首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog, Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater mean Tb and Tpref than those from forests. In contrast, CTmax and TSM did not differ significantly between habitats. However, CTmax did increase moderately with increasing Tb, suggesting that changes in CTmax may be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. Although O. pumilio exhibited moderate divergence in Tpref, CTmax appears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain their Tb below air temperatures that reach or exceed CTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming. Abstract in Spanish is available with online material.  相似文献   

2.
The ability for effective, accurate and precise thermoregulation is of paramount importance for ectotherms. Sympatric lizards often partition their niche and select different microhabitats. These microhabitats, however, usually differ in their thermal conditions and lizards have to adapt their thermoregulation behavior accordingly. Here, we evaluated the impact of habitat partitioning on the thermal biology of three syntopic, congeneric lacertids (Podarcis peloponnesiacus, P. tauricus and P. muralis) from central Peloponnese, Greece. We assessed thermoregulation effectiveness (E) using the three standard thermal parameters: body (Tb), operative (Te) and preferred (Tpref) temperatures. We hypothesized that the microhabitats used by each species would differ in thermal quality. We also predicted that all species would effectively thermoregulate, as they inhabit a thermally challenging mountain habitat. As expected, the partition of the habitat had an effect on the thermoregulation of lizards since microhabitats had different thermal qualities. All three species were effective and accurate thermoregulators but one of them achieved smaller E values as a result of the lower Tb in the field. This discrepancy could be attributed to the cooler (but more benign) thermal microhabitats that this species occupies.  相似文献   

3.
The trends of body temperatures in the field (Tb) and preferred body temperatures in the laboratory (Tpref) of the genus Liolaemus relative to reproductive mode, air temperature (Tair), precipitation, latitude, and elevation were studied using phylogenetic comparative analysis. Results were discussed in the framework of the evolution of thermal physiology and vulnerability to global climate change. Reproductive mode affects Tb but not Tpref. Whereas Tb and Tpref showed a significant association with Tair, there was no relationship with latitude or elevation.  相似文献   

4.
Understanding the factors that may affect behavioural thermoregulation of endangered reptiles is important for their conservation because thermoregulation determines body temperatures and in turn physiological functions of these ectotherms. Here we measured seasonal variation in operative environmental temperature (Te), body temperature (Tb), and microhabitat use of endangered crocodile lizards (Shinisaurus crocodilurus) from a captive population, within open and shaded enclosures, to understand how they respond to thermally challenging environments. Te was higher in open enclosures than in shaded enclosures. The Tb of lizards differed between the open and shaded enclosures in summer and autumn, but not in spring. In summer, crocodile lizards stayed in the water to avoid overheating, whereas in autumn, crocodile lizards perched on branches seeking optimal thermal environments. Crocodile lizards showed higher thermoregulatory effectiveness in open enclosures (with low thermal quality) than in shaded enclosures. Our study suggests that the crocodile lizard is capable of behavioural thermoregulation via microhabitat selection, although overall, it is not an effective thermoregulator. Therefore, maintaining diverse thermal environments in natural habitats for behavioural thermoregulation is an essential measure to conserve this endangered species both in the field and captivity.  相似文献   

5.
Thermal biology, and therefore energy acquisition and survival, of ectotherms can be affected by diel and seasonal patterns of environmental temperatures. Galápagos Lava Lizards live in seasonal environments that are characterized by a warm and wet period when reproductive activity is maximal, and cooler and drier period. With the use of radiotelemetric techniques to record lizard surface temperatures (Ts), we studied the thermal ecology of the San Cristóbal Lava Lizard (Microlophus bivittatus) during both the warm and cool seasons over two years. During the diel activity period and when operative temperatures exceeded Tset-min, at least on rock faces without canopy, 52% or less of the Ts observations fell within the laboratory-determined Tset range (36–40 °C). Therefore, lizards may have avoided very warm midday temperatures in shaded microhabitats and the lag times in changes in Ts values occurred as operative temperatures rose rapidly during late morning warming phase. Lizards effectively thermoregulated during a year with moderate warm season temperatures and during a cool season that was unseasonably warm. In contrast, lizards less effectively thermoregulated during the warmest and coolest years of the study. We did not detect intersexual differences in thermoregulation although males may thermoregulate less effectively than do females during the cool season although we were unable to detect significant differences using our nonparametric statistical techniques.  相似文献   

