首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A novel mycovirus was isolated from a cultivated edible mushroom, Pleurotus eryngii, with severe epidemic symptoms. Purification of the virus was carried out by a sequential procedure of polyethylene glycol precipitation, differential centrifugation, and equilibrium centrifugation in a CsCl gradient. Nuclease digestion assay and protein analysis revealed that the virus consisted of a single-stranded RNA (ssRNA) genome of 7.8 kbp which was encapsulated by a coat protein of 22 kDa. Transmission electron microscope showed that it was spherical with a diameter of 31 nm. Since there was neither a previous report on discovery of a virus in P. eryngii, nor known mushroom viruses with similar characteristics, we concluded that this is a novel virus and thus have named it as P. e ryngii Spherical Virus (PeSV). Because of a diagnostic test would be helpful in preventing the PeSV-related disease outbreaks, we developed a triple antibody sandwich-ELISA (TAS–ELISA) system using anti-PeSV mouse monoclonal and anti-PeSV rabbit polyclonal antibodies. The TAS–ELISA system successfully detected less than 0.5 μg of the virus particles in 1 g diseased mushroom tissue collected from various commercial farms.  相似文献   

2.
A cytoplasmic polyhedrosis virus (CPV) containing a segmented double-stranded RNA genome was isolated from Estigmene acrea larvae by isopycnic centrifugation in a sucrose density gradient. Ten double-stranded RNA segments with molecular weights (MW) from 2.8 to 0.67 × 106 were separated by agarose gel electrophoresis. A total of ten virus proteins ranging from 14,000 to 128,000 MW were detected after separation by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. A MW of 28,500 was determined for E. acrea CPV occlusion body protein.  相似文献   

3.
Rice tungro virus disease is one of the most destructive diseases that cause extensive damage to the rice crop. To elucidate the multiplication behaviour of Rice tungro bacilliform virus (RTBV), real-time Polymerase chain reaction (PCR) experiments were performed on rice and insect vector green leafhopper (GLH). SYBR green chemistry-based real-time PCR assay for the quantification of RTBV was developed. A standard curve using plasmid DNA was constructed to determine the absolute quantity of RTBV genome copies in different plant tissues and GLH vector. Here, 6.309?×?104, 7.943?×?105, 3.162?×?106 and 3.162?×?103 RTBV genome copies per ng of total DNA were estimated in root, shoot, leaf and panicles, respectively, on virus-infected rice cultivar TN1. In addition, 5.011?×?103 copies of virus in an individual GLH were quantified. Also, RTBV was quantified at different time interval after inoculation. The real-time assay was performed with five different RTBV isolates that showed differential accumulation pattern of virus isolates in a same host. These results provide new insight into the biology of the economically important interaction between rice, GLH and RTBV.  相似文献   

4.
We report on the isolation and characterization of a virus that is formed in modified zoidangia of the marine brown alga Feldmannia simplex (Crouan) Hamel (Ectocarpales, Phaeophyceae). Isolated virus particles had a buoyant density of about 1.35 g·mL?1 in CsCl equilibrium gradients. They contained one major polypeptide (MW = 55,000) and at least six additional polypeptides (MW = 15,000–120,000). Four of these proteins were glycosylated. The viral genome consisted of double-stranded DNA and formed two freely migrating fractions in pulsed-field-gel electrophoresis, namely linear DNA with a size of 220 kilobase pairs, and fragments of 10–60 kilobase pairs. However, electron microscopic examination revealed that a substantial fraction of the viral DNA occurred as closed circles. We suggest that the viral DNA in native particles is circular but tends to break at random sites during the preparation.  相似文献   

5.
A virus found in cassava from the north-west of the Ivory Coast was transmitted by inoculation with sap extracts to herbaceous species in six plant families. Chenopodium quinoa was used as a propagation host and C. murale was used for local lesion assays. The virus particles are bacilliform, c. 18 nm in diameter, with predominant lengths of 42,49 and 76 nm and a structure apparently similar to that found in alfalfa mosaic virus. Purified preparations of virus particles had A260/A280 of 1.7 ±0.05, contained one protein of Mrc. 22 000, and yielded three species of RNA with Mr (× 10-6) of c. 0.7, 0.8 and 1.2. Although the virus particles were poorly immunogenic, an antiserum was produced and the virus was detected by enzyme-linked immunosorbent assay (DAS-ELISA) in leaf extracts at concentrations down to c. 6 ng/ml. Four other field isolates were also detected, including a strain which caused only mild systemic symptoms in C. quinoa instead of necrosis. The naturally infected cassava source plants were also infected with African cassava mosaic virus (ACMV) but when the new virus was cultured in Nicotiana benthamiana, either separately or together with ACMV, its concentration was the same. The new virus did not react with antisera to several plant viruses with small bacilliform or quasi-bacilliform particles, and alfalfa mosaic virus reacted only weakly and inconsistently with antiserum to the cassava virus. The new virus, for which the name cassava Ivorian bacilliform virus is proposed, is tentatively classified as the second member of the alfalfa mosaic virus group.  相似文献   

