic technology offers a wide spectrum of cellular function assessment and can uniquely define highly polyfunctional cell subsets with cytokine signatures from live individual cells. This high-dimensional single-cell analysis provides deep dissection into functional heterogeneity and helps identify predictive biomarkers and potential correlates that are crucial for immunotherapeutic product design optimization and personalized immunotherapy development to achieve better clinical outcomes.  相似文献   

10.
11.
12.
The phenotypic diversity of breast carcinoma may be explained by the existence of a sub-population of breast cancer cells, endowed with stem cell-like properties and gene expression profiles, able to differentiate along different pathways. A stem cell-like population of CD44+CD24−/low breast cancer cells was originally identified using cells from metastatic pleural effusions of breast carcinoma patients. We have previously reported that upon in vitro culture as mammospheres under stem cell-like conditions, human MA-11 breast carcinoma cells acquired increased tumorigenicity and lost CD24 expression compared with the parental cell line. We now report that upon passage of MA-11 mammospheres into serum-supplemented cultures, CD24 expression was restored; the rapid increase in CD24 expression was consistent with up-regulation of the antigen, and not with in vitro selection of CD24+ cells. In tumors derived from subcutaneous injection of MA-11 mammospheres in athymic nude mice, 76.1 ± 9.7% of cells expressed CD24, vs. 0.5 ± 1% in MA-11 cells dissociated from mammospheres before injection. The tumorigenicity of sorted CD44+CD24 and CD44+CD24high MA-11 cells was equal. Single cell-sorted CD24 and CD24high MA-11 gave rise in vitro to cell populations with heterogeneous CD24 expression. Also, subcutaneous tumors derived from sorted CD24 sub-populations and single-cell clones had levels of CD24 expression similar to the unsorted cells. To investigate whether the high expression of CD24 contributed to the tumorigenic potential of MA-11 cells, we silenced CD24 by shRNA. CD24 silencing (95%) resulted in no difference in tumorigenicity upon s.c. injection in athymic nude mice compared with mock-transduced MA-11 cells. Since CD24 silencing was maintained in vivo, our data suggest that the level of expression of CD24 is associated with but does not contribute to tumorigenicity. We then compared the molecular profile of the mammospheres with the adherent cell fraction. Gene expression profiling revealed that the increased tumorigenicity of MA-11 mammospheres was associated with changes in 10 signal transduction pathways, including MAP kinase, Notch and Wnt, and increased expression of aldehyde dehydrogenase, a cancer-initiating cell-associated marker. Our data demonstrate that (i) the level of CD24 expression is neither a stable feature of mammosphere-forming cells nor confers tumorigenic potential to MA-11 cells; (ii) cancer-initiating cell-enriched MA-11 mammospheres have activated specific signal transduction pathways, potential targets for anti-breast cancer therapy.  相似文献   

13.
Pancreatic cancer(PC) has been one of the deadliest of all cancers, with almost uniform lethality despite aggressive treatment. Recently, there have been important advances in the molecular, pathological and biological understandingof pancreatic cancer. Even after the emergence of recent new targeted agents and the use of multiple therapeutic combinations, no treatment option is viable in patients with advanced cancer. Developing novel strategies to target progression of PC is of intense interest. A small population of pancreatic cancer stem cells(CSCs) has been found to be resistant to chemotherapy and radiation therapy. CSCs are believed to be responsible for tumor initiation, progression and metastasis. The CSC research has recently achieved much progress in a variety of solid tumors, including pancreatic cancer to some extent. This leads to focus on understanding the role of pancreatic CSCs. The focus on CSCs may offer new targets for prevention and treatment of this deadly cancer. We review the most salient developments in important areas of pancreatic CSCs. Here, we provide a review of current updates and new insights on the role of CSCs in pancreatic tumor progression with special emphasis on Dcl K1 and Lgr5, signaling pathways altered by CSCs, and the role of CSCs in prevention and treatment of PC.  相似文献   

