首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Heparin (Hep) II-binding domain of fibronectin regulates the formation of focal adhesions and actin stress fibers and hence plays an important role in cell spreading, migration, and fibronectin fibrillogenesis. Using human skin fibroblast cultures, we demonstrate that alternative splicing of the neighboring IIICS domain may regulate the activities of the Hep II domain in cell spreading and fibronectin fibrillogenesis. Recombinant Hep II domains, adjacent to either the IIICS domain or the H89 splice variant that contains the amino-terminal sequence of the IIICS domain, blocked fibronectin fibrillogenesis and required sulfated proteoglycans to mediate cell spreading. If the Hep II domain was adjacent to either the H0 or H95 splice variants, which both lack the amino terminus of the IIICS domain, fibrillogenesis was not inhibited and cell spreading was independent of a sulfated proteoglycan-mediated mechanism. The effect of the splice variants on the Hep II domain could be mimicked using a Hep II domain that contained only 6 amino acids from the III(15) repeat or 10 amino acids from the IIICS domain suggesting that sequences proximal to the III(14) repeat determined the role of the Hep II domain in these processes. We propose that alternative splicing of the IIICS domain modulates interactions between heparan sulfate proteoglycans and the Hep II domain and that this serves as a mechanism to control the biological activities of fibronectin.  相似文献   

2.
The extracellular matrix molecule fibronectin (FN) is a glycoprotein whose major functional property is to support cell adhesion. FN contains at least two distinct cell-binding domains: the central cell-binding domain and the HepII/IIICS region. The HepII region comprises type III repeats 12-14 and contains proteoglycan-binding sites, while the alternatively spliced IIICS segment possesses the major alpha4beta1 integrin-binding sites. Both cell surface proteoglycans and integrins are important for mediating the adhesion of cells to this region of FN. By comparing heparin binding to different recombinant splice variants of the HepII/IIICS region, evidence was obtained for the existence of a novel heparin-binding site in the centre of the IIICS. Site-directed mutagenesis of basic amino acid sequences in this region reduced heparin binding to recombinant HepII/IIICS proteins and, in conjunction with mutations in the HepII region, caused a synergistic loss of activity. Using the H/120 variant of FN, which contains type III repeats 12-15 and the full-length IIICS region, and the H/95 variant of FN, which contains type III repeats 12-15 but lacks the high affinity integrin-binding LDV sequence, the relative roles played by cell-surface proteoglycans and integrins in mediating cell adhesion have been investigated. This was achieved by studying the effects of anti-integrin antibodies and exogenous heparin on A375 melanoma cell attachment to the wild-type and three different mutants of H/120 and H/95 in which the potential proteoglycan-binding sites were partially or completely removed. A375 cell adhesion to H/120 and its mutants was found to involve the co-operative action of both integrin and cell-surface proteoglycan binding, although integrin made a dominant contribution. Anti-integrin antibodies and exogenous heparin were capable of inhibiting melanoma cell adhesion to H/95 and in this case adhesion was due primarily to cell-surface proteoglycan and not integrin binding.  相似文献   

