首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.

Background

The transporters for dopamine (DAT) and norepinephrine (NET) are members of the Na+- and Cl-dependent neurotransmitter transporter family SLC6. There is a line of evidence that alternative splicing results in several isoforms of neurotransmitter transporters including NET. However, its relevance to the physiology and pathology of the neurotransmitter reuptake system has not been fully elucidated.

Methodology/Principal Findings

We found novel isoforms of human DAT and NET produced by alternative splicing in human blood cells (DAT) and placenta (NET), both of which lacked the region encoded by exon 6. RT-PCR analyses showed a difference in expression between the full length (FL) and truncated isoforms in the brain and peripheral tissues, suggesting tissue-specific alternative splicing. Heterologous expression of the FL but not truncated isoforms of DAT and NET in COS-7 cells revealed transport activity. However, immunocytochemistry with confocal microscopy and a cell surface biotinylation assay demonstrated that the truncated as well as FL isoform was expressed at least in part in the plasma membrane at the cell surface, although the truncated DAT was distributed to the cell surface slower than FL DAT. A specific antibody to the C-terminus of DAT labeled the variant but not FL DAT, when cells were not treated with Triton for permeabilization, suggesting the C-terminus of the variant to be located extracellulary. Co-expression of the FL isoform with the truncated isoform in COS-7 cells resulted in a reduced uptake of substrates, indicating a dominant negative effect of the variant. Furthermore, an immunoprecipitation assay revealed physical interaction between the FL and truncated isoforms.

Conclusions/Significance

The unique expression and function and the proposed membrane topology of the variants suggest the importance of isoforms of catecholamine transporters in monoaminergic signaling in the brain and peripheral tissues.  相似文献   

3.
4.
The 14-3-3 proteins, originally described as mammalian brain proteins, are ubiquitous in eukaryotes. We isolated an Arabidopsis 14-3-3 gene, designated GRF1-GF14 chi (for general regulatory factor1-G-box factor 14-3-3 homolog isoform chi), and characterized its expression within plant tissues. Sequence comparison of the GRF1-GF14 chi genomic clone with other 14-3-3 proteins demonstrated that the extreme conservation of 14-3-3 residues in several domains is encoded by the first three exons. The highly variable C-terminal domain is encoded by a divergent fourth exon that is unique among 14-3-3 homologs, suggesting that exon shuffling might confer gene-specific functions among the isoforms. The anatomical distribution and developmental expression of the Arabidopsis 14-3-3 protein were examined in transgenic plants carrying a GRF1-GF14 chi promoter-beta-glucuronidase construct. GF14 chi promoter activity was observed in the roots of both seedlings and mature plants. In immature flowers, GF14 chi promoter activity was localized to the buds. However, as the flowers matured, GF14 chi promoter activity was restricted to the stigma, anthers, and pollen. In immature siliques, GF14 chi promoter activity was initially localized to styles and abscission zones but was subsequently observed throughout mature siliques. In situ hybridization demonstrated that GF14 chi mRNA expression was prominent in epidermal tissue of roots, petals, and sepals of flower buds, papillae cells of flowers, siliques, and endosperm of immature seeds. Thus, plant 14-3-3 gene expression exhibits cell- and tissue-specific localization rivaling that observed for 14-3-3 proteins within the mammalian brain.  相似文献   

