首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
In a dnaCts mutant of E. coli, the reinitiation of DNA synthesis, which occurred by the shift of the culture from a restrictive temperature to a permissive temperature, was markedly prevented by habakacin, dibekacin, kanamycin, and gentamicin. On the contrary, chloramphenicol did not inhibit the reinitiation synthesis for 30 min. In a parallel experiment, leucine uptake into protein was profoundly blocked by chloramphenicol, but only slightly by habekacin. Habekacin did not significantly affect DNA elongation of the cells at a restrictive temperature. We propose that inhibition of initiation of replication by aminoglycoside antibiotics is related to their lethality.  相似文献   

2.
Membrane vesicles from Escherichia coli wild type and an otherwise isogenic dnaA mutant were used to immunize rabbits. In addition, a membrane protein fraction, containing the material found deficient in dnaA mutants, was purified by preparative polyacrylamide gel electrophoresis in sodium dodecylsulfate, and used for immunization. The antisera produced were analyzed by immunoelectrophoresis and immunofluorescence microscopy. The antisera obtained by immunization with membrane vesicles from either wild type or dnaA mutant membrane preparations were qualitatively similar in the precipitin bands seen after immunoelectrophoresis. The antisera obtained by immunization with the purified protein fraction contained a subset of the antibodies seen when whole vesicles were used for immunization. In a semiquantitative precipitin assay, the antisera prepared against whole membrane vesicles or the isolated protein fraction both caused the precipitation of more protein from sodium dodecylsulfate-solubilized membranes of wild type than of dnaA mutants. No difference was seen by immunoelectrophoresis between the protein composition of wild type or dnaA membrane preparations. Thus, the dnaA mutant appears to differ from the wild type in the quantitative composition of its membrane proteins, whereas no qualitative differences were detected.Fluorescein-conjugated antiserum preparations were employed to assess the reactivity of intact cells, spheroplasts and membrane vesicles with the antisera studied above. Wild type cells of E. coli have a barrier to reaction with the antisera; this barrier is removed when the cells are converted to spheroplasts or to membrane vesicle. Similarly, a highly permeable mutant of E. coli permits reaction of the antisera with unaltered cells. Antisera to both whole membrane vesicles and to the isolated protein fraction react identically with the cellular and subcellular preparations. Thus, antisera prepared from membrane proteins isolated after sodium dodecylsulfate-polyacrylamide gel electrophoresis can still recognize some antigens present in membrane vesicle preparations.  相似文献   

3.
Phage ?15 adsorbed at a low temperature (or by short-time incubation) to the outer surface of Salmonellaanatum gathers on further incubation at a high temperature to a certain region where the inner and outer membranes may join. This was demonstrated by separating the inner and outer membranes of the cells in sucrose gradient after addition of 35S-labeled ?15 to the cells. Radioactivity adsorbed at 4° was first recovered mainly with the dense outer membrane but disappeared by further incubation at 35° within 5 min. Instead, the radioactivity was recovered with the membrane fraction which had intermediate density. Such phage translocation was not observed when phage ?15 was added to a pep mutant of S.anatum to which the phage can adsorb but fail to infect. A host range mutant phage which can infect the pep mutant migrated to the intermediate dense region.  相似文献   

4.
Infection by L13, a temperature-sensitive mutant of gene 42 of phage T4, the structural gene for dCMP hydroxymethylase, previously was shown not to form T4 DNA at nonpermissive temperatures. Yet the enzyme activity was found in extracts. Since inactivation of the enzyme was not reversible, we have examined acid-soluble extracts of cells infected at nonpermissive temperature by tsL13 for 5-hydroxymethyldCMP in order to determine whether the enzyme functioned in vivo. A double mutant of tsL13 and amB24 (5-hydroxymethyldCMP kinase) did not form the nucleotide at nonpermissive temperature, but the control, amB24, formed large quantities. From these results and previous temperature-shift studies it is suggested that the enzyme is normally activated to function in vivo between 5 and 8 minutes after infection.  相似文献   