3.
The complete amino acid sequence of a DNA- and heparin-binding domain isolated by limited thermolysin digestion of human plasma fibronectin has been obtained. The domain contains 90 amino acids with a calculated molecular weight of 10,225. The apparent molecular mass of this domain is 14 kDa when analyzed by sodium dodecyl sulfate-gel electrophoresis. The anomalously high molecular size estimation may be due to the inaccuracy of this method in the low range. The structure was established from microsequence analysis of the chymotryptic, tryptic, and Staphylococcus aureus protease peptides. The molecular ion of each of the chymotryptic peptides was obtained by fast atom bombardment mass spectrometry. The domain has a preponderance of basic residues with a net charge of +5 at neutral pH. The basic nature of the domain may account for its affinity for the polyanions, DNA and heparin. The predicted secondary structure is beta-sheet, in common with all of the type III internal sequence homology structures obtained for fibronectin so far. The location of the domain in fibronectin was made possible by limited thermolysin digestion and identification of the fragments and by comparison of the sequence of the 14-kDa fragment with the partial structure of bovine plasma fibronectin. The domain comprises residues 585-675 and defines a region immediately adjacent to the collagen-binding domain. Numbering domains beginning at the amino terminus, this domain is Domain III after the fibrin/heparin/actin/S. aureus binding Domain I and the collagen-binding Domain II. The domain was obtained from a larger precursor (56 kDa) which bound heparin, DNA, and gelatin. Further digestion of the 56-kDa fragment gave rise to a 40-kDa fragment which only bound gelatin, and a 14-kDa fragment which only bound heparin or DNA. The 14-kDa fragment (Domain III) marks the beginning of the type III homology region in fibronectin, for there may be up to 15 repeats of 90 amino acids. The size of this domain corresponds to one repeat of 90 amino acids and it has some sequence homology to the other type III sequences found thus far in fibronectin.  相似文献   

4.
In this report we have studied the mechanism of human B lymphocyte adhesion to fibronectin and to proteolytic fragments of this protein. B cells adhered to fibronectin and to a 38-kDa fragment, derived from the A chain, containing the Hep II domain and most of the type III connecting segment, IIICS, of fibronectin. Cells did not bind to an 80-kDa fragment containing the RGD adhesive sequence of fibronectin. Attachment to fibronectin or to the 38-kDa fragment was not affected by the 80-kDa fragment, the GRGDSPC synthetic peptide, or by a mAb specific for the alpha chain of the RGD-dependent fibronectin receptor, alpha 5 beta 1. However, B cell adhesion to fibronectin was inhibited by the synthetic peptides CS-1, comprising the first 25 amino acids of IIICS and B12, containing the sequence LHGPEILDVPST of CS-1 (residues 14-25). Moreover, this sequence was shown to be sufficient to induce stable cell adhesion when coated on plastic surfaces. A mAb specific for the alpha-subunit of the alpha 4 beta 1 integrin, completely inhibited B cell attachment to B12, CS-1, 38 kDa, and fibronectin coated substrata. These data clearly indicate that adhesion of B lymphocytes to fibronectin is exclusively mediated by the interaction of alpha 4 beta 1 with residues 14-25 of the IIICS region in fibronectin. Therefore this interaction constitutes an alternative pathway of adhesion to fibronectin, independent of RGD and alpha 5 beta 1.  相似文献   