6.
Abstract. Poliovirus is a small icosahedral particle consisting of only five species of macromolecules: 60 copies each of the capsid protein VP1-4; and one copy of single-stranded RNA, approximately 7500 nt long. The genome, linked at the 5′ end to a small protein VPg and 3′ polyadenylylated, is of plus strand polarity. After receptor-mediated uptake of the virus and release of the RNA into the cytoplasm, the genome serves as mRNA, encoding only a single polypeptide, the polyprotein. The polyprotein is cleaved co-translationally into numerous polypeptides by its own, internal proteinases 2Apro, 3Cpro and 3CDpro. Initiation of translation is mediated by a novel genetic element, called internal ribosomal entry site (IRES). IRES elements, which are 400 nt long RNA segments located within the 5′ non-translated region of the viral genome, are common to all picornaviruses. Their function renders translation of picornavirus mRNAs cap- and 5′-independent, an observation that has upset the dogma of cap-dependent translation in eukaryotic cells. IRES elements have also been used to genetically dissect the viral genome and to construct novel expression vectors. Genome replication is not fully understood, the major conundrum being the initiation of RNA synthesis by the primer-dependent viral RNA polymerase 3Dpol, a process leading to VPg-linked RNA products. Nearly all non-structural proteins appear to be involved in initiation, the proteinases 2Apro and 3CDpro included. A HeLa cell-free system has been developed that, on programming with plasmid-transcribed viral RNA, will perform viral translation, protein processing, RNA replication, and assembly of capsid protein and newly made genomic RNA. The final yield is infectious poliovirus. This result has nullified the dictum that no virus can replicate in a cell-free medium.  相似文献   

7.
The genomic RNA of a member of the “Nudaurelia β virus” group functioned as a mRNA in vitro. The translation products included a protein, which comigrated with the single virus capsid protein, and a stable 100 × 103 MW protein, which was synthesized by cleavage of a precursor protein. No precursor proteins were involved in synthesis of the putative capsid protein. Attempts to inhibit proteolytic cleavage did not result in the appearance of a product corresponding to the entire coding capacity of the genome.  相似文献   

8.
Electron microscopy of leaf samples displaying streak symptoms from enset (Ensete ventricosum), a banana‐like plant widely cultivated in Ethiopia, showed the presence of bacilliform shaped virions as known for badnaviruses. DNA extracts subjected to rolling circle amplification (RCA), polymerase chain reaction (PCR) and cloning and sequence analysis revealed that the virus has a circular double‐stranded DNA genome of 7,163 nucleotides encoding predicted proteins of 21.5 kDa, 14.5 kDa and 202.5 kDa, a genome organization known for badnaviruses. The virus is phylogenetically most closely related to Sugarcane bacilliform Guadeloupe D virus with a nucleotide sequence identity of 77.2% at the conserved RT/RNase‐H region and 73.6% for the whole genome. Following the current species demarcation criteria, the virus should be considered as an isolate of a new species in the genus Badnavirus for which the name Enset leaf streak virus (ELSV) is suggested. Leaf samples from enset and banana were screened using virus‐specific primers, and ELSV was detected in six of 40 enset but not found in any of 61 banana samples. On the other hand, Banana streak OL virus (BSOLV) was detected from the majority (60%) of symptomatic banana samples but not from enset samples. This paper reports the first full‐genome sequence of a putative new badnavirus species infecting plants in the genus Ensete. In addition, this is the first report of the occurrence of BSOLV in Ethiopia.  相似文献   

9.
Sensitive techniques for acrylamide gel electrophoretic analysis have been applied to animal virus systems and have proven generally useful. Estimates of the number of kinds, molecular weights and number of molecules of proteins in almost any biological sample have been made with ease. As applied to the poliovirus-HeLa cell system they reveal four major proteins in the virion and at least ten additional proteins in the infected cell. Some of the intracellular and particulate proteins undergo cleavage reactions following a unique translation in which the genome is apparently translated in toto as one large polypeptide of molecular weight greater than 200,000 daltons. The splits occur at three levels: (a) during synthesis; (b) at intermediate stages; and (c) co-incident with maturation. In vitro studies on protein synthesis, RNA synthesis and virus assembly have substantiated and extended the in vivo observations. The structure of the adenovirion has been established in detail. Hexon, penton base, fiber and core polypeptides and certain relevant subviral structures have been identified. Nearly all of the proteins synthesized in the infected cells after 20 hours are viral. The major structural antigens (hexon and penton) predominate and are made in 10 to 50 fold excess but the internal core polypeptides are not produced in great excess. Studies on the synthesis of polypeptides and their assembly into morphological subunits and virions show that hexon and penton polypeptides are made in about four and two minutes respectively on cytoplasmic polyribosomes, that morphological subunits are formed within five minutes of synthesis of protein, and that there is a delay of greater than one half hour for entry of hexons into virions.  相似文献   

