首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recombinant mucin O-glycosylation reporter protein, containing 1.7 tandem repeats (TRs) from the transmembrane mucin MUC1, was constructed. The reporter protein, MUC1(1.7TR)-IgG2a, was produced in CHO-K1 cells to study the glycosylation of the MUC1 TR and the in vivo role of polypeptide-GalNAc-T4 glycosyltransferase. N-terminal sequencing of MUC1(1.7TR)-IgG2a showed that all five potential O-glycosylation sites within the TR were used, with an average density of 4.5 glycans per repeat. The least occupied site was Thr in the PDTR motif, where 75% of the molecules were glycosylated, compared to 88-97% at the other sites. This glycan density was confirmed by an alternative liquid chromatography-mass spectrometry (LC-MS) based approach. The O-linked oligosaccharides were released from MUC1(1.7TR)-IgG2a and analyzed by nano-LC-MS and LC-MS/MS. Four oligosaccharides were present, NeuAcalpha2-3Galbeta1-3GalNAcol, NeuAcalpha2-3Galbeta1-3(NeuAcalpha2-6)GalNAcol, Galbeta1-3(NeuAcalpha2-6)GalNAcol, and Galbeta1-3GalNAcol, the two first being most abundant. Coexpression of the human polypeptide-GalNAc-T4 transferase with MUC1(1.7TR)-IgG2a increased the glycan occupancy at Thr in PDTR, Ser in VTSA, and Ser in GSTA, supporting the function of GalNAc-T4 proposed from previous in vitro studies. The expression of GalNAc-T4 with a mutation in the first lectin domain (alpha) had no glycosylation effect on PDTR and GSTA but surprisingly gave a dominant negative effect with a decreased glycosylation to around 50% at the Ser in VTSA. The results show that introduction of glycosyltransferases can specifically alter the sites for O-glycosylation in vivo.  相似文献   

2.
Brokx RD  Revers L  Zhang Q  Yang S  Mal TK  Ikura M  Gariépy J 《Biochemistry》2003,42(47):13817-13825
The human glycoprotein MUC1 mucin plays a critical role in cancer progression. Breast, ovarian, and colon cancer cells often display unique cell-surface antigens corresponding to aberrantly glycosylated forms of the MUC1 tandem repeat. In this report, (15)N- and (13)C-labeled forms of a recombinant MUC1 construct containing five tandem repeats were used as substrates to define the order and kinetics of addition of N-acetylgalactosamine (GalNAc) moieties by a recombinant active form of the human enzyme UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase I (ppGalNAc-T1; residues 40-559). Heteronuclear NMR experiments were performed to assign resonances associated with the two serines (Ser5 and Ser15) and three threonines (Thr6, Thr14, and Thr19) present in the 20-residue long MUC1 repeat. The kinetics and order of addition of GalNAc moieties (Tn antigen) on the MUC1 construct by human ppGalNAc-T1 were subsequently dissected by NMR spectroscopy. Threonine 14 was shown to be rapidly glycosylated by ppGalNAc-T1 with an initial rate of 25 microM/min, followed by Thr6 (8.6 microM/min). The enzyme also modified Ser5 at a slower rate (1.7 microM/min), an event that started only after the glycosylation of Thr14 and Thr6 side chains was mostly completed. Ser15 and Thr19 remained unglycosylated by ppGalNAc-T1. Corresponding O-glycosylation sites within all five tandem repeats were simultaneously modified by ppGalNAc-T1, suggesting that each repeat behaves as an independent substrate unit. This study demonstrated that the hydroxyl oxygens of Thr14 and to a lesser extent Thr 6 represent the two dominant substrates modified by ppGalNAc-T1 within the context of a complex MUC1 peptide substrate. More importantly, the availability of defined isotopically labelled MUC1 glycopeptide substrates and the relative simplicity of their NMR spectra will facilitate the analysis of other transferases within the O-glycosylation pathways and the rational design of tumor-associated MUC1 antigens.  相似文献   