5.
The domain structure of human fibronectins isolated from plasma and from the conditioned medium of normal and transformed fibroblasts was analyzed by limited proteolysis and S-cyanylation followed by immunostaining of released fragments with five kinds of antibodies, each specific for one functional domain. The results indicate that all three human fibronectins are composed of the same set of functional domains aligned in the same topological order. However, the following clear differences were found in specific fragments released from plasma fibronectin (pFN) and those released from fibronectin of normal (N-cFN) and transformed fibroblasts (T-cFN). Two fragments (Mr = 70,000 and 60,000) were released from the COOH-terminal region of pFN by cathepsin D. These fragments represent the COOH-terminal heparin-binding (Hep-2) and fibrin-binding (Fib-2) domains. The corresponding fragments released from both N-cFN and T-cFN by cathepsin D had much larger molecular weights (Mr = 100,000 and 83,000-74,000) than those from pFN. The fragments from the Fib-2 domain alone, however, did not show any difference among all three FNs. The internal region, from the gelatin-binding (Gel) domain through the Hep-2 domain, of N-cFN and T-cFN was released as a Mr = 210,000 fragment upon mild trypsin digestion. The corresponding fragment from pFN was released as a Mr = 185,000 fragment. The COOH-terminal half, including the Hep-2 domain, of both N-cFN and T-cFN was released by S-cyanylation as Mr = 160,000-145,000 fragments, which are 25,000-20,000 larger than the corresponding fragments of pFN. These results clearly indicate that the Hep-2 domain of N-cFN and T-cFN is 30,000-20,000 daltons larger than the same domain of pFN. Although various fragments released from N-cFN and T-cFN showed a similar pattern, there were minor differences. Thermolysin fragments derived from the Hep-2 domain of N-cFN were clearly distinguishable from those from T-cFN. Three groups of fragments with Mr = 40,000, 35,000-32,000, and 30,000 were released from N-cFN, while only the 35,000-32,000 fragment was released from T-cFN. The Mr = 44,000/60,000 thermolysin fragments representing the Gel domain and the Mr = 210,000/165,000 tryptic fragments representing the internal domains of T-cFN were slightly, but consistently, larger than those of N-cFN.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Cell surface molecules that bind fibronectin's matrix assembly domain   总被引:4,自引:0,他引:4  
The assembly of fibronectin into disulfide cross-linked extracellular matrices requires the interaction of mesenchymal cells with two distinct sites on fibronectin, the Arg-Gly-Asp cell adhesive site and an amino-terminal site contained within the first five type I homologous repeats (Quade, B. J., and McDonald, J. A. (1988) J. Biol. Chem. 263, 19602-19609). Proteolytically derived 29-kDa fragments of fibronectin (29kDa) containing these repeats bind to monolayers of cultured fibroblasts and inhibit fibronectin matrix assembly. The cell surface molecules interacting with fibronectin's 29-kDa matrix assembly domain have resisted purification using conventional methods such as affinity chromatography. Accordingly, in order to identify molecules which bind this fragment, 125I-labeled 29kDa was allowed to bind to fibroblast monolayers and chemically cross-linked to the cell surface with bis(sulfosuccinimidyl) suberate. Extraction of the cross-linked cell layer yielded radiolabeled complexes of 56, 150, and 280 kDa. Formation of these cross-linked complexes was specifically inhibited by the addition of excess unlabeled 29kDa but was unaffected by the presence of fibronectin fragments containing other type I repeats outside of the 29kDa matrix assembly domain. The cross-linked complexes were insoluble in nondenaturing detergents but soluble when denatured and reduced, suggesting that 29kDa may be cross-linked to components of the pericellular matrix. Immunoprecipitation of cross-linked cell extracts with a polyclonal antibody to fibronectin that does not recognize the amino terminus demonstrate that the 280-kDa band contains 29kDa cross-linked to fibronectin present on the cell surface. Formation of the 150-kDa complex was inhibited by EDTA, suggesting that divalent cations are required for its formation. Although the molecular mass and divalent cation requirement suggest that the 150-kDa complex may be related to an integrin, this complex was not immunoprecipitated by polyclonal antibodies generated to the alpha 5 beta 1 integrin fibronectin receptor.  相似文献   

7.
8.
Endoglucanase B (CenB) from the bacterium Cellulomonas fimi is divided into five discrete domains by linker sequences rich in proline and hydroxyamino acids (A. Meinke, C. Braun, N. R. Gilkes, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren, J. Bacteriol. 173:308-314, 1991). The catalytic domain of 608 amino acids is at the N terminus. The sequence of the first 477 amino acids in the catalytic domain is related to the sequences of cellulases in family E, which includes procaryotic and eucaryotic enzymes. The sequence of the last 131 amino acids of the catalytic domain is related to sequences present in a number of cellulases from different families. The catalytic domain alone can bind to cellulose, and this binding is mediated at least in part by the C-terminal 131 amino acids. Deletion of these 131 amino acids reduces but does not eliminate activity. The catalytic domain is followed by three domains which are repeats of a 98-amino-acid sequence. The repeats are approximately 50% identical to two repeats of 95 amino acids in a chitinase from Bacillus circulans which are related to fibronectin type III repeats (T. Watanabe, K. Suzuki, K. Oyanagi, K. Ohnishi, and H. Tanaka, J. Biol. Chem. 265:15659-15665, 1990). The C-terminal domain of 101 amino acids is related to sequences, present in a number of bacterial cellulases and xylanases from different families, which form cellulose-binding domains (CBDs). It functions as a CBD when fused to a heterologous polypeptide. Cells of Escherichia coli expressing the wild-type cenB gene accumulate both native CenB and a stable proteolytic fragment of 41 kDa comprising the three repeats and the C-terminal CBD. The 41-kDa polypeptide binds to cellulose but lacks enzymatic activity.  相似文献   

