首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage.  相似文献   

2.
Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.  相似文献   

3.
《Gene》1997,187(2):239-246
CDC45 is an essential gene required for initiation of DNA replication in the budding yeast Saccharomyces cerevisiae. CDC45 interacts genetically with CDC46 and CDC47, both members of the MCM family of genes which have been implicated in the licensing of DNA replication. In this report, the isolation of CDC45 is described. The complementing gene is linked to an essential open reading frame on chromosome XII. CDC45 was found to be cell cycle regulated and steady-state mRNA levels are G1/S-specific. CDC45 encodes a protein structurally related to Tsd2p, a protein required for DNA replication in Ustilago maydis. CDC45 also interacts genetically with ORC2, the gene encoding the second subunit of the origin recognition complex, ORC, and MCM3, another member of the MCM family. The cdc45-1 mutant has a plasmid maintenance defect which is rescued by the addition of multiple potential origins to the plasmid.  相似文献   

4.
The proteins bound in vivo at the human lamin B2 DNA replication origin and their precise sites of binding were investigated along the cell cycle utilizing two novel procedures based on immunoprecipitation following UV irradiation with a pulsed laser light source. In G(1), the pre-replicative complex contains CDC6, MCM3, ORC1 and ORC2 proteins; of these, the post-replicative complex in S phase contains only ORC2; in M phase none of them are bound. The precise nucleotide of binding was identified for the two ORC and the CDC6 proteins near the start sites for leading-strand synthesis; the transition from the pre- to the post-replicative complex is accompanied by a 17 bp displacement of the ORC2 protein towards the start site.  相似文献   

5.
We investigated the dynamics of DNA binding of replication initiation proteins during formation of the pre-replicative complex (pre-RC) on plasmids in Xenopus egg extracts. The pre-RC was efficiently formed on plasmids at 23 degrees C, with one or a few origin recognition complex (ORC) molecules and approximately 10-20 mini-chromosome maintenance 2 (MCM2) molecules loaded onto each plasmid. Although geminin inhibited MCM loading, MCM interacted weakly but stoichiometrically with the plasmid in an ORC-dependent manner, even in the presence of geminin (with approximately 10 MCM2 molecules per plasmid). Interestingly, DNA binding of ORC, CDC6, and CDT1 was significantly stabilized in the presence of geminin, under which conditions approximately 10-20 molecules each of ORC and CDC6 were bound. Moreover, a similarly stable ORC-CDC6-CDT1 complex rapidly formed on DNA at lower temperature (0 degrees C) without geminin, with approximately 10-20 molecules each of ORC and CDC6 bound to the plasmid, but almost no binding of MCM. However, upon shifting the temperature to 23 degrees C, most ORC, CDC6, and CDT1 molecules were displaced from the DNA, leaving about one ORC molecule on the plasmid, whereas approximately 10 MCM2 molecules were loaded onto each plasmid. Furthermore, it was possible to load MCM onto DNA when the isolated ORC-CDC6-CDT1-DNA complex was mixed with purified MCM proteins. These results suggest that an ORC-CDC6-CDT1 complex pre-formed on DNA is directly involved in MCM loading and imply that each DNA-bound ORC molecule loads only one or a few MCM2-7 complexes during metazoan pre-RC formation.  相似文献   

6.
Dolan WP  Sherman DA  Forsburg SL 《Chromosoma》2004,113(3):145-156
Cdc45 is a conserved protein required for firing of replication origins and processive DNA replication. We used an in situ chromatin-binding assay to determine factors required for fission yeast Cdc45p chromatin binding. Assembly of the pre-replicative complex is essential for Cdc45p chromatin binding, but pre-replicative complex assembly occurs independently of Cdc45p. Fission yeast Cdc45p associates with MCM proteins in asynchronously growing cells and cells arrested in S phase by hydroxyurea, but not in cells arrested at the G2/M transition. Both hsk1+ (the fission yeast CDC7 homologue) and rad4+/cut5+ (the fission yeast DPB11 homologue) are required for Cdc45p chromatin binding. Cdc45p also remains chromatin-bound in mutants that fail to recover from replication arrest. In summary, Cdc45p chromatin binding requires an intact pre-replicative complex as well as signaling from both the Dbf4-dependent kinase and cyclin-dependent kinases.  相似文献   