3.
A novel member of the human UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase gene family, designated GalNAc-T7, was cloned and expressed. GalNAc-T7 exhibited different properties compared to other characterized members of this gene family, in showing apparent exclusive specificity for partially GalNAc-glycosylated acceptor substrates. GalNAc-T7 showed no activity with a large panel of non-glycosylated peptides, but was selectively activated by partial GalNAc glycosylation of peptide substrates derived from the tandem repeats of human MUC2 and rat submaxillary gland mucin. The function of GalNAc-T7 is suggested to be as a follow-up enzyme in the initiation step of O-glycosylation.  相似文献   

4.
Mucin O-glycosylation in cancer is characterized by aberrant expression of immature carbohydrate structures leading to exposure of simple mucin-type carbohydrate antigens and peptide epitopes. Glycosyltransferases controlling the initial steps of mucin O-glycosylation are responsible for the altered glycosylation observed in cancer. We studied the expression in gastric cell lines of six UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-T1, T2, T3, T4, T6, T11) that catalyze the initial key step in the regulation of mucin O-glycosylation, the transfer of GalNAc from UDP-GalNAc to serine and threonine residues. We also studied the expression of ST6GalNAc-I, the enzyme responsible for the synthesis of Sialyl-Tn antigen (NeuAcalpha2,6GalNAc) and the ST3Gal-I, the enzyme responsible for the synthesis of Sialyl-T antigen (NeuAcalpha2,3Galbeta1,3GalNAc). This study was done using specific monoclonal antibodies, enzymatic assays, and RT-PCR. Our results showed that GalNAc-T1, -T2, and -T3 have an ubiquitous expression in all gastric cell lines, whereas GalNAc-T4, -T6, and -T11 show a restricted expression pattern. The immunoreactivity with MAb VU-2-G7 suggests that, apart from GalNAc-T4, another GalNAc transferase is involved in the glycosylation of the Thr in the PDTR region of the MUC1 tandem repeat. The expression of ST3Gal-I correlates with the expression of the Sialyl-T antigen in gastric cell lines and in the control cell lines studied. The expression of ST6GalNAc-I is low in gastric cell lines, in accordance with the low/absent expression of the Sialyl-Tn antigen.  相似文献   

5.
The site-specific O-glycosylation of MUC1 tandem repeat peptides from secretory mucin of T47D breast cancer cells was analyzed. After affinity isolation on immobilized BC3 antibody, MUC1 was partially deglycosylated by enzymatic treatment with alpha-sialidase/beta-galactosidase and fragmented by proteolytic cleavage with the Arg-C-specific endopeptidase clostripain. The PAP20 glycopeptides were isolated by reversed phase high pressure liquid chromatography and subjected to the structural analyses by quadrupole time-of-flight electrospray ionization mass spectrometry and to the sequencing by Edman degradation. All five positions of the repeat peptide were revealed as O-glycosylation targets in the tumor cell, including the Thr within the DTR motif. The degree of substitution was estimated to average 4.8 glycans per repeat, which compares to 2.6 glycosylated sites per repeat for the mucin from milk (Müller, S., Goletz, S., Packer, N., Gooley, A. A., Lawson, A. M., and Hanisch, F.-G. (1997) J. Biol. Chem. 272, 24780-24793). In addition to a modification by glycosylation, the immunodominant DTR motif on T47D-MUC1 is altered by amino acid replacements (PAPGSTAPAAHGVTSAPESR), which were revealed in about 50% of PAP20 peptides. The high incidence of these replacements and their detection also in other cancer cell lines imply that the conserved tandem repeat domain of MUC1 is polymorphic with respect to the peptide sequence.  相似文献   

