首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The effect of melittin on the release of adrenocorticotropin (ACTH) and beta-endorphin from the corticotropic cells of the rat adenohypophysis was examined in vitro. Anterior pituitary quarters were perifused or incubated in vitro and ACTH- (ACTH-IR) or beta-endorphin-like immunoreactivity (beta-End-IR) in the medium was measured by radioimmunoassays. Melittin stimulated ACTH-IR and beta-End-IR release. This effect was rapid in onset, reversible, and concentration-related (50-5000 ng/ml) and depended on the presence of calcium ions in the incubation medium. Melittin also elevated the tissue content of unesterified 3H-arachidonic acid that had previously been incorporated into lipids. Purported phospholipase A2 inhibitors, mepacrine (up to 1 mM), dexamethasone (0.5 mg/kg in vivo, 50 nM in vitro), or p-bromophenacylbromide (100 microM), did not decrease the melittin (500 ng/ml) - induced beta-End-IR release, although mepacrine and dexamethasone may have inhibited phospholipase A2 activity as indicated by an inhibition of melittin-evoked prostaglandin E2 formation. After stimulation by melittin (500 ng/ml), beta-End-IR release was not affected by the cyclooxygenase inhibitor indomethacin (up to 140 microM), whereas nordihydroguaiaretic acid (100 microM), a lipoxygenase inhibitor, or BW755C (250 microM), an inhibitor of both cyclooxygenase and lipoxygenase, abolished melittin-induced hormone secretion. We conclude that melittin generates a signal in the corticotropic cells of the rat adenohypophysis which induces hormone secretion by exocytosis. This signal may be unrelated to the activation by melittin of phospholipase A2.  相似文献   

2.
Previous studies demonstrated that melittin, the main peptide in bee venom, could cause persistent spontaneous pain, primary heat and mechanical hyperalgesia, and enhance the excitability of spinal nociceptive neurons. However, the underlying mechanism of melittin-induced cutaneous hypersensitivity is unknown. Effects of melittin applied topically to acutely dissociated rat dorsal root ganglion neurons were studied using whole-cell patch clamp and calcium imaging techniques. Melittin induced intracellular calcium increases in 60% of small (<25 μm) and medium (<40 μm) diameter sensory neurons. In current clamp, topical application of melittin evoked long-lasting firing in 55% of small and medium-sized neurons tested. In voltage clamp, melittin evoked inward currents in sensory neurons in a concentration-dependent manner. Repeated application of melittin caused increased amplitude of the inward currents. Most melittin-sensitive neurons were capsaicin-sensitive, and 65% were isolectin B4 positive. Capsazepine, the TRPV1 receptor inhibitor, completely abolished the melittin-induced inward currents and intracellular calcium transients. Inhibitions of signaling pathways showed that phospholipase A2, but not phospholipase C, was involved in producing the melittin-induced inward currents. Inhibitors of cyclooxygenases (COX) and lipoxygenases (LOX), two key components of the arachidonic acid metabolism pathway, each partially suppressed the inward current evoked by melittin. Inhibitors of protein kinase A (PKA), but not of PKC, also abolished the melittin-induced inward currents. These results indicate that melittin can directly excite small and medium-sized sensory neurons at least in part by activating TRPV1 receptors via PLA2-COXs/LOXs cascade pathways.  相似文献   

3.
The diacylglycerol lipase inhibitor, RHC 80267, 1,6-di(O-(carbamoyl)cyclohexanone oxime)hexane, was tested for its ability to block the release of arachidonic acid from human platelets. At a concentration (10 microM) reported to completely inhibit diacylglycerol lipase in fractions of broken platelets, RHC 80267 had no effect on diacylglycerol lipase activity or the release of arachidonic acid from washed human platelets stimulated with collagen. At a high concentration (250 microM), the compound inhibited the formation of arachidonyl-monoacylglycerol by 70% and the release of arachidonate by 60%. However, at this concentration RHC 80267 was found to inhibit cyclooxygenase activity, phospholipase C activity and the hydrolysis of phosphatidylcholine (PC) (presumably by inhibiting phospholipase A2). The phospholipase C inhibition was attributed to the inhibition of prostaglandin H2 formation, as it was alleviated by the addition of the endoperoxide analog, U-46619. PC hydrolysis was only partially restored with U-46619, suggesting that RHC 80267 directly alters phospholipase A2 activity. The inhibition of arachidonate release observed was accounted for by the inhibition of PC hydrolysis. We conclude that RHC 80267, because of its lack of specificity at concentrations needed to inhibit diacylglycerol lipase, is an unsuitable inhibitor for studying the release of arachidonic acid in intact human platelets.  相似文献   