7.
Replication of telomeres requires the action of telomerase, the semi-conservative replication machinery and the stabilization of the replication fork during passage through telomeric DNA. Whether vertebrate telomeres support initiation of replication has not been experimentally addressed. Using Xenopus cell free extracts we established a system to study replication initiation within linear telomeric DNA substrates. We show binding of TRF2 to telomeric DNA, indicating that exogenous DNA exclusively composed of telomeric repeats is recognized by shelterin components. Interaction with telomere binding proteins is not sufficient to prevent a DNA damage response. Notably, we observe regulated assembly of the pre-replicative complex proteins ORC2, MCM6 and Cdc6 to telomeric DNA. Most importantly, we detect origin-dependent replication of telomeric substrates under conditions that inhibit checkpoint activation. These results indicate that pre-replicative complexes assemble within telomeric DNA and can be converted into functional origins.  相似文献   

8.
9.
10.
Cdc6p is an essential component of the pre-replicative complex (pre-RC), which binds to DNA replication origins to promote initiation of DNA replication. Only once per cell cycle does DNA replication take place. After initiation, the pre-RC components are disassembled in order to prevent re-replication. It has been shown that the N-terminal region of Cdc6p is targeted for degradation after phosphorylation by Cyclin Dependent Kinase (CDK). Here we show that Mck1p, a yeast homologue of GSK-3 kinase, is also required for Cdc6 degradation through a distinct mechanism. Cdc6 is an unstable protein and is accumulated in the nucleus only during G1 and early S-phase in wild-type cells. In mck1 deletion cells, CDC6p is stabilized and accumulates in the nucleus even in late S phase and mitosis. Overexpression of Mck1p induces rapid Cdc6p degradation in a manner dependent on Threonine-368, a GSK-3 phosphorylation consensus site, and SCFCDC4. We show evidence that Mck1p-dependent degradation of Cdc6 is required for prevention of DNA re-replication. Loss of Mck1 activity results in synthetic lethality with other pre-RC mutants previously implicated in re-replication control, and these double mutant strains over-replicate DNA within a single cell cycle. These results suggest that a GSK3 family protein plays an unexpected role in preventing DNA over-replication through Cdc6 degradation in Saccharomyces cerevisiae. We propose that both CDK and Mck1 kinases are required for Cdc6 degradation to ensure a tight control of DNA replication.  相似文献   

11.
Ostreococcus tauri (Prasinophyceae) is a marine unicellular green alga which diverged early in the green lineage. The interest of O. tauri as a potential model to study plant cell division is based on its key phylogenetic position, its simple binary division, a very simple cellular organisation and now the availability of the full genome sequence. In addition O. tauri has a minimal yet complete set of cell cycle control genes. Here we show that division can be naturally synchronised by light/dark cycles and that organelles divide before the nucleus. This natural synchronisation, although being only partial, enables the study of the expression of CDKs throughout the cell cycle. The expression patterns of OtCDKA and OtCDKB were determined both at the mRNA and protein levels. The single OtCDKA gene is constantly expressed throughout the cell cycle, whereas OtCDKB is highly regulated and expressed only in S/G2/M phases. More surprisingly, OtCDKA is not phosphorylated at the tyrosine residue, in contrast to OtCDKB which is strongly phosphorylated during cell division. OtCDKA kinase activity appears before the S phase, indicating a possible role of this protein in the G1/S transition. OtCDKB kinase activity occurs later than OtCDKA, and its tyrosine phosphorylation is correlated to G2/M, suggesting a possible control of the mitotic activity. To our knowledge this is the first organism in the green lineage which showed CDKB tyrosine phosphorylation during cell cycle progression.  相似文献   

