首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Feeding soy diets has been shown to induce cytochrome P450s in gene family CYP3A in Sprague-Dawley rat liver. We compared expression of CYP3A enzymes on postnatal Day 33 (PND33) rats fed casein or soy protein isolate (SPI+)-based AIN-93G diets continuously from gestational Day 4 through PND33 or the diets were switched on PND15 (n = 3-6 litters) to examine the potential imprinting effects of soy on drug metabolism. In addition rats were fed casein, SPI+, SPI+ stripped of phytochemicals (SPI-), or casein diets supplemented with the soy-associated isoflavones genistein or daidzein from weaning through PND33 to examine the hypothesis that the isoflavones are responsible for CYP3A induction by soy feeding. Feeding SPI either continuously or from weaning induced hepatic CYP3A1 and CYP3A2 mRNA, apoprotein, and CYP3A-dependent testosterone 6beta-hydroxylase activity in liver microsomes 2- to 5-fold (P < 0.05). CYP3A mRNA expression was also elevated 2- to 3-fold in the jejunum of SPI-fed rats (P < 0.05). CYP3A was not induced in livers of rats switched to casein from soy at weaning. Induction of CYP3A1 also did not occur in rats fed SPI-, but CYP3A2 mRNA and apoprotein were induced (P < 0.05) in females fed SPI-. Offspring weaned onto genistein-supplemented diets had no elevation of CYP3A mRNAs or apoproteins. Weaning onto daidzein diets increased CYP3A2 mRNA and apoprotein expression in male rats (P < 0.05). These data suggest that early soy consumption may increase the metabolism of a wide variety of CYP3A substrates, but that soy does not imprint the expression of CYP3A enzymes. Effects on CYP3A1 expression appear to be primarily due to phytochemical components of SPI other than isoflavones. In contrast, consumption of soy protein and daidzein appear to be associated with the induction of CYP3A2.  相似文献   

3.
Human hepatocytes cultured serum-free for up to 6 weeks were used to study expression and induction of enzymes and membrane transport proteins involved in drug metabolism. Phase I drug metabolizing enzymes cytochrome P450 (CYP)1A1, CYP1A2, CYP2C9, CYP2C19, CYP2E1, and CYP3A4 were detected by Western blot analyses and, when appropriate, by enzymatic assays for ethoxyresorufin-O-deethylase(EROD)-activity and testosterone-6beta-hydroxylase(T6H)-activity. Expression of the membrane transporter multi-drug resistance protein (P-glycoprotein, MDR-1), multidrug resistance-associated protein (MRP-1), and lung-resistance protein (LRP) was maintained during the culture as detected by RT-PCR and Western blot analyses. Model inducers like rifampicin, phenobarbital, or 3-methylcholanthrene and beta-naphtoflavone were able to induce CYP1A or CYP3A4 as well as EROD or T6H activities for up to 30 days. CYP2C9, CYP2C19 and CYP2E1 expression was maintained but not inducible for 48 days. Also, rifampicin and phenobarbital were unable to increase MDR-1 and MRP-1 protein levels significantly.  相似文献   