6.
Predicting the biodiversity impacts of global warming implies that we know where and with what magnitude these impacts will be encountered. Amphibians are currently the most threatened vertebrates, mainly due to habitat loss and to emerging infectious diseases. Global warming may further exacerbate their decline in the near future, although the impact might vary geographically. We predicted that subtropical amphibians should be relatively susceptible to warming‐induced extinctions because their upper critical thermal limits (CTmax) might be only slightly higher than maximum pond temperatures (Tmax). We tested this prediction by measuring CTmax and Tmax for 47 larval amphibian species from two thermally distinct subtropical communities (the warm community of the Gran Chaco and the cool community of Atlantic Forest, northern Argentina), as well as from one European temperate community. Upper thermal tolerances of tadpoles were positively correlated (controlling for phylogeny) with maximum pond temperatures, although the slope was steeper in subtropical than in temperate species. CTmax values were lowest in temperate species and highest in the subtropical warm community, which paradoxically, had very low warming tolerance (CTmaxTmax) and therefore may be prone to future local extinction from acute thermal stress if rising pond Tmax soon exceeds their CTmax. Canopy‐protected subtropical cool species have larger warming tolerance and thus should be less impacted by peak temperatures. Temperate species are relatively secure to warming impacts, except for late breeders with low thermal tolerance, which may be exposed to physiological thermal stress in the coming years.  相似文献   

7.
Populations at the warm range margins of the species distribution may be at the greatest risks of extinction from global warming unless they can tolerate extreme environmental conditions. Yet, some studies suggest that the thermal behavior of some lizard species is evolutionarily rigid. During two successive years, we compared the thermal biology of two populations of Liolaemus pictus living at the northern (warmer) and one population living at the southern (colder) range limits, thus spanning an 800 km latitudinal distance. Populations at the two range margins belong to two deeply divergent evolutionary clades. We quantified field body temperatures (Tb), laboratory preferred body temperatures (PBT), and used operative temperature data (Te) to calculate the effectiveness of thermoregulation (E). During one year in all populations, we further exposed half of the lizards to a cold or a hot acclimation treatment to test for plasticity in the thermal behavior. The environment at the southern range limit was characterized by cooler weather and lower Te. Despite that, females had higher Tb and both males and females had higher PBT in the southernmost population (or clade) than in the northernmost populations. Acclimation to cold conditions led to higher PBT in all populations suggesting that plastic responses to thermal conditions, instead of evolutionary history, may contribute to geographic variation. Lizards regulated moderately well their body temperature (E≈0.7): they avoided warm microhabitats in the northern range but capitalized on warm microhabitats in the southern range. We review literature data to show that Liolaemus species increase their thermoregulation efficiency in thermally challenging environments. Altogether, this indicates that habitats of low thermal quality generally select against thermoconformity in these lizards.  相似文献   

8.
To investigate the effects of age on thermal sensitivity, preferred ambient temperature (T pref) was compared between old (71–76 years) and young (21–30 years) groups, each consisting of six male subjects in summer and winter. The air temperature (T a) was set at either 20° C or 40° C at commencement. The subject was directed to adjust theT a for 45 min by manipulating a remote control switch to the level at which he felt most comfortable. In the older group, theT pref was significantly lower in trials starting at 20° C than that starting at 40° C in summer. The fluctuation ofT pref (temperature difference between maximum and minimumT a during the last 10 min) was significantly wider in the older group in both summer and winter. Repetition of the same experiment on each subject showed a poorer reproducibility ofT pref in the older group than in the younger group in summer. Tympanic and esophageal temperatures of the older group kept falling throughout the trial starting at 20° C in summer. These results suggest that thermal sensitivity is decreased with advancing age and that thermal perception in the elderly, especially to cold, is less sensitive in summer.  相似文献   