5.
Molecular evolution of the 14-3-3 protein family   总被引:9,自引:0,他引:9  
Members of the highly conserved and ubiquitous 14-3-3 protein family modulate a wide variety of cellular processes. To determine the evolutionary relationships among specific 14-3-3 proteins in different plant, animal, and fungal species and to initiate a predictive analysis of isoform-specific differences in light of the latest functional and structural studies of 14-3-3, multiple alignments were constructed from forty-six 14-3-3 sequences retrieved from the GenBank and SwissProt databases and a newly identified second 14-3-3 gene fromCaenorhabditis elegans. The alignment revealed five highly conserved sequence blocks. Blocks 2–5 correlate well with the alpha helices 3, 5, 7, and 9 which form the proposed internal binding domain in the three-dimensional structure model of the functioning dimer. Amino acid differences within the functional and structural domains of plant and animal 14-3-3 proteins were identified which may account for functional diversity amongst isoforms. Protein phylogenic trees were constructed using both the maximum parsimony and neighbor joining methods of the PHYLIP(3.5c) package; 14-3-3 proteins fromEntamoeba histolytica, an amitochondrial protozoa, were employed as an outgroup in our analysis. Epsilon isoforms from the animal lineage form a distinct grouping in both trees, which suggests an early divergence from the other animal isoforms. Epsilons were found to be more similar to yeast and plant isoforms than other animal isoforms at numerous amino acid positions, and thus epsilon may have retained functional characteristics of the ancestral protein. The known invertebrate proteins group with the nonepsilon mammalian isoforms. Most of the current 14-3-3 isoform diversity probably arose through independent duplication events after the divergence of the major eukaryotic kingdoms. Divergence of the seven mammalian isoforms beta, zeta, gamma, eta, epsilon, tau, and sigma (stratifin/ HME1) occurred before the divergence of mammalian and perhaps before the divergence of vertebrate species. A possible ancestral 14-3-3 sequence is proposed. Correspondence to: D.C. Shakes  相似文献   

6.
The 14-3-3s are a ubiquitous class of eukaryotic proteins that participate in a second regulatory step in many phosphorylation-based signal transduction systems. The Arabidopsis family of 14-3-3 proteins represents a rather large 14-3-3 gene family. The biological motive for such diversity within a single protein family is not yet completely understood. The work presented here utilizes 14-3-3 micro-affinity chromatography in conjunction with Fourier transform ion cyclotron resonance mass spectrometry to survey the substrate sequence selectivity of two Arabidopsis 14-3-3 isoforms that represent the two major subclasses of this protein family. A method was developed to compare the relative binding of eight synthetic phosphopeptide sequences. The degree to which each phosphopeptide bound to either isoform was assigned a relative value, defined here as the binding ratio. The method provided a simple means for visualizing differences in substrate sequence selection among different 14-3-3 isoforms. A reproducible preference for specific phosphopeptide sequences was measured for both isoforms. This binding preference was consistent among the two classes of isoforms, suggesting that any pressure for isoform selectivity must reside outside the central core that interacts with the phosphopeptide sequence of the client.  相似文献   

7.
The 14-3-3 family of proteins is widely distributed in the CNS where they are major regulators of essential neuronal functions. There are seven known mammalian 14-3-3 isoforms (ζ,, τ, ϵ, η, β, and σ), which generally function as adaptor proteins. Previously, we have demonstrated that 14-3-3ϵ isoform dynamically regulates forward trafficking of GluN2C-containing NMDA receptors (NMDARs) in cerebellar granule neurons, that when expressed on the surface, promotes neuronal survival following NMDA-induced excitotoxicity. Here, we report 14-3-3 isoform-specific binding and functional regulation of GluN2C. In particular, we show that GluN2C C-terminal domain (CTD) binds to all 14-3-3 isoforms except 14-3-3σ, and binding is dependent on GluN2C serine 1096 phosphorylation. Co-expression of 14-3-3 (ζ and ϵ) and GluN1/GluN2C promotes the forward delivery of receptors to the cell surface. We further identify novel residues serine 145, tyrosine 178, and cysteine 189 on α-helices 6, 7, and 8, respectively, within ζ-isoform as part of the GluN2C binding motif and independent of the canonical peptide binding groove. Mutation of these conserved residues abolishes GluN2C binding and has no functional effect on GluN2C trafficking. Reciprocal mutation of alanine 145, histidine 180, and isoleucine 191 on 14-3-3σ isoform promotes GluN2C binding and surface expression. Moreover, inhibiting endogenous 14-3-3 using a high-affinity peptide inhibitor, difopein, greatly diminishes GluN2C surface expression. Together, these findings highlight the isoform-specific structural and functional differences within the 14-3-3 family of proteins, which determine GluN2C binding and its essential role in targeting the receptor to the cell surface to facilitate glutamatergic neurotransmission.  相似文献   

8.
14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1′ insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal α-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3 epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.  相似文献   