4.
Phylogenic analysis of the teleost genomic lineages has demonstrated the precedent for multiple genome duplications. Among many of the genes duplicated, cytochrome P450 genes have undergone independent diversification, which can be traced to a single ancestral gene. In teleosts, cytochrome P450s, from all major families, have been identified. Among these, the CYP3A family has been cloned in several teleost species and demonstrated to contain multiple paralogs differing in gene expression patterns and tissue distribution. Herein we characterized the catalytic and kinetic activities of two medaka CYP3A paralogs (CYP3A38 and CYP3A40) with benzyloxyresorufin (BFC), a fluorescent 3A-selective substrate, and testosterone, a known metabolic substrate for CYP3A enzymes. Recombinant CYP3A was produced using the baculovirus expression vector system in Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn5) insect cells and accounted for up to 24% of total cellular protein. Following addition of a heme-albumin conjugate to log phase cells, spectral P450 content reached a maximum of 560 and 2350 pmol/mg microsomal protein for CYP3A38 and CYP3A40, respectively. Incubations containing recombinant CYP3A, human NADPH-cytochrome P-450 oxidoreductase reductase, human cytochrome b5, and a NADPH generation system catalyzed the dealkylation of BFC and hydroxylation of testosterone with a high degree of stereoselectivity. However, efficiencies and specificities were significantly different between the two isoforms. Km and Vmax activities based on BFC-catalysis were 0.116 and 0.363 muM, and 7.95 and 7.77 nmol/min/nmol P450 for CYP3A38 and CYP3A40, respectively. CYP3A38 preferentially catalyzed testosterone hydroxylation at the 6beta-, 2beta- and 16beta-positions with minor hydroxylation at other positions within the steroid nucleus. Testosterone catalysis with CYP3A40 was limited predominantly to the 6beta- and 2beta-positions. Putative identification of CYP3A substrate recognition sites (SRS) 1-6 indicates that 12 of the 49 amino acid differences between CYP3A38 and CYP3A40 OFRs occur in SRS regions previously known to be associated with steroid hydroxylation. We suggest that differences in kinetics and catalytic activities are a result of amino acid substitutions in SRS regions 1, 3 and 5 within the CYP3A38 and CYP3A40 protein sequence.  相似文献   

5.
CYP3As represent a family of cytochromes P450 involved in the metabolism of both endogenous and exogenous natural and synthetic compounds. Well described in mammals, none have yet been cloned and characterized in avian species. In this paper, we report the cloning and analysis of an avian CYP3A (CYP3A37). Using an RNA differential display approach, an 80-bp phenobarbital-inducible cDNA fragment was amplified from chicken embryo liver. Based on its homology with mammalian CYP3As, this fragment was used to clone a full-length cDNA consisting of 1638 bp encoding a putative protein of 509 amino acids. The sequence shares between 57.4 and 62% identity at the amino acid level with CYP3As of other species. This cDNA was designated CYP3A37 according to the current cytochrome P450 nomenclature. When expressed in COS1 cells, the CYP3A37 cDNA produced a protein of congruent with55 kDa, which was recognized by polyclonal anti-rat CYP3A1 antiserum. In a bacterial expression system, the CYP3A37 cDNA produced a protein capable of steroid 6beta-hydroxylation. At a substrate concentration of 100 microM, progesterone, testosterone, and androstenedione were found to be 6beta-hydroxylated at a rate of 15.4, 11.7, 12.2 nmol/min/nmol P450, respectively. Used as control, the human CYP3A4 gave similar hydroxylation rates. Finally, in both chicken embryo liver and chicken hepatoma cells (LMH), CYP3A37 mRNA was increased after treatment with typical CYP3A inducers, such as metyrapone, phenobarbital, dexamethasone, and pregnenolone 16alpha-carbonitrile, but not rifampicin. CYP2H1, a well-characterized inducible chicken cytochrome P450, also was induced by the same compounds, suggesting similar regulation of CYP3 and CYP2 genes in this species.  相似文献   

6.
It has been established beyond doubt that, as well as the liver, the small intestine is an important site of first-pass metabolism of numerous drugs, food components and toxic xenobiotics. However, there is not much information available about age-dependent changes of intestinal biotransformation pathways. In the present paper, we evaluated the relationships between intestinal cytochrome P450 complex activity and the age of animals. The study was carried out on male Sprague–Dawley rats (n = 5) from 5 age series: 0.5-, 2-, 4-, 20-, and 28 months old. Animals at every age series were divided into 4 groups: control and three groups of rats treated with the CYP450 specific inducers: phenobarbital, β-naphtoflavone and dexamethasone, respectively. RNA was isolated from intestinal mucosa, and then standard RT-PCR was used for the analysis of CYP1A1, CYP2B1/2 and CYP3A1 mRNA expression. Additionally, the activities of NADPH-cytochrome P450 and NADH-cytochrome b5 reductases in the microsomal fraction were biochemically estimated. The constitutive intestinal CYP1A1 mRNA expression changes during maturation and aging. Inducibility of CYP1A1 gene was evident in intestinal mucosa at 2-, 4- and 20-month-old rats. A similar pattern of changes was observed for CYP2B1/2 isoforms. CYP3A1 mRNA expression was not detected in small intestine of 2-week-old rats. In matured rats, constitutive intestinal CYP3A1 expression was low, although after induction, significant increases in CYP3A1 mRNA amount were noted in aged individuals. Intestinal activity of both analyzed reductases was lowest in immature rats and highest in 28-month-old animals. In conclusion, the activity of cytochrome P450 complex in rat small intestine was not decreased by the aging processes, so the high rate of oxidative metabolic reactions in intestinal mucosa can be maintained till the advanced life stage.  相似文献   