6.
The tandem repeat of the MUC1 protein core is a major site of O-glycosylation that is catalyzed by several polypeptide GalNAc-transferases. To define structural features of the peptide substrates that contribute to acceptor substrate efficiency, solution structures of the 21-residue peptide AHGVTSAPDTRPAPGSTAPPA (AHG21) from the MUC1 protein core and four isoforms, glycosylated with alpha-N-acetylgalactosamine on corresponding Thr residues, AHG21 (T5), AHG21 (T10), AHG21 (T17), and AHG21 (T5,T17), were investigated by NMR spectroscopy and computational methods. NMR studies revealed that sugar attachment affected the conformational equilibrium of the peptide backbone near the glycosylated Thr residues. The clustering of the low-energy conformations for nonglycosylated and glycosylated counterparts within the VTSA, DTR, and GSTA fragments (including all sites of potential glycosylation catalyzed by GalNAc-T1, -T2, and -T4 transferases) showed that the glycosylated peptides display distinct structural propensities that may explain, in part, the differences in substrate specificities exhibited by these polypeptide GalNAc-transferases.  相似文献   

7.
Mucin type O-glycosylation begins with the transfer of GalNAc to serine and threonine residues on proteins by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminlytransferases. These enzymes all contain a lectin-like (QXW)(3) repeat sequence at the C terminus that consists of three tandem repeats (alpha, beta, and gamma). The putative lectin domain of one of the most ubiquitous isozymes, GalNAc-T1, is reportedly not functional. In this report, we have reevaluated the role of the GalNAc-T1 lectin domain. Deletion of the lectin domain resulted in a complete loss of enzymatic activity. We also found that GalNAc-T1 has two activities distinguished by their sensitivities to inhibition with free GalNAc; one activity is sensitive, and the other is resistant. In our experiments, the former activity is represented by the O-glycosylation of apomucin, an acceptor that contains multiple glycosylation sites, and the latter is represented by synthetic peptides that contain a single glycosylation site. Site-directed mutagenesis of the lectin domain selectively reduced the former activity and identified Asp(444) in the alpha repeat as the most important site for GalNAc recognition. A further reduction of the GalNAc-inhibitable activity was observed when both Asp(444) and the corresponding aspartate residues in the beta and the gamma repeats were mutated. This suggests a cooperative involvement of each repeat unit in the glycosylation of polypeptides with multiple acceptor sites.  相似文献   

8.
The MUC1 mucin represents a prime target antigen for cancer immunotherapy because it is abundantly expressed and aberrantly glycosylated in carcinomas. Attempts to generate strong humoral immunity to MUC1 by immunization with peptides have generally failed partly because of tolerance. In this study, we have developed chemoenzymatic synthesis of extended MUC1 TR glycopeptides with cancer-associated O-glycosylation using a panel of recombinant human glycosyltransferases. MUC1 glycopeptides with different densities of Tn and STn glycoforms conjugated to KLH were used as immunogens to evaluate an optimal vaccine design. Glycopeptides with complete O-glycan occupancy (five sites per repeat) elicited the strongest antibody response reacting with MUC1 expressed in breast cancer cell lines in both Balb/c and MUC1.Tg mice. The elicited humoral immune response showed remarkable specificity for cancer cells suggesting that the glycopeptide design holds promise as a cancer vaccine. The elicited immune responses were directed to combined glycopeptide epitopes, and both peptide sequence and carbohydrate structures were important for the antigen. A MAb (5E5) with similar specificity as the elicited immune response was generated and shown to have the same remarkable cancer specificity. This antibody may hold promise in diagnostic and immunopreventive measures.  相似文献   