4.
The effect of melittin on the release of adrenocorticotropin (ACTH) and β-endorphin from the corticotropic cells of the rat adenohypophysis was examined in vitro. Anterior pituitary quarters were perifused or incubated in vitro and ACTH- (ACTH-IR) or β-endorphin-like immunoreactivity (β-End-IR) in the medium was measured by radioimmunoassays. Melittin stimulated ACTH-IR and β-End-IR release. This effect was rapid in onset, reversible, and concentration-related (50–5000 ng/ml) and dependend on the presence of calcium ions in the incubation medium. Melittin also elevated the tissue content of unesterified 3H-arachidonic acid that had previously been incorporated into lipids. Purported phospholipase A2 inhibitors, mepacrine (up to 1 mM), dexamethasone (0.5 mg/kg in vivo, 50 nM in vitro), or p-bromophenacylbromide (100 μM), did not decrease the Melittin (500 ng/ml) — induced β-End-IR release, although mepacrine and dexamethasone may have inhibited phospholipase A2 activity as indicated by an inhibition of melittin-evoked prostaglandin E2 formation. After stimulation by melittin (500 ng/ml), β-End-IR release was not affected by the cyclooxygenase inhibitor inddomethacin (up to 140 μM), whereas nordihydroguaiaretic acid (100 μM), a lipoxygenase inhibitor, or BW755C (250 μM), an inhibitor of both cyclooxygenase and lipoxygenase, abolished melittin-induced hormone secretion. We conclude that melittin generates a signal in the corticotropic cells of the rat adenohypophysis which induces hormone secretion by exocytosis. This signal may be unrelated to the activation by melittin of phospholipase A2.  相似文献   

5.
The role of diacylglycerol (DG) as a source of arachidonic acid during gonadotropin-releasing hormone (GnRH) stimulation of gonadotropin secretion was analyzed in primary cultures of rat anterior pituitary cells. An inhibitor of DG lipase (RHC 80267, RHC) caused dose-dependent blockade of GnRH-stimulated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. The DG lipase inhibitor did not alter gonadotropin responses to arachidonic acid, and addition of arachidonic acid reversed its inhibition of GnRH-stimulated LH and FSH release. In [3H]arachidonic acid-prelabeled cells, incubation with RHC increased the accumulation of [3H]DG. These results suggest that DG lipase participates in GnRH action and that arachidonic acid mobilization from DG is involved in the mechanism of gonadotropin release. Gonadotropin responses to tetradecanoyl phorbol acetate and dioctanoyl glycerol were not altered by RHC, and the addition of these activators of protein kinase C (Ca2+- and phospholipid-dependent enzyme) did not prevent the inhibition of GnRH-induced gonadotropin release by RHC. Activation of phospholipase A2 by melittin increased LH and FSH secretion, whereas blockade of this enzyme by quinacrine reduced GnRH-stimulated hormone release. However, RHC did not diminish the gonadotropin response to melittin. The inhibitory actions of RHC and quinacrine were additive and were reversed by concomitant treatment with arachidonic acid. Ionomycin also increased LH and FSH release, and the gonadotropin responses to the ionophore were unaltered by RHC but were reduced by quinacrine. Incubation of cells in Ca2+-depleted (+/- [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) medium reduced but did not abolish the LH and FSH releasing activity of GnRH. Treatment with RHC also reduced the gonadotropin responses to GnRH under Ca2+-depleted conditions. These observations indicate that RHC inhibition of GnRH action is not due to nonspecific actions on Ca2+ entry, protein kinase C activation and actions, nor phospholipase A2 enzyme activity. The results of this study provide further evidence for an extracellular Ca2+-independent mechanism of GnRH action, and suggest that GnRH causes mobilization of arachidonic acid by two distinct lipases, namely, phospholipase A2 and DG lipase, during stimulation of gonadotropin secretion.  相似文献   

6.
In rat PC12 pheochromocytoma cells, melittin, a phospholipase A2 activator, stimulated the release of arachidonic acid in a dose-dependent manner in the range between 0.1 and 1 microM. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C-activating phorbol ester, inhibited the melittin-induced release of arachidonic acid dose-dependently in the range between 0.1 nM and 0.1 microM, whereas 4 alpha-phorbol 12, 13-didecanoate, which is inactive for protein kinase C, was ineffective in this capacity. Staurosporine, a protein kinase C inhibitor, recovered the inhibitory effect of TPA on the melittin-induced release of arachidonic acid. These results suggest that the activation of protein kinase C inhibits phospholipase A2 activity in PC12 pheochromocytoma cells.  相似文献   