7.
In order to develop a new tester strain detecting environmental promutagens and procarcinogens, we introduced two plasmids into Salmonella typhimurium TA1535; one contains the cDNAs of human cytochrome P450 (P450 or CYP) 1A2 and NADPH-P450 reductase and the other (pOA101) a umuC"lacZ fusion gene. The newly developed tester strain, S. typhimurium OY1001/1A2, was found to express P450 at a level of 0.15 nmol/ml in whole cell culture. Membrane fractions, when isolated from this tester strain, contained 0.04 P450 nmol/mg protein and a reductase activity of 170 nmol cytochrome c reduced/min/mg protein and were active in catalyzing CYP1A2-dependent 7-ethoxyresorufin O-deethylation and metabolic activation of heterocyclic aromatic amines to DNA-damaging products in a conventional tester S. typhimurium NM2009 strain, only when NADPH was added as a reducing equivalent. In the OA1002/1A2 strain, heterocyclic aromatic amines (e.g., IQ, MeIQ, and MeIQx) were found to be activated to reactive metabolites that cause induction of umuC gene expression in a dose-dependent manner, without addition of external NADPH. These results indicate that the newly established strain can be of use to detect mutagenic and carcinogenic potencies of environmental chemicals without addition of metabolic activation system.  相似文献   

8.
9.
10.
CYP3A4 and pregnane X receptor humanized mice   总被引:2,自引:0,他引:2  
Marked species differences exist in P450 expression and activities. In order to produce mouse models that can be used to more accurately predict human drug and carcinogen metabolism, P450- and xenobiotic receptor humanized mice are being prepared using bacterial artificial chromosomes (BAC) and P1 phage artificial chromosomes (PAC) genomic clones. In some cases, transgenic mice carrying the human genes are bred with null-mice to produce fully humanized mice. Mice expressing human CYP1A1, CYP1A2, CYP2E1, CYP2D6, CYP3A4, and CYP3A7 were generated and characterized. Studies with the CYP3A4-humanized (hCYP3A4) mouse line revealed new information on the physiological function of this P450 and its role in drug metabolism in vivo. With this mouse line, CYP3A4, under certain circumstances, was found to alter the serum levels of estrogen resulting in deficient lactation and low pup survival as a result of underdeveloped mammary glands. This hCYP3A4 mouse established the importance of intestinal CYP3A4 in the pharmacokinetics of orally administered drugs. The hCYP3A4 mice were also used to establish the mechanisms of potential gender differences in CYP3A4 expression (adult female > adult male) that could account for human gender differences in drug metabolism and response. The pregnane X receptor (PXR) is also involved in induction of drug metabolism through its target genes including CYP3A4. Since species differences exist in ligand specificity between human and mice, a PXR-humanized mouse (hPXR) was produced that responds to human PXR activators such as rifampicin but does not respond to the rodent activator pregnenalone 16alpha-carbonitrile.  相似文献   