9.
Protein glycosylation is an important post-translational modification underlying host-parasite interactions, which may determine the outcome of infection. Although Mesocestoides vogae represents an important model for investigating the various aspects of cestode biology, virtually no information is available about the structure and synthesis of glycans in this parasite. In this work, focused on the initiation pathway of mucin-type O-glycosylation in M. vogae, we characterized O-glycoproteins bearing the simple mucin-type cancer-associated Tn and sialyl-Tn antigens, and the expression and activity of ppGalNAc-T, the key enzyme responsible for the first step of mucin-type O-glycosylation. Using immunohistochemistry, Tn and sialyl-Tn antigens were detected mainly in the tegument (microtriches) and in parenchymal cells. Tn expression was also observed in lateral nerve cords. Both Tn and sialyl-Tn antigens were detected in in vitro cultured parasites. Based on their electrophoretic mobility, Tn- and sialyl-Tn-bearing glycoproteins from M. vogae were separated into several components of 22 to 60 kDa. The observation that Tn and sialyl-Tn glycoproteins remained in the 0.6N perchloric acid-soluble fraction suggested that they could be good candidates for characterizing mucin-type glycosylation in this parasite. O-glycoproteins were purified and initially characterized using a proteomic approach. Immunohistochemical analysis of the tissue distribution of ppGalNAc-T revealed that this enzyme is expressed in the sub-tegumental region and in the parenchyma of the parasite. In M. vogae cultured in vitro, ppGalNAc-T was mainly detected in the suckers. Using a panel of 8 acceptor substrate synthetic peptides, we found that M. vogae ppGalNAc-T preferentially glycosylate threonine residues, the best substrates being peptides derived from human mucin MUC1 and from Trypanosoma cruzi mucin. These results suggest that M. vogae might represent a useful model to study O-glycosylation, and provide new research avenues for future studies on the glycopathobiology of helminth parasites.  相似文献   

10.
In vivo glycosylation of mucin tandem repeats.   总被引:4,自引:0,他引:4  
The biochemical and biophysical properties of mucins are largely determined by extensive O-glycosylation of serine- and threonine-rich tandem repeat (TR) domains. In a number of human diseases aberrant O-glycosylation is associated with variations in the properties of the cell surface-associated and secreted mucins. To evaluate in vivo the O-glycosylation of mucin TR domains, we generated recombinant chimeric mucins with TR sequences from MUC2, MUC4, MUC5AC, or MUC5B, which were substituted for the native TRs of epitope-tagged MUC1 protein (MUC1F). These hybrid mucins were extensively O-glycosylated and showed the expected association with the cell surface and release into culture media. The presence of different TR domains within the chimeric mucins appears to have limited influence on their posttranslational processing. Alterations in glycosylation were detailed by fast atom bombardment mass spectrometry and reactivity with antibodies against particular blood-group and tumor-associated carbohydrate antigens. Future applications of these chimeras will include investigations of mucin posttranslational modification in the context of disease.  相似文献   

11.
The cause of the mucus clearance problems associated with cystic fibrosis remains poorly understood though it has been suggested that mucin hypersecretion, dehydration of mucins, and biochemical abnormalities in the glycosylation of mucins may be responsible. Since the biochemical and biophysical properties of a mucin are dependent on O-glycosylation, our aim was to evaluate the O-glycosylation of a single mucin gene product in matched pairs of cells that differed with respect to CFTR expression. An epitope-tagged MUC1 mucin cDNA (MUC1F) was used to detect variation in mucin glycosylation in stably transfected colon carcinoma cell lines HT29 and Caco2. The glycosylation of MUC1F mucin was evaluated in matched pairs of Caco2 cell lines that either express wild-type CFTR or have spontaneously lost CFTR expression. The general glycosylation pattern of MUC1F was evaluated by determining its reactivity with a series of monoclonal antibodies against known blood group and tumor-associated carbohydrate antigens. Metabolic labeling experiments were used to estimate the gross levels of glycosylation and sulfation of MUC1F mucin in these matched pairs of cell lines. Expression of CFTR in this experimental system did not affect the gross levels of glycosylation or sulfation of the MUC1F mucin nor the types of carbohydrates structures attached to the MUC1F protein.  相似文献   