7.
Melittin, a peptide from bee venom, is thought to be a phospholipase A(2) activator and Ca(2+) influx inducer that can evoke cell death in different cell types. However, the effect of melittin on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and viability has not been explored in human osteoblast-like cells. This study examined whether melittin altered [Ca(2+)](i) and killed cells in MG63 human osteosarcoma cells. [Ca(2+)](i) changes and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Melittin at concentrations above 0.075 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was abolished by removing extracellular Ca(2+). Melittin-induced Ca(2+) entry was confirmed by Mn(2+) quenching of fura-2 fluorescence at 360 nm excitation wavelength which was Ca(2+)-insensitive. The melittin-induced Ca(2+) influx was unchanged by modulation of protein kinase-C activity with phorbol 12-myristate 13-acetate (PMA) and GF 109203X, or inhibition of phospholipase A(2) with AACOCF(3) and aristolochic acid; but was substantially inhibited by blocking L-type Ca(2+) channels. At concentrations of 0.5 microM and 1 microM, melittin killed 33% and 45% of cells, respectively, via inducing apoptosis. Lower concentrations of melittin failed to kill cells. The cytotoxic effect of 1 microM melittin was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Taken together, these data showed that in MG63 cells, melittin induced a [Ca(2+)](i) increase by causing Ca(2+) entry through L-type Ca(2+) channels in a manner independent of protein kinase-C and phospholipase A(2) activity; and this [Ca(2+)](i) increase subsequently caused apoptosis.  相似文献   

8.
Melittin, an amphiphathic peptide, affects the permeability of vesicles. This can be demonstrated using the dye release technique. Calcein, a fluorescent marker, is trapped in large unilamellar 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) vesicles and melittin-induced leakage of the dye can be monitored directly by increasing fluorescence intensity. First, we characterized the effect of increasing cholesterol content in the membrane on melittin-induced leakage and our results reveal that cholesterol inhibits the lytic activity of the peptide. Using intrinsic fluorescence of the single tryptophan of melittin and 2H-NMR of headgroup deuterated phosphatidylcholine, we demonstrated that the affinity of melittin for phosphatidylcholine vesicles is reduced in the presence of cholesterol; this is associated with the tighter lipid packing of the cholesterol-containing bilayer. This reduced binding is responsible for the reduced melittin-induced leakage from cholesterol-containing membranes. The pathway of release was determined to be an all-or-none mechanism. Finally, we investigated the possibility of achieving specific membrane targeting with melittin, when vesicles of different lipid composition are simultaneously present. Melittin incubated together with vesicles made of pure POPC and POPC containing 30(mol)% cholesterol can empty nearly all the cholesterol-free vesicles while the cholesterol-containing vesicles remain almost intact. Owing to the preferential interaction of melittin with the pure POPC vesicles, we were able to achieve controlled release of encapsulated material from a specific vesicle population. Received: 8 May 1996 / Accepted: 12 September 1996  相似文献   

9.
The effect of the diglyceride lipase inhibitor RHC 80267 on the prolactin secretory process was examined in clonal anterior pituitary GH3 cells. This compound reduced basal prolactin secretion as well as secretion induced by TRH and phospholipase C but not that induced by phorbol myristate acetate. Although exogenous phospholipase C increased diglyceride, no increase in the products of diglyceride lipase was detected. Moreover, low doses of RHC 80267 were observed to effectively block potassium-stimulated 45calcium influx. It is unlikely that RHC 80267 inhibits prolactin release solely by inhibiting diglyceride lipase. These data suggest blockade of plasma membrane calcium channels as an alternate mechanism for the inhibitory actions of RHC 80267 on intact GH3 cells. These observations may have implications for RHC 80267 action in other cell types.  相似文献   