9.
Aim In an effort to disentangle the ecological processes that confine ectotherms to alpine environments, we studied the thermoregulatory and microhabitat selection behaviours of the rock lizard Iberolacerta cyreni, which is endemic to some mountains of central Spain, and of the wall lizard Podarcis muralis, which is a potential competitor of rock lizards. Location We chose three areas in the Sierra de Guadarrama (central Spain) that differed in their thermal quality [mean deviation of environmental operative temperatures from the lizards’ preferred thermal range (PTR)] and refuge availability: a pine forest (1770 m a.s.l.) in which P. muralis was the only species found, and two mixed shrub and rock sites (1770 and 1900 m a.s.l.) where both species were present. Methods In the field we collected data on refuge availability, sun exposure, body temperature (Tb) and operative temperature (Te). Thus, we estimated the thermal habitat quality of the areas sampled and the thermoregulation accuracy and effectiveness of both species. Results The pine forest had the lowest thermal quality and refuge availability. The lower‐elevation shrub site offered the best thermal quality, but refuges were much scarcer than at the higher‐elevation site. Both species thermoregulated accurately, because mean deviations of body temperature (Tb) from PTR were considerably smaller than those of Te. Podarcis muralis had higher Tb values than did I. cyreni, which had similar Tb values at both shrub sites, whereas P. muralis had lower Tb values at higher elevation. Overall, the thermoregulatory effectiveness (extent to which Tb values are closer to the PTR than are Te values) of both species was similar, but whereas I. cyreni thermoregulated more efficiently at higher elevation, the opposite was true for P. muralis. At the lower‐elevation shrub site, I. cyreni remained closer to refuges than did P. muralis. Main conclusions Our results suggest that the pine forest belt might prevent the expansion of rock lizards towards lower elevations as a result of its low thermal quality and scarcity of refuges, that the thermoregulatory effectiveness of rock lizards in alpine environments depends more on refuge availability than on thermal habitat quality, and that competition with wall lizards is unlikely to explain either the distribution or the thermoregulatory effectiveness of rock lizards.  相似文献   

10.
To forecast biological responses to changing environments, we need to understand how a species''s physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered that predator cues induced a 0.4°C higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5°C, while exposure to the herbicide marginally lowered Topt by 0.4°C. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5°C higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming.  相似文献   

11.
Thermal adaptation theory predicts that thermal specialists evolve in environments with low temporal and high spatial thermal variation, whereas thermal generalists are favored in environments with high temporal and low spatial variation. The thermal environment of many organisms is predicted to change with globally increasing temperatures and thermal specialists are presumably at higher risk than thermal generalists. Here we investigated critical thermal maximum (CTmax) and preferred temperature (Tp) in populations of the common pond snail (Radix balthica) originating from a small‐scale system of geothermal springs in northern Iceland, where stable cold (ca. 7°C) and warm (ca. 23°C) habitats are connected with habitats following the seasonal thermal variation. Irrespective of thermal origin, we found a common Tp for all populations, corresponding to the common temperature optimum (Topt) for fitness‐related traits in these populations. Warm‐origin snails had lowest CTmax. As our previous studies have found higher chronic temperature tolerance in the warm populations, we suggest that there is a trade‐off between high temperature tolerance and performance in other fitness components, including tolerance to chronic thermal stress. Tp and CTmax were positively correlated in warm‐origin snails, suggesting a need to maintain a minimum “warming tolerance” (difference in CTmax and habitat temperature) in warm environments. Our results highlight the importance of high mean temperature in shaping thermal performance curves.  相似文献   

12.
Summary We studied, in the field and laboratory, aspects of the thermal biology in two populations of the lizard Podarcis tiliguerta along a 1450 m altitudinal gradient. Body temperatures (Tb) at high altitudes average lower, are more variable, but are more elevated above environmental temperatures than at sea level. Lizards partially reduced the impact of altitudinal changes in thermal loads through presumable subtle behavioural adjustments. A comparison of the thermal preferences in the laboratory, the maximal operative temperatures predicted from a biophysical model, and the activity Tb's at both sites, indicates that the main response to changing environmental conditions is an active shift in thermoregulatory set points. Integration of field Tb's and laboratory data on temperature specific sprint speeds, predicts that the mountainous lizards experience reduced running abilities that are especially acute in the early morning. Despite this impairment of running performance, the thermal sensitivity of running speed has not evolved to match the Tb's experienced by both populations. This result supports the view that the thermal physiology of this lizard is evolutionarily conservative, but the lack of information on the relation between running performance and fitness components impedes rejection of alternative hypotheses.  相似文献   

13.
Summary We studied aspects of the thermal biology and microhabitat selection of the endangered lizard Podarcis hispanica atrata during autumn in the field and laboratory. Body temperatures (T b ) of active lizards were within a narrow range, were largely independent of ambient temperatures, and exhibited little diel variation. Activity T b s largely coincided with the selected temperatures maintained in a laboratory thermogradient and with T b s that maximize running performance. Alternation of basking with other activities and shuttling between sun and shade were obvious aspects of thermoregulatory behaviour. Lizards shifted microhabitat use throughout the day. During early morning and late afternoon, basking lizards were restricted to rocky sites surrounded by shrubs. Near midday lizards used a wider array of microhabitats, and many moved in open grassy sites. Juveniles maintained lower activity T b s, had lower selected temperatures, and basked less frequently than the adults. Juveniles occupied open grassy patches more often than the adults. We discuss the relevance of our results for the conservation of this extremely rare lizard and the management of its habitats.  相似文献   