5.
The synthesis of β-galactosidase (EC 3.2.1.23: β-D-galactoside galactohydrolase) in Escherichiacoli is repressed as a result of infection with single-stranded DNA phage ØX174. An amber mutant in ØX174 cistron A, which codes for two proteins, does not inhibit the enzyme synthesis while amber mutants in all other genes do cause repression. A mutant near the amino-terminal end of cistron A, which produces the small 35,000 molecular weight cistron A polypeptide, also inhibits the synthesis of β-galactosidase. Inhibition is also observed in an Escherichiacolirep mutant which does not support the replication of replicative-form DNA. Exogenous nucleotide bases and cyclic 3′,5′-adenosine monophosphate (cyclic AMP) do not have any effect on the degree of repression.  相似文献   

6.
Using the procedure of Bekhor and Mirell (Biochem, 18, 609, 1979), we isolated a nonhistone protein fraction tightly bound to DNA which putatively has a role in globin gene regulation in chicken reticulocytes. This fraction was tested by gel electrophoresis and microcomplement fixation and appears by these criteria very similar to the chicken nuclear antigen previously identified in reticulocyte chromatin and structurally altered erythrocyte chromatin. This antigen is tissue and species specific (Pumo etal, Biochem. 19, 2362, 1980).  相似文献   

7.
The effects of nuclear proteins on DNA synthesis were investigated before and after incubation with radioactive ATP and a crude preparation of nuclear protein kinase. After partial purification by DEAE-cellulose chromatography, the major protein fractions were added separately to DNA polymerase assays. One of the seven protein fractions inhibited DNA synthesis by 50%, whereas three other fractions stimulated DNA polymerase activity 3 to 4-fold. After incubation with ATP, one fraction became inhibitory, and the three stimulatory fractions, which had high levels of radioactivity, were more effective. This stimulation of DNA polymerase activity was proportional to added nuclear protein and was maximum at 6 μg20 μg DNA.  相似文献   

8.
Purified RNA polymerase, DNA polymerase III and unwinding protein of Escherichiacoli catalyze limited rifampicin sensitive fd or ØX 174 DNA-dependent DNA synthesis. A protein has been partially purified from E.coli which stimulates rifampicin sensitive dXMP incorporation in this system 20 to 30 fold. This protein also stimulates DNA synthesis catalyzed by DNA polymerases I and II; the stimulation occurs in reactions primed with natural and synthetic DNAs as well as RNA-DNA hybrids. The protein is not a product of the known dna genes. In contrast to the above system of purified enzymes, rifampicin sensitive dXMP incorporation in crude extracts of E.coli is specifically dependent on fd but not ØX 174 DNA. An additional factor has been isolated from extracts of E.coli which restores specificity to the purified rifampicin sensitive system by preventing ØX 174 DNA from serving as a template.  相似文献   

9.
TAUts7 an Escherichia coli 15 strain with a thermolabile DNA ligase, has previously been shown to be a temperature-sensitive conditional lethal mutant that is sensitive to methyl methane sulfonate and to ultraviolet irradiation; it also accumulates 10 S DNA fragments to an abnormal extent. When the ligase mutation is transferred to a wild-type E. coli K12 strain, the strain becomes temperature sensitive for growth and displays the same characteristics as TAUts7. These findings show that a functional DNA ligase is essential for normal DNA replication and repair in E. coli.  相似文献   

10.
The process of bacteriophage T4 morphogenesis was studied using a heat leakage scanning calorimeter. Thermograms of defective mutant 49 (am NG727) in permissive and non-permissive cells of Escherichia coli showed a difference in thermal properties between packaged and non-packaged DNA molecules. In vivo, non-packaged DNA carried out their thermal transition at 85°C, the same temperature as that of T4 DNA melting measured in the standard saline citrate buffer, while the packaged DNA gave a sharper peak at 87°C due to some interaction with the head shell structure. Empty head shells showed a sharp heat absorption peak at 89°C both in vivo and in vitro, indicating the high degree of cooperativity in their conformational changes.  相似文献   