10.
The relationship between Ca2(+)-dependent arachidonic acid release and exocytosis from digitonin-permeabilized bovine adrenal chromaffin cells was investigated. The phospholipase A2 inhibitors mepacrine, nordihydroguaiaretic acid and indomethacin had no effect on either arachidonic acid release or secretion. The phospholipase A2 activator melittin had no effect on secretion. The specific diacylglycerol lipase inhibitor RG80267 had no effect on secretion, but decreased basal arachidonic acid release to such an extent that the level of arachidonic acid in treated cells in response to 10 microM-Ca2+ was equivalent to that of control cells in the absence of Ca2+. Staurosporine, a protein kinase C inhibitor, was found to abolish Ca2(+)-dependent arachidonic acid release completely, but had only a slight inhibitory effect on Ca2(+)-dependent secretion. It is concluded that arachidonic acid is not essential for Ca2(+)-dependent exocytosis in adrenal chromaffin cells.  相似文献   

11.
Melittin isolated from the venom of the common honey bee is a potent activator for bee venom phospholipase A2-catalyzed hydrolysis of unsonicated liposomes of egg phosphatidyl choline. At 37 °C and pH 8, the rate of this enzymatic reaction is increased approximately 300-fold by the addition of 8 × 10?5m melittin. The magnitude of facilitation of the phospholipase A2 reaction is much greater than that previously reported by other workers for systems involving sonicated egg phosphatidyl choline liposomes or Escherichia coli membrane fragments as substrates. Melittin having lysines quantitatively modified through reaction with methyl acetimidate is as effective a potentiator of phospholipase A2 activity as the unmodified material. The same result was obtained for melittin in which the single tryptophan residue was modified. Melittin modified by succinylation retained approximately 50% of its capacity to facilitate phospholipase A2 activity. In contrast, a modified melittin in which the C-terminal four amino residues were removed, acetimidated des(23–26)melittin, is a very poor activator, as is a mixture of this peptide with the C-terminal tetrapeptide. In contrast to the results with egg lecithin liposomes, melittin has little influence on the susceptibility of monomolecular aqueous solutions of dihexanoylphosphatidyl choline to phospholipase A2 attack.  相似文献   

12.
We earlier showed that the diacylglycerol (DG) lipase inhibitor, RHC 80267, increased the steady-state level of DG and inhibited the release of arachidonic acid (AA) in carbamylcholine (CCh)-stimulated pancreatic minilobules (J. F. Dixon and L. E. Hokin, (1984) J. Biol. Chem. 259, 14418-14425). There was no effect on phospholipid metabolism. We have now investigated the effect of RHC 80267 on CCh-stimulated formation of inositol monophosphate formation, cGMP formation, and amylase release. CCh (10 microM) increased cGMP formation by approximately 20-fold, and this response was inhibited 55-75% by RHC 80267 (75-100 microM). RHC 80267 had no effect on either nitroprusside- or calcium ionophore-stimulated cGMP formation, arguing against a direct inhibition of guanylate cyclase by RHC 80267. Arachidonic acid, the release of which is inhibited by RHC 80267, neither stimulated cGMP formation nor reversed the effect of RHC 80267 on CCh-stimulated cGMP formation. This suggests, but does not prove, that the rise in cGMP in response to CCh is not due to an increase in AA as has been suggested. Both phorbol myristate acetate (25 nM) and the DG kinase inhibitor R 59022 (10 microM) inhibited CCh-stimulated cGMP formation by 40%. RHC 80267 also inhibited CCh-stimulated inositol phosphate accumulation and amylase release by 60 and 40%, respectively. The data suggest that the inhibition of CCh-stimulated cGMP formation and other muscarinic responses by RHC 80267 is probably the result of feedback inhibition of the cholinergic receptor via activation of protein kinase C by the elevated DG.  相似文献   

13.
Enhanced prostaglandin (PG) biosynthesis is a hallmark of inflammation, and interleukin-1 (IL), a proinflammatory cytokine, is a potent stimulus of PG production. We investigated the mechanisms of IL-1 alpha-enhanced PG synthesis in serum-stimulated mesangial cells. The rIL-1-stimulated increase in PGE2 synthesis was dose- and time-dependent and inhibited by both cycloheximide and actinomycin D. Phospholipase (PL) activity was increased 5- to 10-fold in acid extracts of rIL-1-treated cells as measured by arachidonate release from exogenous [14C]arachidonyl-phosphatidyl-ethanolamine. This induced phospholipase activity was Ca(2+)-dependent and inhibited by the PLA2 inhibitors, aristocholic acid, 7,7-dimethyl-5,8-eicosadienoic acid, and p-bromophenacylbromide, but not by the 1,2-diacylglycerol lipase inhibitor RHC 80267. The rIL-1-stimulated PLA2 had an alkaline pH optimum, and phosphatidylethanolamine was preferred over phosphatidylcholine as substrate. The PLA2 activity increased by rIL-1 was inhibited in cells coincubated with cycloheximide and was measurable after 6 h. A sensitive and specific solution hybridization assay demonstrated a coordinate time-dependent induction of non-pancreatic PLA2 mRNA expression which was increased at least 6-fold by 24 h. In whole cells, IL-1 had no effect on basal [3H]arachidonic acid release but vasopressin (1 microM)-stimulated release was potentiated 2- to 3-fold, suggesting that IL-1 may prime cells for increased PG synthesis via increased PLA2 activity. Thus IL-1 directly stimulates, as well as primes cells for, enhanced PG synthesis, in part, by increasing PLA2 activity through new synthesis of a non-pancreatic (Type II) PLA2.  相似文献   