11.
12.
CYP4F1 was discovered by Chen and Hardwick (Arch. Biochem. Biophys. 300, 18-23, 1993) as a new CYP4 cytochrome P450 (P450) preferentially expressed in rat hepatomas. However, the catalytic function of this P450 remained poorly defined. We have purified recombinant CYP4F1 protein to a specific content of 12 nmol of P450/mg of protein from transfected yeast cells by chromatography of solubilized microsomes on an amino-n-hexyl Sepharose 4B column, followed by sequential HPLC on a DEAE column and two hydroxylapatite columns. The purified P450 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 53 kDa. The enzyme catalyzed the omega-hydroxylation of leukotriene B(4) with a K(m) of 134 microM and a V(max) of 6.5 nmol/min/nmol of P450 in the presence of rabbit hepatic NADPH-P450 reductase and cytochrome b(5). In addition, 6-trans-LTB(4), lipoxin A(4), prostaglandin A(1), and several hydroxyeicosatetraenoic acids (HETEs) were also omega-hydroxylated. Of several eicosanoids examined, 8-HETE was the most efficient substrate, with a K(m) of 18.6 microM and a V(max) of 15.8 nmol/min/nmol of P450. In contrast, no activity was detected toward lipoxin B(4), laurate, palmitate, arachidonate, and benzphetamine. The results suggest that CYP4F1 participates in the hepatic inactivation of several bioactive eicosanoids.  相似文献   

13.
Hepatic microsomes prepared from 10 fish species from Bermuda were studied to establish features of cytochrome P450 (CYP) systems in tropical marine fish. The majority (7/10) of the species had total P450 content between 0.1 and 0.5 nmol/mg, and cytochrome b5 content between 0.025 and 0.25 nmol/mg. Ethoxycoumarin O-deethylase (ECOD) and aminopyrine N-demethylase (APND) rates in these 7 species were 0.23–2.1 nmol/min/mg and 0.5–11 nmol/min/mg, respectively, similar to rates in many temperate fish species. In contrast to those 7 species, sergeant major (Abudefduf saxatilis) and Bermuda chub (Kyphosus sectatrix) had microsomal P450 contents near 1.7 nmol/mg, among the highest values reported in untreated fish, and had greater rates of ECOD, APND, ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase than did most of the other species. Freshly caught individuals of all species had detectable levels of EROD and aryl hydrocarbon hydroxylase (AHH) activities. Those individuals with higher rates of EROD activity had greater content of immunodetected CYP1A protein, consistent with Ah-receptor agonists acting to induce CYP1A in many fish in Bermuda waters. Injection of tomtate and blue-striped grunt with β-naphthoflavone (BNF; 50 or 100 mg/kg) induced EROD rates by 25 to 55-fold, suggesting that environmental induction in some fish was slight compared with the capacity to respond. AHH rates were induced only 3-fold in these same fish. The basis for disparity in the degree of EROD and AHH induction is not known. Rates of APND and testosterone 6β- and 16β-hydroxylase were little changed by BNF, indicating that these are not CYP1A activities in these fish. Antibodies to phenobarbital-inducible rat CYP2B1 or to scup P450B, a putative CYP2B, detected one or more proteins in several species, suggesting that CYP2B-like proteins are highly expressed in some tropical fishes. Generally, species with greater amounts of total P450 had greater amounts of proteins related to CYP2B. These species also had appreciable amounts of CYP3A-like proteins. Thus, many fishes in Bermuda appear to have induced levels of CYP1A; some also have unusually high levels of total P450 and of CYP2B-like and CYP3A-like proteins. These species may be good models for examining the structural, functional and regulatory properties of teleost CYP and the environmental or ecological factors contributing to high levels of expression of CYP in some fishes.  相似文献   

14.
We cloned and characterized the gene and cDNA of Aspergillus oryzae cytochrome P450nor (Anor). The Anor gene (nicA; CYP55A5) has a different gene structure from other P450nor genes in that it has an extra intron. There were not only two kinds of mRNA but also two sets of TATA-box and CCAAT-box, and it appears that this gene has two expression patterns, like CYP55A1 of Fusarium oxysporum. A reporter analysis using the uidA gene indicated that gene expression of CYP55A5 was induced under anaerobic conditions, like CYP55A1. When the CYP55A5 gene was overexpressed in A. oryzae, a large amount of active Anor were accumulated as intracellular protein. Anor employed both NADH and NADPH as electron donors for reducing nitric oxide to nitrous oxide. Anor measured the amount of NO generated from 3-(2-Hydroxy-1-(1-methylethyl)-2-nitrosohydrazino)-1-propanamine (NOC5) with a spectrophotometer. The sensitivity was 10 nmol/ml.  相似文献   