11.
In a previous study, various intermediates in λ DNA packaging were visualized after lysis of λ-infected cells with osmotic shock and sedimentation through a sucrose formalin cushion onto electron microscope grids. Along this line, a systematic screening for intermediates accumulated in all head mutants available was performed. λA?-infected cells accumulate only empty spherical protein shells (petit λ) bound at an intermediate point along the DNA thread. In situ digestion experiments with restriction endonuclease EcoRI show that the petit λ-DNA complexes are formed at a fixed point on the DNA concatemer. In λNu1?-infected cells, however, most petit λ was not bound to DNA. In Fec? cells, which are defective in formation of concatemers but normal in head protein synthesis, most petit λ did not sediment onto the carbon film of the grid. In D? mutant, petit λ, partially full heads and empty heads with released DNA were observed. λFI?-infected cells also accumulate petit λ and partially full heads. The present studies suggest that protein pNu1 is required for complex formation between head precursors and DNA concatemers, pA for the initiation of DNA packaging, pD and pFI for the promotion of DNA packaging, and pD for stabilization of head structures. The results obtained with other head mutants involved in formation of mature proheads and head completion confirm earlier results obtained by different techniques.  相似文献   

12.
Carbohydrate moieties derived from the G glycoprotein of Vesicular Stomatitis Virus (VSV) grown in parental Chinese hamster ovary (CHO) cells and the glycosylation mutant Lec4 have been analyzed by high-field 1H NMR spectroscopy. The major glycopeptides of CHOVSV and Lec4VSV were purified by their ability to bind to concanavalin A-Sepharose. The carbohydrates in this fraction are of the biantennary, complex type with heterogeneity in the presence of α(2,3)-linked sialic acid and α(1,6)-linked fucose residues. A minor CHOVSV glycopeptide fraction, which does not bind to concanavalin A-Sepharose but which binds to pea lectin-agarose, was also investigated by 1H NMR spectroscopy. These carbohydrates are complex moieties which appear to contain N-acetylglucosamine in β(1,6) linkage. Their spectral properties are most similar to those of a triantennary complex oligosaccharide containing a 2,6-disubstituted mannose α(1,6) residue. Carbohydrates of this type are not found among the glycopeptides of VSV grown in the Lec4 CHO glycosylation mutant.  相似文献   

13.
Repair deficiency in Escherichia coli UV-sensitive mutator strain uvr502   总被引:8,自引:0,他引:8  
The effect of ultraviolet irradiation (UV) has been studied in Escherichiacoli mutator UV-sensitive mutant uvr502, its uvrA6 derivative and wild-type strain. The uvr502 mutant is about 5 times more UV-sensitive than the uvr+ isogenic strain, but 3 times less sensitive than the uvrA6 single mutant. Cells of the uvr502 mutant are unable to rejoin the fragments of parental DNA formed after UV as a result of incision. The double mutant uvrA6uvr502 as well as the single uvrA6 mutant irradiated with UV is unable to introduce breaks into parental DNA. The extent of postreplication repair is essentially normal in the uvr502 cells. There is no significant difference between the uvr+ and uvr502 cells in the rate and extent of UV-induced DNA degradation.  相似文献   

14.
The effect of a deficiency in DNA polymerase on recombination in Bacillussubtilis has been studied. It is concluded that the major DNA polymerase of B.subtilis is not required for recombination, and that the recombination deficiency of a previously described DNA polymerase-deficient mutant is actually due to a rec mutation. Genetic crosses imply that this recombination deficiency is not recA or recB.  相似文献   

15.
A new type of kasugamycin-resistant mutant has been isolated from E. coli K12, strain AB312 (Hfr, lac,thr,leu,thi,strA,fus). In a cell-free protein-synthetic system, the resistance is localized in the ribosome but not in the supernatant fraction. On initiation complex formation, the resistance is associated with the washed ribosome but not with initiation factors. In reconstitution of the 30S ribosomal subunit, the resistance is due to the protein(s) but not to 16S RNA. In two-dimensional electrophoresis, protein S2 is deficient in the 30S ribosomal subunit of kasugamycin-resistant mutant. The results indicate that the kasugamycin-resistance is attributed to alteration of ribosomal protein S2.  相似文献   

16.
Germination of Bacillus megaterium QM B1551 spores can be triggered by L-proline chloromethyl ketone at ~ 10 fold lower concentrations than L-proline. [3H] L-proline chloromethyl ketone bound to several protein fractions, one of which was decreased in a mutant (JV137) that cannot be triggered by L-proline. Treatment of spores with [3H] acetic anhydride specifically inhibited L-proline triggered germination, and also covalently modified the same protein fraction which appears to be bound to the spore membrane. These results indicate that it is possible to identify a protein fraction in spores that may play a key role in triggering spore germination.  相似文献   