14.
Peroxynitrite stimulates in U937 cells release of arachidonic acid (AA) sensitive to various phospholipase A(2) (PLA(2)) inhibitors, including arachidonyl trifluoromethyl ketone (AACOCF(3)), which specifically inhibits cytosolic PLA(2) (cPLA(2)). This response linearly increases using non toxic concentrations of the oxidant, and reaches a plateau at levels at which toxicity becomes apparent. Three separate lines of evidence are consistent with the notion that AA generated by cPLA(2) promotes survival in cells exposed to peroxynitrite. Firstly, toxicity was suppressed by nanomolar levels of exogenous AA, or by AA generated by the direct PLA(2) activator melittin. Secondly AACOCF(3), or other PLA(2) inhibitors, promoted cell death after exposure to otherwise non toxic concentrations of peroxynitrite; exogenous AA abolished the enhancing effects mediated by the PLA(2) inhibitors. Finally, U937 cells transfected with cPLA(2) antisense oligonucleotides were killed by concentrations of peroxynitrite that were non-toxic for cells transfected with nonsense oligonucleotides. This lethal response was insensitive to AACOCF(3) and prevented by exogenous AA.  相似文献   

15.
We have earlier reported that the redox-active antioxidant, vitamin C (ascorbic acid), activates the lipid signaling enzyme, phospholipase D (PLD), at pharmacological doses (mM) in the bovine lung microvascular endothelial cells (BLMVECs). However, the activation of phospholipase A(2) (PLA(2)), another signaling phospholipase, and the modulation of PLD activation by PLA(2) in the ECs treated with vitamin C at pharmacological doses have not been reported to date. Therefore, this study aimed at the regulation of PLD activation by PLA(2) in the cultured BLMVECs exposed to vitamin C at pharmacological concentrations. The results revealed that vitamin C (3-10 mM) significantly activated PLA(2) starting at 30 min; however, the activation of PLD resulted only at 120 min of treatment of cells under identical conditions. Further studies were conducted utilizing specific pharmacological agents to understand the mechanism(s) of activation of PLA(2) and PLD in BLMVECs treated with vitamin C (5 mM) for 120 min. Antioxidants, calcium chelators, iron chelators, and PLA(2) inhibitors offered attenuation of the vitamin C-induced activation of both PLA(2) and PLD in the cells. Vitamin C was also observed to significantly induce the formation and release of the cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites and to activate the AA LOX in BLMVECs. The inhibitors of PLA(2), COX, and LOX were observed to effectively and significantly attenuate the vitamin C-induced PLD activation in BLMVECs. For the first time, the results of the present study revealed that the vitamin C-induced activation of PLD in vascular ECs was regulated by the upstream activation of PLA(2), COX, and LOX through the formation of AA metabolites involving oxidative stress, calcium, and iron.  相似文献   

16.
Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both of these reactions.  相似文献   

17.
Mastoparan 7 (Mas-7), an amphiphilic peptide possessing membrane perturbing activity, has been known to selectively stimulate some lipases. To examine changes in the lipid composition induced by Mas-7, we carried out systemic lipid analysis of L1210 cells after Mas-7 treatment. The total lipid was determined by HPLC, gas-liquid chromatography, and electrospray ionization mass spectrometry in conjunction with differential radiolabelling with [(32)P]orthophosphate, [(3)H]myristic acid, and [(3)H]arachidonic acid. The lipid analysis revealed multiple changes in more than 10 lipid classes. Free fatty acids (FFAs) and phosphatidylethanol (PEt), the phospholipase D product in the presence of ethanol, were increased significantly and phosphatidylcholine (PC) was decreased. Digitonin, a membrane permeabilizing reagent, similarly affected the lipid composition of L1210. The FFA released showed a very broad distribution of saturated, monounsaturated, and polyunsaturated fatty acids, implying that phospholipase A(2) alone could not account for all of the FFAs released. By comparing the molecular species of PEt with those of endogenous PC, we showed that phospholipase D in L1210 cells appeared to act selectively on diacyl-PC. The perturbation-induced alterations in the lipid composition brought about by Mas-7 might play a crucial role in the physiology of the affected cells.  相似文献   