14.
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress. Under physiological and pathological conditions, the UPRmt is the key to maintaining intracellular homeostasis and proteostasis. Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development, metabolism, and immune processes. UPRmt dysfunction leads to a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease, and immune disease. Stem cells have a special ability to self-renew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues. These cells are involved in development, tissue renewal, and some disease processes. Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported, the roles of the UPRmt in stem cells are not fully understood. The roles and functions of the UPRmt depend on stem cell type. Therefore, this paper summarizes the potential significance of the UPRmt in embryonic stem cells, tissue stem cells, tumor stem cells, and induced pluripotent stem cells. The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.  相似文献   

15.
The identification, purification, and characterization of cancer stem cells holds tremendous promise for improving the treatment of cancer. Mounting evidence is demonstrating that only certain tumor cells (i.e. the cancer stem cells) can give rise to tumors when injected and that these purified cell populations generate heterogeneous tumors. While the cell of origin is still not determined definitively, specific molecular markers for populations containing these cancer stem cells have been found for leukemia, brain cancer, and breast cancer, among others. Systems approaches, particularly molecular profiling, have proven to be of great utility for cancer diagnosis and characterization. These approaches also hold significant promise for identifying distinctive properties of the cancer stem cells, and progress is already being made.  相似文献   

16.
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2’-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their “malignant memory”.  相似文献   

17.
Comparison of studies of cells derived from normal and pathological tissues of the same organ can be fraught with difficulties, particular with cancer where a number of different diseases are considered cancer within the same tissue. In the thyroid, there are 4 main types of cancer, three of which arise from follicular epithelial cells; papillary and follicular which are classified as differentiated, and anaplastic which is classified as undifferentiated.One assay that can be utilised for isolation of cancer stem cells is the side population (SP) assay. However, SP studies have been limited in part due to lack of optimal isolation strategies and in the case of anaplastic thyroid cancer (ATC) are further compounded by lack of access to ATC tumors. We have used thyroid cell lines to determine the optimal conditions to isolate viable SP cells. We then compared SP cells and NSP cells (bulk tumour cells without the SP) of a normal thyroid cell line N-thy ori-3-1 and an anaplastic thyroid cancer cell line SW1736 and showed that both SP cell populations displayed higher levels of stem cell characteristics than the NSP. When we compared SP cells of the N-thy ori-3-1 and the SW1736, the SW1736 SP had a higher colony forming potential, expressed higher levels of stem cell markers and CXCR4 and where more migratory and invasive, invasiveness increasing in response to CXCL12.This is the first report showing functional differences between ATC SP and normal thyroid SP and could lead to the identification of new therapeutic targets to treat ATC.  相似文献   

18.
19.
关于恶性肿瘤发生、复发与转移机制的研究由来已久,但目前的临床治疗方法依然不能克服肿瘤复发与转移的难题,肿瘤患者的生存率并未得到显著改善。近年来的研究提示肿瘤的起源、复发与转移的真正原因可能是存在于肿瘤内的极少数具有干细胞特性的细胞,即肿瘤干细胞(cancer stem cells,CSC)。与此同时,越来越多的研究表明,对于肿瘤干细胞的发生与功能维持,表观遗传学的调控机制可能发挥着极其重要的作用。该文简要综述目前肿瘤干细胞和表观遗传学相关领域的研究进展,并对肿瘤干细胞形成及发展过程中表观遗传学的调控作用及机制进行重点介绍。  相似文献   

20.
Cancer stem cells (CSC) represent malignant cell subsets in hierarchically organized tumors, which are selectively capable of tumor initiation and self‐renewal and give rise to bulk populations of non‐tumorigenic cancer cell progeny through differentiation. Robust evidence for the existence of prospectively identifiable CSC among cancer bulk populations has been generated using marker‐specific genetic lineage tracking of molecularly defined cancer subpopulations in competitive tumor development models. Moreover, novel mechanisms and relationships have been discovered that link CSC to cancer therapeutic resistance and clinical tumor progression. Importantly, proof‐of‐principle for the potential therapeutic utility of the CSC concept has recently been provided by demonstrating that selective killing of CSC through a prospective molecular marker can inhibit tumor growth. Herein, we review these novel and translationally relevant research developments and discuss potential strategies for CSC‐targeted therapy in the context of resistance mechanisms and molecular pathways preferentially operative in CSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号