12.
DNA replication initiates by formation of a pre-replication complex on sequences termed origins. In eukaryotes, the pre-replication complex is composed of the Origin Recognition Complex (ORC), Cdc6 and the MCM replicative helicase in conjunction with Cdt1. Eukaryotic ORC is considered to be composed of six subunits, named Orc1-6, and monomeric Cdc6 is closely related in sequence to Orc1. However, ORC has been little explored in protists, and only a single ORC protein, related to both Orc1 and Cdc6, has been shown to act in DNA replication in Trypanosoma brucei. Here we identify three highly diverged putative T. brucei ORC components that interact with ORC1/CDC6 and contribute to cell division. Two of these factors are so diverged that we cannot determine if they are eukaryotic ORC subunit orthologues, or are parasite-specific replication factors. The other we show to be a highly diverged Orc4 orthologue, demonstrating that this is one of the most widely conserved ORC subunits in protists and revealing it to be a key element of eukaryotic ORC architecture. Additionally, we have examined interactions amongst the T. brucei MCM subunits and show that this has the conventional eukaryotic heterohexameric structure, suggesting that divergence in the T. brucei replication machinery is limited to the earliest steps in origin licensing.  相似文献   

13.
The MCM proteins participate in an orderly association, beginning with the origin recognition complex, that culminates in the initiation of chromosomal DNA replication. Among these, MCM proteins 4, 6, and 7 constitute a subcomplex that reportedly possesses DNA helicase activity. Little is known about DNA sequences initially bound by these MCM proteins or about their cell cycle distribution in the chromatin. We have determined the locations of certain MCM and associated proteins by chromatin immunoprecipitation (ChIP) in a zone of initiation of DNA replication upstream of the c-MYC gene in the HeLa cell cycle. MCM7 and its clamp-loading partner Cdc6 are highly specifically colocalized by ChIP and re-ChIP in G(1) and early S on a 198-bp segment located near the center of the initiation zone. ChIP and Re-ChIP colocalizes MCM7 and ORC1 to the same segment specifically in late G(1). MCM proteins 6 and 7 can be coimmunoprecipitated throughout the cell cycle, whereas MCM4 is reduced in the complex in late S and G(2), reappearing upon mitosis. MCM7 is not visualized by immunohistochemistry on metaphase chromosomes. MCM7 is recruited to multiple sites in chromatin in S and G(2), at which time it is not detected with ORC1. The rate of dissemination is surprisingly slow and is unlikely to be simply attributed to progression with replication forks. Results indicate sequence-specific loading of MCM proteins onto DNA in late G(1) followed by a recruitment to multiple sites in chromatin subsequent to replication.  相似文献   

14.
Using a plasmid competition assay, we have measured the stability of origin recognition complex (ORC) associated with sperm chromatin under physiological conditions. Under conditions in which pre-RCs are formed, both ORC and CDC6 dissociate from sperm chromatin with a relatively fast t(1/2) of 15 min. ORC dissociation from chromatin is regulated through the recruitment of CDC6 and MCM proteins as well as ATP hydrolysis. The t(1/2) for ORC alone in the absence of Cdc6 is 40 min and increases 8-fold to >2 h when Cdc6 is present. Strikingly, the presence of a non-hydrolyzable ATP derivative, ATPgammaS, not only increases both ORC and CDC6 t(1/2) but also inhibits the loading of MCM. The very stable association of ORC and Cdc6 with chromatin in this sequence-independent replication system suggests that origin selection in metazoans cannot be strictly dependent on the interaction of ORCs with specific DNA binding sequences.  相似文献   

15.
The Tetrahymena thermophila DNA replication machinery faces unique demands due to the compartmentalization of two functionally distinct nuclei within a single cytoplasm, and complex developmental program. Here we present evidence for programmed changes in ORC and MCM abundance that are not consistent with conventional models for DNA replication. As a starting point, we show that ORC dosage is critical during the vegetative cell cycle and development. A moderate reduction in Orc1p induces genome instability in the diploid micronucleus, aberrant division of the polyploid macronucleus, and failure to generate a robust intra-S phase checkpoint response. In contrast to yeast ORC2 mutants, replication initiation is unaffected; instead, replication forks elongation is perturbed, as Mcm6p levels decline in parallel with Orc1p. Experimentally induced down-regulation of ORC and MCMs also impairs endoreplication and gene amplification, consistent with essential roles during development. Unexpectedly Orc1p and Mcm6p levels fluctuate dramatically in developing wild type conjugants, increasing for early cycles of conventional micronuclear DNA replication and macronuclear anlagen replication (endoreplication phase I, rDNA gene amplification). This increase does not reflect the DNA replication load, as much less DNA is synthesized during this developmental window compared to vegetative S phase. Furthermore, although Orc1p levels transiently increase prior to endoreplication phase II, Orc1p and Mcm6p levels decline when the replication load increases and unconventional DNA replication intermediates are produced. We propose that replication initiation is re-programmed to meet different requirements or challenges during the successive stages of Tetrahymena development.  相似文献   