15.
目的:氯吡格雷主要由CYP3A4催化使其激活,CYPlA2也参与氯吡格雷活化。关于氯吡格雷对肝微粒体酶的影响国内外文献报道不多,因此本实验通过检测肝细胞色素氧化酶CYP3A4和CYPlA2的表达,探讨氯吡格雷对大鼠肝药物酶的影响。方法:生理盐水为对照组,氯吡格雷设高、中、低三个剂量组(27,13.5,6.75mg/kg/d),雄性健康大鼠连续灌胃给药7天,脱臼处死,取肝组织,通过westernblot法检测大鼠肝脏CYP3A4和CYPlA2蛋白表达情况。结果:1)、氯吡格雷抑制大鼠CYP3A4蛋白表达,氯吡格雷高中低剂量组分别比生理盐水组大鼠CYP3A4蛋白表达量降低(P〈0.05);氯吡格雷低中高剂量组间进行比较,大鼠CYP3A4蛋白表达量呈梯度减少(P〈0.05);2)、氯吡格雷抑制大鼠CYPlA2蛋白表达,氯吡格雷高中低剂量组分别比生理盐水组大鼠CYPlA2蛋白表达量降低(P〈0.05),氯吡格雷低中高剂量组间进行比较,大鼠CYPlA2蛋白表达量呈梯度减少(P〈0.05)。结论:氯吡格雷使肝细胞色素氧化酶CYP3A4和CYPlA2的表达量减少,因此氯吡格雷高、中、低3个剂量组均不同程度的抑制大鼠肝脏CYP3A4和CYPlA2的表达,提示当氯吡格雷与某些主要经CYP3A4和CYPlA2代谢的药物合用时,发生代谢性相关作用的可能性大。  相似文献   

16.
Cytochrome P-450 3A (CYP 3A) enzymes, the prominent subfamily in the cytochrome system, are expressed in various extrahepatic tissues. Until now, their expression has been demonstrated in human polymorphic neutrophils (PMNs) but not in lymphocytes using immunohistochemistry and immunoblot analysis. Moreover, their potential modulation has not been determined yet. To study such an expression in different peripheral blood cell populations, rifampicin (600 mg/day during 6 days) was given to 8 healthy subjects. PMNs and lymphocytes were isolated by centrifugation of whole white blood cell fractions using Ficoll gradients before drug administration, immediately after, and 3 days after drug withdrawal. PMN and lymphocyte smears and homogenates were subjected to immunostaining and immunoblotting, respectively, with a mouse monoclonal antibody recognizing all CYP 3A proteins. These proteins were quantified by densitometric analysis. Before and after rifampicin administration, a positive cytoplasmic staining was observed in all PMNs and in about 50% of lymphocytes. CYP 3A expression in lymphocytes was further confirmed by positive immunoblots for lymphocyte homogenates. Neither in PMNs nor in lymphocytes, induction of CYP 3A protein expression was observed after rifampicin treatment despite overall induction of CYP 3A activity assessed by the urinary excretion of 6beta-hydroxycortisol. These results demonstrate that CYP 3A proteins are constitutively expressed not only in PMNs but also in lymphocytes. However, in both cell lineages CYP 3A protein expression was not induced by rifampicin.  相似文献   