17.
The invitro DNA dependent synthesis of ribosomal protein L12 and the β subunit of RNA polymerase has been investigated using DNA from a plasmid which contains the genetic information for ribosomal protein L12 and the β subunit of RNA polymerase. This DNA, however, lacks the promoter region and the genetic information for the first 26 amino acids of ribosomal protein L10. It was found that L12 and the β subunit of RNA polymerase are efficiently synthesized invitro from this DNA. These results suggest that L12 and the β subunit of RNA polymerase can be synthesized from a promoter situated within the L10 gene.  相似文献   

18.
Structurally and functionally different tobacco chloroplasts were subjected to digitonin treatment and subsequent fractional centrifugation. The light-harvesting chlorophyll achlorophyll b-protein complex was found to be enriched in the most dense fraction regardless of the presence of grana in the original preparation. It is suggested that isolated thylakoid membranes and fragments thereof which contain sufficient light-harvesting protein may, under appropriate ionic conditions, form aggregates even when they originate from unstacked thylakoid systems. Comparative studies of fluorescence properties and polypeptide composition of the thylakoids suggest that the light-harvesting protein does not contribute significantly to the fluorescence spectrum of isolated chloroplasts as long as this protein is intimately associated with the Photosystem II (PS II) pigment-protein complex responsible for the 685 nm emission. While the PS II-deficient mutant chloroplasts of the variegated tobacco variety NC 95 lacked both the 685 nm fluorescence component and two or three PS II proteins, one of these proteins was found to be very prominent in our chlorophyll b-deficient mutant thylakoids which also displayed an intense 685 nm fluorescence peak. This correlation supports the contention that a 45 kdalton polypeptide is an apoprotein of pigments associated with the PS II reaction center.  相似文献   

19.
Previous communications from this laboratory have indicated that there exists a thiamine-binding protein in the soluble fraction of Saccharomyces cerevisiae which may be implicated to participate in the transport system of thiamine in vivo.In the present paper it is demonstrated that both activities of the soluble thiamine-binding protein and thiamine transport in S. cerevisiae are greatest in the early-log phase of the growth and decline sharply with cell growth. The soluble thiamine-binding protein isolated from yeast cells by conventional methods containing osmotic shock treatment appeared to be a glycoprotein with a molecular weight of 140 000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The apparent Kd of the binding for thiamine was 29 nM which is about six fold lower than the apparent Km (0.18 μM) of thiamine transport. The optimal pH for the binding was 5.5, and the binding was inhibited reversibly by 8 M urea but irreversibly by 8 M urea containing 1% 2-mercaptoethanol. Several thiamine derivatives and the analogs such as pyrithiamine and oxythiamine inhibited to similar extent both the binding of thiamine and transport in S. cerevisiae, whereas thiamine phosphates, 2-methyl-4-amino-5-hydroxymethylpyrimidine and O-benzoylthiamine disulfide did not show similarities in the effect on the binding and transport in vivo. Furthermore, it was demonstrated by gel filtration of sonic extract from the cells that a thiamine transport mutant of S. cerevisiae (PT-R2) contains the soluble binding protein in a comparable amounts to that in the parent strain, suggesting that another protein component is required for the actual translocation of thiamine in the yeast cell membrane. On the other hand, the membrane fraction prepared from S. cerevisiae showed a thiamine-binding activity with apparent Kd of 0.17μM at optimal pH 5.0 which is almost the same with the apparent Km for the thiamine transport system. The membrane-bound thiamine-binding activity was not only repressible by exogenous thiamine in the growth medium, but as well as thiamine transport it was markedly inhibited by both pyrithiamine and O-benzoylthiamine disulfide. In addition, it was found that membrane fraction prepared frtom PT-R2 has the thiamine-binding activity of only 3% of that from the parent strain of S. cerevisiae.These results strongly suggest that membrane-bound thiamine-binding protein may be directly involved in the transport of thiamine in S. cerevisiae.  相似文献   

20.
C A Frolik  H F DeLuca 《Steroids》1975,26(5):683-685
A protein containing fraction that will bind 1,25-dihydroxyvitamin D3 both invivo and invitro has been solubilized from the nuclear-debris fraction of rat intestinal mucosa and purified 15-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号