12.
The human mucin MUC1 is expressed both as a transmembrane heterodimeric protein complex that recycles via the trans-Golgi network (TGN) and as a secreted isoform. To determine whether differences in cellular trafficking might influence the O-glycosylation profiles on these isoforms, we developed a model system consisting of membrane-bound and secretory-recombinant glycosylation probes. Secretory MUC1-S contains only a truncated repeat domain, whereas in MUC1-M constructs this domain is attached to the native transmembrane and cytoplasmic domains of MUC1 either directly (M0) or via an intermitting nonfunctional (M1) or functional sperm protein-enterokinase-agrin (SEA) module (M2); the SEA module contains a putative proteolytic cleavage site and is associated with proteins receiving extensive O-glycosylation. We showed that MUC1-M2 simulates endogenous MUC1 by recycling from the cell surface of Chinese hamster ovary (CHO) mutant ldlD14 cells through intracellular compartments where its glycosylation continues. The profiles of O-linked glycans on MUC1-S secreted by epithelial EBNA-293 and MCF-7 breast cancer cells revealed patterns dominated by core 2-based oligosaccharides. In contrast, the respective membrane-shed probes expressed in the same cells showed a complete shift to patterns dominated by sialyl core 1. In conclusion, glycan core profiles reflected the subcellular trafficking pathways of the secretory or membranous probes and the modifying activities of the resident glycosyltransferases.  相似文献   

13.
Mucin-type O-glycosylation is an important post-translational modification that confers a variety of biological properties and functions to proteins. This post-translational modification has a particularly complex and differentially regulated biosynthesis rendering prediction and control of where O-glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity. Transient expression of a Pseudomonas aeruginosa Glc(NAc) C4-epimerase and a human polypeptide GalNAc-transferase in leaves of Nicotiana benthamiana resulted in GalNAc O-glycosylation of co-expressed human O-glycoprotein substrates. A chimeric YFP construct containing a 3.5 tandem repeat sequence of MUC1 was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon α2b. In plants, prolines in certain classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host cell for production of recombinant O-glycoproteins with custom-designed O-glycosylation. The observed hydroxyproline modifications, however, call for additional future engineering efforts.  相似文献   

14.
The factors determining glycosylation of mucin type glycoproteins are not well understood. In the present work, we investigated the role of the peptide moiety and of the presence of O-glycan chains on O-glycosylation by UDP-GalNAc: polypeptide -N-acetylgalactosaminyl-transferase (ppGalNAc-T). We used purified ppGalNAc-T from bovine colostrum and a series of synthetic glycopeptide and peptide substrates most of which contained sequences derived from the tandem repeat region of MUC2 mucin. The rate of incorporation of GalNAc into Thr was significantly greater than toward Ser residues. The presence of one or two GalNAc-Thr moieties in the substrate significantly reduced enzyme activity, and this effect was more pronounced when the disaccharide Gal1–3GalNAc was present. Thus the sequential attachment of a second GalNAc residue in the vicinity of a pre-existing GalNAc-Thr or Gal1–3GalNAc-Thr occurs at a slower rate than primary glycosylation of carbohydrate-free peptide. Analysis of products by HPLC showed that the enzyme was selective in glycosylating peptides or glycopeptides with the PTTTPIST sequence in that the preferred primary glycosylation site was the third Thr from the aminoterminal end; secondary glycosylation depended on the site of the primary glycosylation. Negatively but not positively charged amino acids on the carboxy-terminal side of the putative secondary glycosylation site resulted in high activity suggesting charge-charge interactions of substrates with the enzyme. These studies indicate that O-glycosylation by bovine colostrum ppGalNAc-T is a selective process dependent on both the amino acid sequence and prior glycosylation of peptide substrates.Abbreviations Gal G,d-galactose - GalNac N-acetyl-d-galactosamine - HPLC high performance liquid chromatography - ppGalNAc-T UDP-GalNAc: polypeptide -GalNAc-transferase EC 2.4.1.41 - SerGalNAc GalNAc-Ser - ThrGalNac GalNAc-Thr  相似文献   