9.
Members of the 14-3-3 family of proteins participate in signal transduction by modulating flux through various pathways. Potential subfunctionalization within this family has produced a suite of related proteins with diverse client interactions and discrete localization. The associated study assesses the biological roles of two specific 14-3-3 isoforms, using genetic, biochemical and physiological assays to ascertain potential nodes of interaction. Arabidopsis T-DNA insertion mutants representing the ν and μ isoforms exhibited a short, yet clear delay in flowering time on long days. Tests of hypocotyl growth inhibition under narrow bandwidth light indicated a hyposensitivity to red light, while responses to blue and far-red light were normal. These physiological tests suggest a mechanistic link between 14-3-3 proteins, red light sensing, and the pathways that control photoperiodic flowering. The precise entry point into the pathway was assessed using yeast two hybrid assays targeted against specific proteins active in the circadian oscillator, light transduction and photoperiodic flowering. Yeast two hybrid interaction was observed with CONSTANS (CO), and then confirmed with coimmunoprecipitation. Functional interaction with phyB leading to defects in flowering time and direct interaction with CONSTANS circumstantially places these specific 14-3-3 isoforms into the pathway that regulates the transition between vegetative and floral development.Key words: isoform specificity, protein interaction, phosphorylation, signaling  相似文献   

10.
The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric molecules, expressed in all eukaryotic cells. In human cells, this family consists of seven distinct but highly homologous 14-3-3 isoforms. 14-3-3σ is the only isoform directly linked to cancer in epithelial cells, which is regulated by major tumor suppressor genes. For each 14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values. In this paper, we present a novel method for identifying peptide motifs binding to 14-3-3σ isoform. First, we propose a sampling criteria to build a predictor for each new peptide sequence. Then, we select nine physicochemical properties of amino acids to describe each peptide motif. We also use auto-cross covariance to extract correlative properties of amino acids in any two positions. Finally, we consider elastic net to predict affinity values of peptide motifs, based on ridge regression and least absolute shrinkage and selection operator (LASSO). Our method tests on the 1,000 known peptide motifs binding to seven 14-3-3 isoforms. On the 14-3-3σ isoform, our method has overall pearson-product-moment correlation coefficient (PCC) and root mean squared error (RMSE) values of 0.84 and 252.31 for N–terminal sublibrary, and 0.77 and 269.13 for C–terminal sublibrary. We predict affinity values of 16,000 peptide sequences and relative binding ability across six permutated positions similar with experimental values. We identify phosphopeptides that preferentially bind to 14-3-3σ over other isoforms. Several positions on peptide motifs are in the same amino acid category with experimental substrate specificity of phosphopeptides binding to 14-3-3σ. Our method is fast and reliable and is a general computational method that can be used in peptide-protein binding identification in proteomics research.  相似文献   

11.
12.
13.
Diversity of cytochrome P450 function is determined by the expression of multiple genes, many of which have a high degree of identity. We report that the use of alternate exons, each coding for 48 amino acids, generates isoforms of human CYP4F3 that differ in substrate specificity, tissue distribution, and biological function. Both isoforms contain a total of 520 amino acids. CYP4F3A, which incorporates exon 4, inactivates LTB4 by omega-hydroxylation (Km = 0.68 microm) but has low activity for arachidonic acid (Km = 185 microm); it is the only CYP4F isoform expressed in myeloid cells in peripheral blood and bone marrow. CYP4F3B incorporates exon 3 and is selectively expressed in liver and kidney; it is also the predominant CYP4F isoform in trachea and tissues of the gastrointestinal tract. CYP4F3B has a 30-fold higher Km for LTB4 compared with CYP4F3A, but it utilizes arachidonic acid as a substrate for omega-hydroxylation (Km = 22 microm) and generates 20-HETE, an activator of protein kinase C and Ca2+/calmodulin-dependent kinase II. Homology modeling demonstrates that the alternative exon has a position in the molecule which could enable it to contribute to substrate interactions. The results establish that tissue-specific alternative splicing of pre-mRNA can be used as a mechanism for changing substrate specificity and increasing the functional diversity of cytochrome P450 genes.  相似文献   