9.
A gene encoding a fibronectin binding protein (FnBP) has recently been isolated and sequenced from Staphylococcus aureus strain 8325-4. In the same bacterial strain, 682 bp downstream to the stop codon of this gene (fnbA), a second gene termed fnbB has not been discovered, encoding another FnBP (FnBPB). The two genes show in large parts striking sequence homologies. The complete amino acid sequence encoded by fnbB has been deduced and compared to that deduced from fnbA. In FnBPB a stretch of 66 amino acids downstream to the signal peptide has 75% identity with the corresponding region in FnBPA. At the C-terminal site another 394 amino acid stretch is almost identical in both gene products. This stretch contains the 38 amino acid long D repeats, the wall spanning Wr repeats and the hydrophobic membrane spanning domain. In FnBPA each of the three D repeats has been identified as a fibronectin binding structure. These structures are highly conserved in FnBPB and most likely represent the major Fn-binding domain of this protein. However, a subclone of gene fnbB lacking the coding region for the D repeats also clearly expresses fibronectin binding activity. This additional binding site is so far unique for FnBPB and interacts like the D domains with the N-terminal 24-31-kDa fragment of fibronectin. The purified recombinant FnBP fragment (not containing the D repeats) completely inhibits the binding of fibronectin to whole cells of S. aureus.  相似文献   

10.
11.
Thrombospondin is a major glycoprotein of the platelet alpha-granule and is secreted during platelet activation. Several protease-resistant domains of thrombospondin mediate its interactions with components of the extracellular matrix including fibronectin, collagen, heparin, laminin, and fibrinogen. Thrombospondin, as well as fibronectin, is composed of several discretely located biologically active domains. We have characterized the thrombospondin binding domains of plasma fibronectin and determined the binding affinities of the purified domains; fibronectin has at least two binding sites for thrombospondin. Thrombospondin bound specifically to the 29-kDa amino-terminal heparin binding domain of fibronectin as well as to the 31-kDa non-heparin binding domain located within the larger 40-kDa carboxy-terminal fibronectin domain generated by chymotrypsin proteolysis. Platelet thrombospondin interacted with plasma fibronectin in a specific and saturable manner in blot binding as well as solid-phase binding assays. These interactions were independent of divalent cations. Thrombospondin bound to the 29-kDa fibronectin heparin binding domain with a Kd of 1.35 x 10(-9) M. The Kd for the 31-kDa domain of fibronectin was 2.28 x 10(-8) M. The 40-kDa carboxy-terminal fragment bound with a Kd of 1.65 x 10(-8) M. Heparin, which binds to both proteins, inhibited thrombospondin binding to the amino-terminal domain of fibronectin by more than 70%. The heparin effect was less pronounced with the non-heparin binding carboxy-terminal domain of fibronectin. By contrast, the binding affinity of the thrombospondin 150-kDa domain, which itself lacked heparin binding, was not affected by the presence of heparin. Based on these data, we conclude that thrombospondin binds with different affinities to two distinct domains in the fibronectin molecule.  相似文献   

12.
The complete amino acid sequences of the heparin-, cell- and DNA-binding domains of bovine plasma fibronectin have been determined. The fragments were generated from the 170-kDa central plasmic fragment by extensive digestion with chymotrypsin, and they contain 268, 300 and 269 amino acid residues, respectively. No half-cystines or cysteines were found in these sequences. A glucosamine-based oligosaccharide group is attached to Asn-108 in the sequence of the DNA-binding domain. Only one of the three types of internal homology found in fibronectin [Petersen et al. (1983) Proc. Natl Acad. Sci. USA 80, 137-141], namely the type III homology, occurs in these three fragments, and each of them consists of approximately three stretches of this type III homology. Part of the arrangement of peptides was derived by comparison with the partial cDNA sequence for human fibronectin recently reported [Kornblihtt et al. (1984) Nucleic Acids Res. 12, 5853-5868].  相似文献   