14.
We determined if the photoperiod regime affects the thermal biology of the tadpoles of Odontophrynus occidentalis from the Monte desert (Argentina). Variables measured were: selected body temperature (Tsel), critical thermal maximum (CTmax) and thermal critical minimum (CTmin). The tadpoles were acclimated to 15±2 °C for 15 days, and they were divided in three experimental groups: 24 h light, 24 h dark and 12 h/12 h light/dark. Data indicate that the photoperiod had an important effect upon the thermal biology of the Odontophrynus occidentalis tadpoles. The treatment group exposed to 24 h of light showed the highest selected temperature and thermal extremes. We suggest that changes in photoperiod may allow these organisms to anticipate the future changes in their thermal environment, as longer days usually involve higher temperatures.  相似文献   

15.
The critical thermal maximum (CTMAX) is the temperature at which animals exhibit loss of motor response because of a temperature-induced collapse of vital physiological systems. A central mechanism hypothesised to underlie the CTMAX of water-breathing ectotherms is insufficient tissue oxygen supply for vital maintenance functions because of a temperature-induced collapse of the cardiorespiratory system. The CTMAX of species conforming to this hypothesis should decrease with declining water oxygen tension (PO2) because they have oxygen-dependent upper thermal limits. However, recent studies have identified a number of fishes and crustaceans with oxygen-independent upper thermal limits, their CTMAX unchanged in progressive aquatic hypoxia. The previous studies, which were performed separately on cold-water, temperate and tropical species, suggest the oxygen-dependence of upper thermal limits and the acute thermal sensitivity of the cardiorespiratory system increases with decreasing habitat temperature. Here we directly test this hypothesis by assessing the oxygen-dependence of CTMAX in the polar Antarctic krill (Euphausia superba), as well as the temperate Baltic prawn (Palaemon adspersus) and brown shrimp (Crangon crangon). We found that P. adspersus and C. crangon maintain CTMAX in progressive hypoxia down to 40 mmHg, and that only E. superba have oxygen-dependent upper thermal limits at normoxia. In E. superba, the observed decline in CTMAX with water PO2 is further supported by heart-rate measurements showing a plateauing, and subsequent decline and collapse of heart performance at CTMAX. Our results support the hypothesis that the oxygen-dependence of upper thermal limits in water-breathing ectotherms and the acute thermal sensitivity of their cardiorespiratory system increases with decreasing habitat temperature.  相似文献   

16.
Locomotor and physiological performance of ectotherms are affected by temperature. Thermoregulation is achieved by changes in behavior and the selection of micro-habitats with adequate temperatures to maintain the body temperature (Tb) within a range of preference. Apart from this temperature dependence at spatial scales, ectotherms are also affected by temperature at temporal scale. For instance, ectotherms can only be active some months of the year, particularly in temperate environments. Tarantulas are ectotherms that live in burrows most of their life. Nevertheless, after the sexual maturation molt, males leave their refugia and start a wandering life searching for females to mate. The reproductive period varies among species. In some species walking males are seen in late spring or early summer, while in other species males are only seen during fall or winter. Apart from the differences in lifestyles after maturation, tarantulas exhibit sexual dimorphisms in longevity and body mass, having smaller, shorter-lived males. Thus, to optimize energetic budgets, decreasing thermoregulation costs, we hypothesize and examine a putative correlation between an individual's preferred body temperature (Tpref) and the environmental temperature during the reproductive period. Hence, we characterize Tpref in seven tarantula species and analyze which factors (i.e., time of day, body mass, and sex) correlated with it. Furthermore, we assess putative correlated evolution of Tpref with ambient temperature (minima, mean, and maxima) during the reproductive period by means of phylogenetic independent contrasts. We did not find differences in thermal preferences between sexes; and only one species, Acanthoscurria suina, exhibited diel differences in Tpref. We found evidence of correlated evolution between Tpref and minimum temperature during the reproductive period among all seven species studied herein. Our results show that the reproductive period is constrained by thermal preferences, dictating when males can start their wandering life to mate.  相似文献   