18.
In mouse neuroblastoma N18TG2 cells prelabeled with [3H]arachidonic acid ([3H]AA) the biosynthesis of 2-arachidonoylglycerol (2-AG) is induced by ionomycin in a fashion sensitive to an inhibitor of diacylglycerol (DAG) lipase, RHC 80267, but not to four different phospholipase C (PLC) blockers. Pulse experiments with [3H]AA showed that ionomycin stimulation leads to the sequential formation of [3H]phosphatidic acid ([3H]PA), [3H]DAG, and [3H]2-AG. [3H]2-AG biosynthesis in N18TG2 cells prelabeled with [3H]AA was counteracted by propranolol and N-ethylmaleimide, two inhibitors of the Mg2+/Ca2(+)-dependent brain PA phosphohydrolase. Pretreatment of cells with exogenous phospholipase D (PLD) led to a strong potentiation of ionomycin-induced [3H]2-AG formation. These data indicate that DAG precursors for 2-AG in intact N18TG2 cells are obtained from the hydrolysis of PA and not through the activation of PLC. The presence of 2% ethanol during ionomycin stimulation failed to elicit the synthesis of [3H]phosphatidylethanol and did not counteract the formation of [3H]PA, thus arguing against the activation of PLD by the Ca2+ ionophore. Selective inhibitors of secretory phospholipase A2 and the acyl-CoA acylase inhibitor thimerosal significantly reduced [3H]2-AG biosynthesis. The implications of these latter findings, and of the PA-dependent pathways of 2-AG formation described here, are discussed.  相似文献   

19.
Phospholipase D (PLD) has been implicated in a variety of cellular processes, including inflammation, secretion, and respiratory burst. Two distinct PLD isoforms, designated PLD1 and PLD2, have been cloned; however, the regulatory mechanism for each PLD isoform is not clear. In our present study we investigated how PLD2 activity is regulated in mouse lymphocytic leukemia L1210 cells, which mainly contain PLD2, and in PLD2 -transfected COS-7 cells. Intriguingly, A23187, a calcium ionophore that induces calcium influx, potently stimulates PLD activity in these two cell lines, suggesting that Ca2+ might be implicated in the regulation of the PLD2 activity. In addition to the A23187-induced PLD2 activation, A23187 also increases PLA2-mediated arachidonic acid release, and the A23187-stimulated PLD2 and PLA2 activities could be blocked by pretreatment of the cells with cytosolic calcium-dependent PLA2 (cPLA2) inhibitors, such as arachidonyl trifluoromethyl ketone and methyl arachidonyl fluorophosphonate in these two cell lines. Moreover, the A23187-induced PLD2 and PLA2 activities could be inhibited by cotransfection with antisense cPLA2 oligonucleotide. These results suggest a role for cPLA2 in the regulation of PLD2 activity in vivo. The inhibitory effect of arachidonyl trifluoromethyl ketone on the A23187-induced PLD2 activity could be recovered by addition of exogenous lysophosphatidylcholine. This study is the first to demonstrate that PLD2 activity is up-regulated by Ca2+ influx and that cPLA2 may play a key role in the Ca2+-dependent regulation of PLD2 through generation of lysophosphatidylcholine.  相似文献   

20.
RHC 80267 inhibits diglyceride lipase activity in microsomes from canine platelets (1). Chau and Tai (2) reported that RHC 80267 prevents the transient accumulation of monoglyceride in thrombin-stimulated human platelets, while leaving arachidonate release unimpaired. In contrast, we find that while the drug inhibits both diglyceride lipase (I50=15 μM) and monoglyceride lipase (I50=11 μM) activities in platelet microsomes, it is ineffective when added to intact platelets. The transient intermediates in the diglyceride lipase pathway, 1,2-diglyceride and 2-monoglyceride, both accumulated after thrombin stimulation of intact platelets treated with RHC 80267, and arachidonate release was not inhibited. We conclude that RHC 80267 cannot be used to evaluate the diglyceride lipase pathway in intact platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号