13.
The binding of fibronectin to Staphylococci exhibits the properties of a ligand-receptor interaction and has been proposed to mediate bacterial adherence to host tissues. To localize staphylococcal-binding sites in fibronectin, the protein was subjected to limited proteolysis and, of the generated fragments, Staphylococci appeared to preferentially bind to the N-terminal fragment. Different fibronectin fragments were isolated and tested for their ability to inhibit 125I-fibronectin binding to Staphylococci. The results indicate that only the N-terminal region effectively competed for fibronectin binding. However, when isolated fragments were adsorbed to microtiter wells, we found that two distinct domains, corresponding to the N-terminal fragment and to the heparin-binding peptide mapping close to the C-terminal end of fibronectin, promoted the attachment of both Staphylococcus aureus Newman and coagulase-negative strain of Staphylococcus capitis 651. These same domains were recognized by purified 125I-labeled staphylococcal receptor, either when immobilized on microtiter wells or probed after adsorption onto nitrocellulose membrane. The heparin-binding domain is comprised of type-III-homology repeats 14, 15 and 16. To determine which repeats participate in this interaction, we isolated and tested repeats type III14 and type III16. We found that the major staphylococcal binding site is located in repeat type III14. The staphylococcal receptor bound the N-terminal domain of fibronectin with a KD of 1.8 nM, whereas the dissociation constant of the receptor molecule for the internal heparin-binding domain was 10 nM. Since the fusion protein ZZ-FR, which contains the active sequences of fibronectin receptor (D1-D3) bound only to the N-terminus, it is reasonable to assume that the bacterial receptor may have additional binding sites outside the D domains, capable of interacting with the internal heparin-binding domain of fibronectin.  相似文献   

14.
E M Click  G Balian 《Biochemistry》1985,24(23):6685-6696
The domain structure of human plasma fibronectin was investigated by using heparin-binding and antibody reactivity of fibronectin and its proteolytically derived fragments. Digestion of human plasma fibronectin with a combination of trypsin and cathepsin D produced six major fragments. Affinity chromatography showed that one fragment (Mr 45 000) binds to gelatin and three fragments (Mr 31 000, 36 000, and 61 000) bind to heparin. The 31K fragment corresponds to NH2-terminal fragments isolated from other species. The 36K and 61K fragments are derived from a region near the C-terminus of the molecule and appear to be structurally related as demonstrated by two-dimensional peptide maps. A protease-sensitive fragment (Mr 137 000), which binds neither gelatin nor heparin but which has been shown previously to be chemotactic for cells [Postlethwaite, A. E., Keski-Oja, J., Balian, G., & Kang, A. H. (1981) J. Exp. Med. 153, 494-499], separates the NH2-terminal heparin- and gelatin-binding fragments from the C-terminal 36K and 61K heparin-binding fragments. A monoclonal antibody to fibronectin that recognized the 61K heparin-binding fragment was used to isolate a sixth fragment (Mr 34 000) that did not bind to heparin or gelatin and that represents a difference between the 61K and 36K heparin-binding fragments. Cathepsin D digestion produced an 83K heparin-binding, monoclonal antibody reactive fragment that contains the interchain disulfide bond(s) linking the two fibronectin chains at their C-termini. The data indicate that plasma fibronectin is a heterodimeric molecule consisting of two very similar but not identical chains (A and B). In contrast, enzymatic digestion of cellular fibronectin produced a 50K heparin-binding fragment lacking monoclonal antibody reactivity which suggests that the cellular fibronectin subunit is similar to the plasma A chain in enzyme susceptibility but contains a larger heparin-binding domain. A model relating the differences in the three fibronectin polypeptides to differences in published cDNA sequences is presented.  相似文献   