14.
Neurofibromatosis type 1 (NF1) is one of the most common heritable autosomal dominant disorders. Alternative splicing modulates the function of neurofibromin, the NF1 gene product, by inserting the in-frame exon 23a into the region of NF1 mRNA that encodes the GTPase-activating protein-related domain. This insertion, which is predominantly skipped in neurons, reduces the ability of neurofibromin to regulate Ras by 10-fold. Here, we report that the neuron-specific Hu proteins control the production of the short protein isoform by suppressing inclusion of NF1 exon 23a, while TIA-1/TIAR proteins promote inclusion of this exon. We identify two binding sites for Hu proteins, located upstream and downstream of the regulated exon, and provide biochemical evidence that Hu proteins specifically block exon definition by preventing binding of essential splicing factors. In vitro analyses using nuclear extracts show that at the downstream site, Hu proteins prevent binding of U1 and U6 snRNPs to the 5′ splice site, while TIAR increases binding. Hu proteins also decrease U2AF binding at the 3′ splice site located upstream of exon 23a. In addition to providing the first mechanistic insight into tissue-specific control of NF1 splicing, these studies establish a novel strategy whereby Hu proteins regulate RNA processing.  相似文献   

15.
We have previously demonstrated a high level of stratifin, also known as 14-3-3 sigma in differentiated keratinocyte cell lysate and conditioned medium (CM). In this study, we asked the question of whether other 14-3-3 isoforms are expressed in human dermal fibroblasts, keratinocytes, intact dermal and epidermal layers of skin. In order to address this question, total proteins extracted from cultured cells or skin layers were subjected to western blot analysis using seven different primary antibodies specific to well-known mammalian isoforms, beta, gamma, epsilon, eta, sigma, tau, and zeta of 14-3-3 protein family. The autoradiograms corresponding to each isoform were then quantified and compared. The results revealed the presence of very high levels of all seven isoforms in cultured keratinocyte and conditioned medium. With the exception of tau isoform, other 14-3-3 isoforms were also present in intact epidermal layer of normal skin. The profile of 14-3-3 proteins in whole skin was similar to that of epidermis. In contrast, only gamma 14-3-3 isoform, was present in dermal layer obtained from the same skin sample. On the other hand, cultured fibroblasts express a high level of beta, epsilon, gamma and eta and a low level of zeta and tau, but not sigma isoform. However, the levels of 14-3-3 epsilon, gamma and eta were barely detectable in fibroblast conditioned medium. Further, we also used immunohistochemical staining to identify the 14-3-3 isoform expressing cells in human skin sections. The finding revealed different expression profile for each of these isoforms mainly in differentiated keratinocytes located within the layer of lucidum. However, fibroblasts located within the dermal layer did not show any detectable levels of these proteins. In conclusion, all members of 14-3-3 proteins are expressed by cells of epidermal but not dermal layer of skins and that these proteins are mainly expressed by differentiated keratinocytes.  相似文献   

16.
17.
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.  相似文献   

18.
19.
The highly conserved family of 14-3-3 proteins function in the regulation of a wide variety of cellular processes. The presence of multiple 14-3-3 isoforms and the diversity of cellular processes regulated by 14-3-3 suggest functional isoform specificity of 14-3-3 isoforms in the regulation of target proteins. Indeed, several studies observed differences in affinity and functionality of 14-3-3 isoforms. However, the structural variation by which isoform specificity is accomplished remains unclear. Because other reports suggest that specificity is found in differential expression and availability of 14-3-3 isoforms, we used the nitrate reductase (NR) model system to analyse the availability and functionality of the three barley 14-3-3 isoforms. We found that 14-3-3C is unavailable in dark harvested barley leaf extract and 14-3-3A is functionally not capable to efficiently inhibit NR activity, leaving 14-3-3B as the only characterized isoform able to regulate NR in barley. Further, using site directed mutagenesis, we identified a single amino acid variation (Gly versus Ser) in loop 8 of the 14-3-3 proteins that plays an important role in the observed isoform specificity. Mutating the Gly residue of 14-3-3A to the alternative residue, as found in 14-3-3B and 14-3-3C, turned it into a potent inhibitor of NR activity. Using surface plasmon resonance, we show that the ability of 14-3-3A and the mutated version to inhibit NR activity correlates well with their binding affinity for the 14-3-3 binding motif in the NR protein, indicating involvement of this residue in ligand discrimination. These results suggest that both the availability of 14-3-3 isoforms as well as binding affinity determine isoform-specific regulation of NR activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号