10.
A bacilliform virus from Dioscorea alata, designated Dioscorea alata bacilliform virus (DaBV), from Barbados and West Africa and from other Dioscorea spp. from West African, Carribean, Asian and South American countries, has been characterized. The virus was transmitted by the mealybug, Planococcus citri and by mechanical transmission of partially purified preparations to several Dioscorea spp. DaBV was serologically related to a distinct bacilliform virus from Dioscorea bulbifera, to one isolate of sugarcane bacilliform badnavirus and two isolates of banana streak badnavirus (BSV) but was not related to another isolate of BSV or to Kalanchoe top spotting or cacao swollen shoot badnaviruses. The coat protein of DaBV was about 56 kDa and the nucleic acid was double-stranded DNA of about 7.5 kbp, part of which showed distant homology with other badnaviruses. Thus, DaBV is a distinct hitherto uncharacterized badnavirus.  相似文献   

11.
12.
A mycovirus was isolated from an edible mushroom, Lentinula edodes, that was suffering from a severe epidemic. Fractionation of the diseased cell extract by isopycnic centrifugation with 50% CsCl revealed that the diseased mushroom was infected by Lentinula edodes spherical virus (LeSV), a new spherical virus with a diameter of 55 nm. The particle of LeSV encapsidated the 12 kb RNA genome by a 120 kDa coat protein. BLAST analysis of the partially sequenced LeSV genome showed 95% sequence identity with a putative RNA-dependent RNA polymerase (RdRp) gene of the mycovirus HKB, which was previously reported as being a double-stranded RNA (dsRNA) element. In contrast to HKB, the RNA genome in LeSV is encapsidated by the 120 kDa coat protein. To confirm that the LeSV coat protein is encoded by the viral genome, the N-terminal amino acid sequence of the coat protein was determined. The resulting N-terminal amino acid sequence, N-SALDVAPVVPELYFXXLEV-C, was found to be located in the middle of the HKB ORF1, suggesting that the LeSV coat protein was indeed encoded by the virus. To detect LeSV in L. edodes, a primer set targeting the RdRp gene was designed based on the partial sequence of the LeSV genome. RT-PCR analysis showed that 56 of the 84 commercially available dikaryotic cultivars carry LeSV. The transmission pattern of the virus was determined by analysing basidiospores from LeSV-infected and LeSV-free fruiting bodies. Nine out of 10 basidiospores from the LeSV-infected cultivars contained the virus while the spores from the LeSV-free parent were free of LeSV, suggesting that vertical transmission is the primary mode of LeSV propagation.  相似文献   

13.
14.
Immunologically very closely related type C RNA viruses are endogenous to the domestic cat and to an old world primate, the baboon. In the present studies, radioimmunological techniques have been developed for detection of the 15,000 and 30,000 molecular weight (MW) polypeptides of each virus. The much more pronounced type-specific antigenic determinants of the lower MW polypeptides made it possible to readily differentiate these viruses from each other as well as from a type C virus isolate from a second baboon species. Normal rhesus monkey tissues were partially purified and shown to contain a reactivity with MW and immunological properties similar to that of the baboon virus 30,000 MW polypeptide. Despite a similar degree of purification, antigenic reactivity like that of the baboon virus 15,000 MW polypeptide was undetectable even in the brodest immunological tests available for this polypeptide. The present findings indicate that the immunological properties of two structural polypeptides of closely related viruses endogenous to primate and feline species have undergone different rates of antigenic change in the course of evolution within their respective host cell genome.  相似文献   

15.
16.
CHARACTERIZATION OF LYMPHOCYTE TRANSFORMATION INDUCED BY ZINC IONS   总被引:3,自引:0,他引:3       下载免费PDF全文
Lymphocyte cultures from all normal human adults are stimulated by zinc ions to increase DNA and RNA synthesis and undergo blast transformation. Optimal stimulation occurs at 0.1 mM Zn++. Examination of the effects of other divalent cations reveals that 0.01 mM Hg++ also stimulates lymphocyte DNA synthesis. Ca++ and Mg++ do not affect DNA synthesis in this culture system, while Mn++, Co++, Cd++, Cu++, and Ni++ at concentrations of 10-7–10-3 M are inhibitory. DNA and RNA synthesis and blast transformation begin to increase after cultures are incubated for 2–3 days with Zn++ and these processes reach a maximum rate after 6 days. The increase in Zn++-stimulated lymphocyte DNA synthesis is prevented by rendering cells incapable of DNA-dependent RNA synthesis with actinomycin D or by blocking protein synthesis with cycloheximide or puromycin. Zn++-stimulated DNA synthesis is also partially inhibited by 5'-AMP and chloramphenicol. Zn++ must be present for the entire 6-day culture period to produce maximum stimulation of DNA synthesis. In contrast to its ability to independently stimulate DNA synthesis, 0.1 mM Zn++ inhibits DNA synthesis in phytohemagglutinin-stimulated lymphocytes and L1210 lymphoblasts.  相似文献   