15.
Introduction of Salmonella enterica serotype Typhimurium into food products results from its ability to persist in the intestine of healthy livestock by mechanisms that are poorly understood. The non-fimbrial adhesin ShdA is a fibronectin binding protein required for persistent intestinal carriage of S. Typhimurium. We further investigated the molecular mechanism of ShdA-mediated intestinal persistence by determining the binding-site of this receptor in fibronectin. Analysis of ShdA binding to fibronectin proteolytic fragments and to recombinant fibronectin fusion proteins identified the (13)FnIII repeat module of the Hep-2 domain as the primary binding site for this adhesin. The (13)FnIII repeat module of fibronectin contains a cationic cradle formed by six basic residues (R6, R7, R9, R23, K25 and R54) that is a high affinity heparin-binding site conserved among fibronectin sequences from frogs to man. Binding of ShdA to the (13)FnIII repeat module of fibronectin and to a second extracellular matrix protein, Collagen I, could be inhibited by heparin. Furthermore, binding of ShdA to the Hep-2 domain was sensitive to the ionic buffer strength, suggesting that binding involved ionic interactions. We therefore determined whether amino acid substitutions of basic residues in the cationic cradle of the Hep-2 domain that inhibit heparin binding also abrogate binding of ShdA. Combined substitution of R6S and R7S strongly reduced ShdA binding to (13)FnIII. These data suggest that ShdA binds the Hep-2 domain of fibronectin by a mechanism that may mimic binding of the host polysaccharide heparin.  相似文献   

16.
Human plasma fibronectin aggregates in solution and is thought to form fibrils on cell surfaces, perhaps by self-associating and by interacting with other components such as proteoglycans. We have localized the self-association domains by testing the ability of various fragments of fibronectin to interact with each other. Complexation between fluorescamine-labeled fragments and unlabeled fragments or whole molecules was assessed by gel filtration high-performance liquid chromatography. The fragments studied included nonoverlapping fragments that are situated on the fibronectin polypeptide chain in the following order, beginning from the amino terminus: the 29-, 50-, 120-, 35-, and 25-kDa fragments, as well as multiple-domain fragments of 72 kDa containing the 29- and 50-kDa segments, a fragment of 150 kDa containing the 120- and 35-kDa segment, a fragment of 190 kDa containing the 120- and 35-kDa segments, a fragment of 190 kDa containing the 50-, 150-, and 25-kDa segments, and a 45-kDa fragment containing the 35-kDa segment. The amino-terminal 29-kDa fragment bound to the carboxyl-terminal heparin-binding (Hep II) 35-kDa fragment as well as the 150- and 190-kDa fragments that contain the 35-kDa segment. On the other hand, carboxyl-terminal 35- and 45-kDa Hep II containing fragments bound to each other as well as to amino-terminal 29- and 72-kDa fragments and to the 190-kDa fragment. Further, the 25-kDa carboxyl-terminal fibrin-binding fragment bound the 190-kDa fragment, the only fragment containing the 25-kDa segment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Fibronectin is organized into disulfide cross-linked, insoluble pericellular matrix fibrils by fibroblasts in vitro. Two sites, the Arg-Gly-Asp-Ser-containing cell attachment domain and a site located in the first 70 kDa of fibronectin, are required for matrix assembly. The first 70 kDa of fibronectin contain two structural motifs termed type I and type II homologies, which are repeated nine and two times, respectively. Previous work has implicated the amino-terminal region and the carboxyl terminus containing three type I repeats in matrix assembly, suggesting that type I repeats possess binding activity essential for fibronectin matrix assembly. To test this hypothesis, we developed a sensitive capture immunoassay to quantify insoluble matrix fibronectin and tested a panel of fibronectin fragments, containing all of the type I repeats found in the intact protein, for their ability to inhibit matrix assembly. Only fragments containing the first five type I repeats inhibited fibronectin matrix assembly, although sequences carboxyl-terminal to this domain enhanced this activity. Additional evidence for the specific recognition of the amino-terminal type I repeats by matrix assembling cells was found when the reversible, detergent-sensitive binding of a 125I-labeled fragment containing the first five type I repeats (29 kDa) to cell monolayers was studied. Only monolayers of cell lines that incorporate fibronectin into a fibrillar matrix specifically bound 125I-labeled 29 kDa. Binding of the radiolabeled amino-terminal fragment to matrix-forming cells was inhibited by unlabeled fragments containing the first five type I repeats but not by unlabeled fragments containing the remaining seven type I repeats. Matrix assembly is therefore not a generalized property of type I repeats. Rather, a critical site is located within the first 29 kDa of fibronectin.  相似文献   