15.
The cell membrane mucin MUC1 is over-expressed and aberrantly glycosylated in many cancers, and cancer-associated MUC1 glycoforms represent potential targets for immunodiagnostic and therapeutic measures. We have recently shown that MUC1 with GalNAcalpha1-O-Ser/Thr (Tn) and NeuAcalpha2-6GalNAcalpha1-O-Ser/Thr (STn) O-glycosylation is a cancer-specific glycoform, and that Tn/STn-MUC1 glycopeptide-based vaccines can override tolerance in human MUC1 transgenic mice and induce humoral immunity with high specificity for MUC1 cancer-specific glycoforms (Sorensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, et al. 2006. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology. 16:96-107). In order to further characterize the immune response to Tn/STn-MUC1 glycoforms, we generated monoclonal antibodies with specificity similar to the polyclonal antibody response found in transgenic mice. In the present study, we define the immunodominant epitope on Tn/STn-MUC1 glycopeptides to the region including the amino acids GSTA of the MUC1 20-amino acid tandem repeat (HGVTSAPDTRPAPGSTAPPA). Most other MUC1 antibodies are directed to the PDTR region, although patients with antibodies to the GSTA region have been identified. A panel of other MUC1 glycoform-specific monoclonal antibodies was included for comparison. The study demonstrates that the GSTA region of the MUC1 tandem repeat contains a highly immunodominant epitope when presented with immature short O-glycans. The cancer-specific expression of this glycopeptide epitope makes it a prime candidate for immunodiagnostic and therapeutic measures.  相似文献   

16.
Glycosylation determines essential biological functions of epithelial mucins in health and disease. We report on the influence of glycosylation of the immunodominant DTR motif of MUC1 on its antigenicity. Sets of novel glycopeptides were synthesized that enabled us to examine sole and combined effects of peptide length (number of repeats) and O-glycosylation with GalNAc at the DTR motif on the binding patterns of 22 monoclonal antibodies recognizing this motif. In case of unglycosylated peptides almost all antibodies bound better to multiple MUC1 tandem repeats. Glycosylation at the DTR led to enhanced binding in 11 cases, whereas 10 antibodies were not influenced in binding, and one was inhibited. In nine of the former cases both length and DTR glycosylation were additive in their influence on antibody binding, suggesting that both effects are different. Improved binding to the glycosylated DTR motif was exclusively found with antibodies generated against tumor-derived MUC1. Based on these data a tumor-specific MUC1 epitope is defined comprising the ...PDTRP... sequence in a particular conformation essentially determined by O-glycosylation at its threonine with either GalNAcalpha1 or a related short glycan. The results can find application in the field of MUC1-based immunotherapy.  相似文献   

17.
MUC1 and cancer   总被引:25,自引:0,他引:25  
The MUC1 membrane mucin was first identified as the molecule recognised by mouse monoclonal antibodies directed to epithelial cells, and the cancers which develop from them. Cloning the gene showed that the extracellular domain is made up of highly conserved repeats of 20 amino acids, the actual number varying between 25 and 100 depending on the allele. Each tandem repeat contains five potential glycosylation sites, and between doublets of threonines and serines lies an immunodominant region which contains the epitopes recognised by most of the mouse monoclonal antibodies. The O-glycans added to the mucin produced by the normal breast are core 2 based and can be complex, while the O-glycans added to the breast cancer mucin are mainly core 1 based. This means that some core protein epitopes in the tandem repeat which are masked in the normal mucin are exposed in the cancer associated mucin. Since novel carbohydrate epitopes are also carried on the breast cancer mucin, the molecule is antigenically distinct from the normal breast mucin. (Changes in glycosylation in other epithelial cancers have been observed but are not so well documented.) Immune responses to MUC1 have been seen in breast and ovarian cancer patients and clinical studies have been initiated to evaluate the use of antibodies to MUC1 and of immunogens based on MUC1 for immunotherapy of these patients. The role of the carbohydrates in the immune response and in other interactions with the effector cells of the immune system is of particular interest and is discussed.  相似文献   