17.
Transgenic tobacco-cell-suspension cultures expressing separately the human cytochrome P450 monooxygenases CYP1A1, CYP1A2, and CYP3A4 were utilized to study the biotransformation of the 14C-labelled insecticide carbaryl (=naphthalen-1-yl methylcarbamate). The resulting data were compared to similar data from the corresponding non-transformed (NT) tobacco-cell culture and commercially available membrane preparations (Bactosomes) of genetically modified bacteria separately containing the same human P450s. A rapid conversion rate of carbaryl was observed with the CYP1A1 and CYP1A2 cells, where only 49.7 and 0.2% of applied carbaryl (1 mg/l), respectively, remained after 24 h, as compared to 77.7% in the non-transformed culture. Unexpectedly, the corresponding results obtained from the CYP3A4 cultures were not definite. With 25 mg/l of carbaryl and 96 h of incubation, it was proven that the insecticide is also substrate of CYP3A4. This finding was supported by GC/EI-MS analysis of the primary metabolite pattern produced by the isozyme. This consisted of naphthalene-1-ol, N-(hydroxymethyl)carbaryl, 4-hydroxycarbaryl, and 5-hydroxycarbaryl, whereas the main product in non-transformed cells was N-(hydroxymethyl)carbaryl. Data obtained from the CYP1A1, CYP1A2, or CYP3A4 Bactosomes agreed with those of the P450-transgenic tobacco cells. Problems with GC/EI-MS analysis of carbaryl and its metabolites are discussed.  相似文献   

18.
19.
The in vivo effect of rifampicin, a potent ligand of PXR, on gene expression of CYP2B22, 3A22, 3A29, 3A46, CAR, PXR and MDR1, MRP1, MRP2, LRP transporters in liver and cortex, cerebellum, midbrain, hippocampus, meninges and brain capillaries of pig was investigated. Animals were treated i.p. with four daily doses of rifampicin (40 mg/kg). The basal mRNA expressions of the individual CYP3As, CYP2B22, CAR, and PXR in various brain regions, except meninges, were about or below 10% of the corresponding hepatic mRNA values, whereas the mRNAs of brain transporters were closer or comparable to those in liver. After pig treatment with rifampicin, the mRNA expression of CYPs and transporters from brain regions did not appear to change, except CYP3A22 and 3A29 in cortex and hippocampus, CYP2B22 in meninges. An enzymatic analysis for CYP3As and CYP2B, in microsomes and mitochondria from liver and brain tissues using the marker activities 7-benzyloxyquinoline O-debenzylase and the anthraldehyde oxidase, showed the lack of rifampicin induction in all the brain regions, unlike liver. Taken together, our results demonstrate that CYP2B22, CYP3As, and MDR1, MRP1, MRP2, and LRP transporters are all expressed, although at different extent, in the brain regions but, despite the presence of PXR and CAR, are resistant to induction indicating that the regulation of these proteins is more complex in brain than in liver. These data obtained in vivo in the brain regions and liver of pig may be of interest to human metabolism in CNS.  相似文献   

20.
Genetic polymorphism of CYP2A6 in relation to cancer.   总被引:7,自引:0,他引:7  
To clarify the roles of human cytochrome P450 (P450 or CYP) 2A6 and 2E1 on the metabolic activation of N-nitrosamines, we established genetically engineered Salmonella typhimurium strains harboring human CYP2A6 or CYP2E1 together with NADPH-P450 reductase (OR). The 5'-terminus of CYP cDNA was modified to achieve a high-level expression in S. typhimurium. Modified CYP2A6 or CYP2E1 cDNA and native OR cDNA were introduced into a pCW vector. S. typhimurium YG7108 cells were transformed with this vector. The mutagen producing ability of these enzymes for some N-nitrosamines were evaluated using the established S. typhimurium cells. We found that the substrate specificity of CYP2A6 and CYP2E1 was different among mutagens. CYP2A6 was responsible for the metabolic activation of N-nitrosamines possessing relatively long alkyl chains, whereas CYP2E1 was responsible for the metabolic activation of N-nitrosamines with relatively short alkyl chains. It is likely that CYP2A6 gene polymorphism is responsible for the interindividual variability on the cancer susceptibility. We found the whole deletion of CYP2A6 gene as a type of genetic polymorphism in Japanese. Thus, we developed a gene diagnosis method to detect the variant. We evaluated the relationship between the CYP2A6 gene whole deletion and the susceptibility to the lung cancer. The frequency of CYP2A6 gene whole deletion was significantly lower in the lung cancer patients than that of healthy volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号