18.
The coagulation cascade that occurs in mammalian plasma involves a large number of plasma proteins that participate in a stepwise manner and eventually give rise to the formation of thrombin. This enzyme then converts fibrinogen to an insoluble fibrin clot. This series of reactions involves a number of glycoproteins that particupate as enzymes as well as cofactors. These proteins that circulate in the blood in a precursor or zymogen form are multifunctional proteins that share many common segments or domains. One group includes the vitamin K-dependent glycoproteins (prothrombin, factor IX, factor X, and protein C) that show considerable homology in both their amino acid sequences and their gene structures. The proteins that participate in the contact or early phase of the blood coagulation cascade include plasma prekallikrein, factor XII, and factor IX. The amino-terminal regions of both factor XI and plasma prekallikrein contain four tandem repeats of about 90 amino acids, and these tandem repeats show considerable amino acid sequence homology. Factor XII contains four different domains in the amino-terminai region of the protein, including a kringle structure, two growth factor domains, and type I and type II finger domains. The finger domains were first identified in fibronectin. The carboxyl-terminal portion of plasma prekallikrein, factor XII, and factor XI contains the serine or protease portion of the molecule. These various plasma proteins that share common domains appear to have evolved by gene shuffling that may have, in some cases, involved introns.  相似文献   

19.
The N-terminal 70-kDa fragment of human plasma fibronectin, purified from a cathepsin D digest, is characterized by lack of stability. It is processed proteolytically during incubation in the presence of Ca2+ into 27-kDa N-terminal heparin-binding and 45-kDa collagen-binding domains. The N-terminal residue in the 27-kDa fragment was blocked as in native fibronectin. The 45-kDa fragments began with the sequences AAVYQP, AVYQP and VYQP (residues 260, 261, 262-265 of fibronectin) that correspond to the beginning of the collagen-binding domain. In the presence of Ca2+ the purified 27-kDa fragment underwent further processing finally leading to the cleavage of the bond K85-D86 and to the simultaneous appearance of a specific proteolytic activity. Inhibition studies suggests that the newly generated enzyme is a Ca(2+)-dependent serine proteinase. Among all assayed matrix proteins, the newly generated enzyme cleaves native fibronectin and its fragments. It is proposed that this fibronectinase may originate from the N-terminal domain of fibronectin.  相似文献   

20.
To determine the role of the extra domain A (EDA) and type III connecting segment (IIICS) of fibronectin in fiber assembly, topographical distribution and proteolytic cleavage, eight full-length human fibronectin cDNA variants (aa0, aa64, aa89, and aa120 variations in the IIICS with or without the EDA) tagged with the V5 epitope were cloned from human endothelial cells and were expressed in CHO-K1 cells. All eight variants were assembled on cell surfaces. However, only the EDA(+) variants, regardless of the type of the IIICS domain, formed extensive fibrous networks. In contrast, the EDA(-)/aa64 and EDA(-)/aa89 variants were present predominantly as a soluble form. Western analysis of both soluble and cell-associated fibronectin/V5 variants showed that aa64, aa89, and aa120 variants with or without the EDA domain produced the major 50- to 62-kDa C-terminal fragments, whereas the aa0 variants did not, suggesting that the IIICS domain provides proteolytic cleavage sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号