18.
Aberrant mucin O-glycosylation is often observed in cancer and is characterized by the expression of immature simple mucin-type carbohydrate antigens. UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-6 (ppGalNAc-T6) is one of the enzymes responsible for the initial step in O-glycosylation. This study evaluated the expression of ppGalNAc-T6 in human gastric mucosa, intestinal metaplasia, and gastric carcinomas. Our results showed that ppGalNAc-T6 is expressed in normal gastric mucosa and in intestinal metaplasia. A heterogeneous expression and staining pattern for this enzyme was observed in gastric carcinomas. ppGalNAc-T6 was expressed in 79% of the cases, and its expression level was associated with the presence of venous invasion. Our results provide evidence that ppGalNAc-T6 is an IHC marker associated with venous invasion in gastric carcinoma and may contribute to the understanding of the molecular mechanisms that underlie aberrant glycosylation in gastric carcinogenesis and in gastric carcinoma.  相似文献   

19.
Knowledge about the O-linked glycan chains of tumor-associated MUC1 is primarily based on enzymatic and immunochemical evidence. To obtain structural information and to overcome limitations by the scarcity of endogenous mucin, we expressed a recombinant glycosylation probe corresponding to six MUC1 tandem repeats in four breast cancer cell lines. Comparative analyses of the O-glycan profiles were performed after hydrazinolysis and normal phase chromatography of 2-aminobenzamide-labeled glycans. Except for a general reduction in the O-glycan chain lengths and a high density glycosylation, no common structural pattern was revealed. T47D fusion protein exhibits an almost complete shift from core 2 to core 1 expression with a preponderance of sialylated glycans. By contrast, MCF-7, MDA-MB231, and ZR75-1 cells glycosylate the MUC1 repeat peptide preferentially with core 2-based glycans terminating mostly with alpha 3-linked sialic acid (MDA-MB231, ZR75-1) or alpha 2/3-linked fucose (MCF-7). Endogenous MUC1 from T47D and MCF-7 cell supernatants revealed almost identical O-glycosylation profiles compared with the respective recombinant probes, indicating that the fusion proteins reflected the authentic O-glycan profiles of the cells. The structural patterns in the majority of cells under study are in conflict with biosynthetic models of MUC1 O-glycosylation in breast cancer, which claim that the truncation of normal core 2-based polylactosamine structures to short sialylated core 1-based glycans is due to the reduced activity of core 2-forming beta 6-N-acetylglucosaminyltransferases and/or to overexpression of competitive alpha 3- sialyltransferase.  相似文献   

20.
Two series of glycopeptides with mono- and disaccharides, [GalNAc and Galbeta (1-3)GalNAc] O-linked to serine and threonine at one, two or three contiguous sites were synthesized and characterized by 1H NMR. The conformational effects governed by O-glycosylation were studied and compared with the corresponding non-glycosylated counterparts using NMR, CD and molecular modelling. These model peptides encompassing the aa sequence, PAPPSSSAPPE (series I) and APPETTAAPPT (series II) were essentially derived from a 23-aa tandem repeat sequence of low molecular weight human salivary mucin (MUC7). NOEs, chemical shift perturbations and temperature coefficients of amide protons in aqueous and nonaqueous media suggest that carbohydrate moiety in threonine glycosylated peptides (series II) is in close proximity to the peptide backbone. An intramolecular hydrogen bonding between the amide proton of GalNAc or Galbeta (1-3)GalNAc and the carbonyl oxygen of the O-linked threonine residue is found to be the key structure stabilizing element. The carbohydrates in serine glycosylated peptides (series I), on the other hand, lack such intramolecular hydrogen bonding and assume a more apical position, thus allowing more rotational freedom around the O-glycosidic bond. The effect of O-glycosylation on peptide backbone is clearly reflected from the observed overall differences in sequential NOEs and CD band intensities among the various glycosylated and non-glycosylated analogues. Delineation of solution structure of these (glyco)peptides by NMR and CD revealed largely a poly L-proline type II and/or random coil conformation for the peptide core. Typical peptide fragments of tandem repeat sequence of mucin (MUC7) showing profound glycosylation effects and distinct differences between serine and threonine glycosylation as observed in the present investigation could serve as template for further studies to understand the multifunctional role played by mucin glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号