17.
J. C. Lee 《Oecologia》1980,44(2):171-176
Summary In a habitat judged to be energetically costly for thermoregulation, mean body temperatures (MBT's) ofAnolis sagrei are significantly higher than those ofA. distichus. As indexed by the slope of the regression of body temperatures (T b ) on substrate temperature (T s ),A. sagrei is more dependent upon environmental temperatures thanA. distichus.In a habitat judged to be less costly for thermoregulation and where interspecific competition for perch sites may be less, MBT's ofA. sagrei are significantly higher, proportionally more lizards occupy sunny perches, and the slope of the regression of T b on T s is significantly less, than for conspecifics in the costly habitat.As indexed by length-specific fat body weights, well-nourished lizards in the costly habitat have T b 's which are independent of environmental temperature; T b 's of poorly-nourished lizards are highly dependent upon environmental temperature. This relationship does not hold for lizards in the low-cost habitat.These results corroborate the hypothesis that energetic costs are important in controlling the extent to which lizards thermoregulate. In high-cost habitats lizards thermoregulate less precisely than in low-cost habitats. Lizards that exploit the habitat as if it were highly productive thermoregulate more precisely than lizards that exploit the environment as if it were of low productivity.  相似文献   

18.
The thermal coadaptation hypothesis posits that ectotherms thermoregulate behaviorally to maintain body temperatures (Tb) that maximize performance, such as net energy gain. Huey's (1982) energetics model describes how food availability and Tb interact to affect net energy gain. We tested the thermal coadaptation hypothesis and Huey's energetics model with growth rates of juvenile Yarrow's spiny lizards (Sceloporus jarrovii). We compared the preferred (selected) Tb range (Tsel) of lizards in high and low energy states to their optimal temperature (To) for growth over nine weeks, and determined whether the To for growth depended on food availability. We also measured the same lizards’ resting metabolic rate at five Tbs to test the energetics model assumptions that metabolic cost increases exponentially with Tb and does not differ between energy states. The Tsel of lizards on both diets overlapped with the To for growth. The assumptions of the energetics model were verified, but the To for net energy gain did not depend on food availability. Therefore, we found support for the thermal coadaptation hypothesis. We did not find support for the energetics model, but this may have been due to low statistical power.  相似文献   

19.
Lizard distribution patterns were examined in relation to elevation in two undulating landscapes. We asked three specific questions: (1) Were different lizard species associated with particular elevations? (2) Did biological attributes of lizards (e.g. body size, colour, reproduction strategy, etc.) vary with elevation? (3) Did species richness of lizards vary with elevation? Field data were collected in two undulating production landscapes in south‐eastern Australia, approximately 100 km to the west of the Australian Capital Territory. Lizards were surveyed using 648 pitfall traps and 3840 m of drift fence. Both study landscapes were divided into 50 m elevation classes. For each elevation class, survey effort, the capture rate of individual species, and species richness were recorded. Correspondence analysis was used to sort lizards according to their altitudinal distribution profiles. Analysis of variance was used to examine if biological attributes of lizards were related to their altitudinal distribution profiles. Generalized linear modelling was used to relate elevation to the capture rate of individual species, and to species richness. Lizard species differed in their altitudinal preferences. Skinks, taxa with a Bassian distribution or distribution restricted to the Great Dividing Range, dark‐bodied species and viviparous species were more likely to inhabit high elevations. Elevation was significantly related to the capture rate of seven species, and ecologically similar species replaced one another as elevation increased. Species richness peaked significantly at intermediate elevations in both landscapes. We conclude that lizards were highly sensitive to elevation. Elevation changes of as little as 50 m may be related to a change in species richness or species composition. Future research should assess if reptiles in other undulating landscapes with a temperate climate are similarly sensitive to elevation. If so, conservation activities in these landscapes need to consider the full spectrum of topographic positions and elevations.  相似文献   

20.
Common responses to hypoxia include decreased body temperature (Tb) and decreased energy metabolism. In this study, the effects of hypoxia and hypercapnia on Tb and metabolic oxygen consumption (V.O2) were investigated in Japanese quail (Coturnix japonica). When exposed to hypoxia (15, 13, 11 and 9% O2), Tb decreased only at 11% and 9% O2 compared to normoxia; quail were better able to maintain Tb during acute hypoxia after a one-week acclimation to 10% O2. V.O2 also decreased during hypoxia, but at 9% O2 this was partially offset by increased anaerobic metabolism. Tb and V.O2 responses to 9% O2 were exaggerated at lower ambient temperature (Ta), reflecting a decreased lower critical temperature during hypoxia. Conversely, hypoxia had little effect on Tb or V.O2 at higher Ta (36 °C). We conclude that Japanese quail respond to hypoxia in much the same way as mammals, by reducing both Tb and V.O2. No relationship was found between the magnitudes of decreases in Tb and V.O2 during 9% O2, however. Since metabolism is the source of heat generation, this suggests that Japanese quail increase thermolysis to reduce Tb. During hypercapnia (3, 6 and 9% CO2), Tb was reduced only at 9% CO2 while V.O2 was unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号