16.
Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development.  相似文献   

17.
Eukaryotic DNA replication initiates at origins of replication by the assembly of the highly conserved pre-replicative complex (pre-RC). However, exact sequences for pre-RC binding still remain unknown. By chromatin immunoprecipitation we identified in vivo a pre-RC-binding site within the origin of bidirectional replication in the murine rDNA locus. At this sequence, ORC1, -2, -4 and -5 are bound in G1 phase and at the G1/S transition. During S phase, ORC1 is released. An ATP-dependent and site-specific assembly of the pre-RC at origin DNA was demonstrated in vitro using partially purified murine pre-RC proteins in electrophoretic mobility shift assays. By deletion experiments the sequence required for pre-RC binding was confined to 119 bp. Nucleotide substitutions revealed that two 9 bp sequence elements, CTCGGGAGA, are essential for the binding of pre-RC proteins to origin DNA within the murine rDNA locus. During myogenic differentiation of C2C12 cells, we demonstrated a reduction of ORC1 and ORC2 by immunoblot analyses. ChIP analyses revealed that ORC1 completely disappears from chromatin of terminally differentiated myotubes, whereas ORC2, -4 and -5 still remain associated.  相似文献   

18.
Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.  相似文献   

19.
Cullin-RING ubiquitin ligases (CRLs) participate in the regulation of diverse cellular processes including cell cycle progression. Mutations in the X-linked CUL4B, a member of the cullin family, cause mental retardation and other developmental abnormalities in humans. Cells that are deficient in CUL4B are severely selected against in vivo in heterozygotes. Here we report a role of CUL4B in the regulation of replication licensing. Strikingly, CDC6, the licensing factor in replication, was positively regulated by CUL4B and contributed to the loading of MCM2 to chromatin. The positive regulation of CDC6 by CUL4B depends on CDK2, which phosphorylates CDC6, protecting it from APCCDH1-mediated degradation. Thus, aside being required for cell cycle reentry from quiescence, CDK2 also contributes to pre-replication complex assembly in G1 phase of cycling cells. Interestingly, the up-regulation of CDK2 by CUL4B is achieved via the repression of miR-372 and miR-373, which target CDK2. Our findings thus establish a CUL4B–CDK2–CDC6 cascade in the regulation of DNA replication licensing.  相似文献   

20.
Noc3p (Nucleolar Complex-associated protein) is an essential protein in budding yeast DNA replication licensing. Noc3p mediates the loading of Cdc6p and MCM proteins onto replication origins during the M-to-G1 transition by interacting with ORC (Origin Recognition Complex) and MCM (Minichromosome Maintenance) proteins. FAD24 (Factor for Adipocyte Differentiation, clone number 24), the human homolog of Noc3p (hNOC3), was previously reported to play roles in the regulation of DNA replication and proliferation in human cells. However, the role of hNOC3 in replication licensing was unclear. Here we report that hNOC3 physically interacts with multiple human pre-replicative complex (pre-RC) proteins and associates with known replication origins throughout the cell cycle. Moreover, knockdown of hNOC3 in HeLa cells abrogates the chromatin association of other pre-RC proteins including hCDC6 and hMCM, leading to DNA replication defects and eventual apoptosis in an abortive S-phase. In comparison, specific inhibition of the ribosome biogenesis pathway by preventing pre-rRNA synthesis, does not lead to any cell cycle or DNA replication defect or apoptosis in the same timeframe as the hNOC3 knockdown experiments. Our findings strongly suggest that hNOC3 plays an essential role in pre-RC formation and the initiation of DNA replication independent of its potential role in ribosome biogenesis in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号