17.
SYNOPSIS High hydrostatic pressure is known to interfere with mitosis, cytokinesis and synthesis of DNA, RNA and protein. In Tetrahymena, incorporation of phenylalanine and formation of polysomes are known to be pressure-sensitive. Microsomal preparations from Tetrahymena pyriformis GL can incorporate [14C]-phenylalanine into polypeptides. Incorporation was enhanced by addition of supernatant fraction and 14.5 mM Mg++ An energy-generating system and exogenous messenger (poly U) were essential for polypeptide biosynthesis, Microsomes from pressurized cells (14,000 psi for 5 min) incorporated [14C]phenylalanine as efficiently as control microsomes. Microsomal function was not grossly damaged by pressure in a test system containing exogenous messenger, crude microsomal preparation, exogenous energy-generating system and supernatant fraction containing activating enzymes.  相似文献   

18.
一种新香菇病毒基因组部分cDNA序列及病毒RT-PCR检测   总被引:4,自引:0,他引:4  
本文报道从香菇菌丝体和子实体中分离到一种大小约20nm×(100-200)nm的杆形病毒颗粒,病毒基因组是大小约8.0kb的dsRNA。对病毒基因组部分cDNA序列进行克隆,完成1457bp的核酸序列测定(Accession No:GQ372842),该序列含1个不完整ORF,编码314个氨基酸残基,推测为病毒RNA聚合酶部分序列。病毒基因组部分cDNA序列与GenBank中的已知核酸序列无明显同源性,表明它可能是新发现食用真菌病毒。为了对实验室和野外的香菇病毒进行快速检测,我们根据得到的病毒基因组部分cDNA序列设计特异性引物,建立了一种方便、有效检测香菇病毒的RT-PCR方法,对感染病毒异常菌丝体中的病毒成功地进行了检测。  相似文献   

19.
Summary We describe the first example of a recombination-specific protein induced during the development of competence for transformation in Streptococcus sanguis. Elaborated in response to stimulation by competence-protein, the 51,000 Molecular Weight (MW) polypeptide is one of at least 10 new polypeptides transiently induced during the competence phase. Biochemical and genetic analyses of the parental, cipA+ (competence specific inducible polypeptide A), and mutant, cipA, strains have shown that the 51,000 MW polypeptide has two roles: its low level constitutive synthesis is required for repair of damage to DNA due to UV light and methylmethane sulfonate; its induced synthesis (3–6x104 copies/cell) during the competence phase is essential for promoting recombination between donor single-stranded DNA and the recipient chromosome. Also, ccc plasmid donor DNA transformation, which occurs as a decreasing probability of the increasing donor plasmid MW, requires the inducible function specified by the 51,000 MW polypeptide. The MW independent low level transformation with ccc plasmids, the inheritance of plasmids by conjugation, and the stable maintenance of plasmids introduced by transformation and conjugation, respectively, are independent of the function specified by the 51,000 MW polypeptide.  相似文献   

20.
An attempt has been made to identify proteins synthesised during induction of teichoic acid synthesis in Bacillus licheniformis ATCC 9945. The proteins are recognised as those produced on the change from teichuronic acid to teichoic acid synthesis that occurs after the transfer of the bacteria from phosphate-limited to phosphate-rich conditions. B. licheniformis was grown in phosphate-limiting conditions in the presence of threonine to stimulate threonine uptake. The bacteria were then transferred to phosphate-rich conditions and were pulsed-labelled with [14C]threonine during the change to teichoic acid synthesis. All of the proteins were extracted from the cells with sodium dodecyl sulphate and were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Radioactive polypeptides were identified by fluorography of the polyacrylamide gels. The radioactive polypeptides that were formed on change from teichuronic acid to teichoic acid synthesis were compared with the polypeptides present in a membrane sub-fraction that had high teichoic acid-synthesising activity. The labelling of nine polypeptides with [14C]threonine was dependent on new RNA synthesis. Of these nine polypeptides, five were also present in the membrane sub-fraction with the highest teichoic acid-synthesising activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号