首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by myosin light-chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ∼ 23-37% of that in gizzard tissue. Fifteen to 30% of MLCK was associated with CaM at ∼ 1 nM free [Ca2+]. There were two MLCK pools that bound unphosphorylated SMM with Kd ∼ 10 and 0.2 μM and phosphorylated SMM with Kd ∼ 20 and 0.2 μM. Using an in vitro motility assay to measure actin sliding velocities, we showed that the co-purifying MLCK-CaM was activated by Ca2+ and phosphorylation of SMM occurred at a pCa50 of 6.1 and at a Hill coefficient of 0.9. Similar properties were observed from reconstituted MLCK-CaM-SMM. Using motility assays, co-sedimentation assays, and on-coverslip enzyme-linked immunosorbent assays to quantify proteins on the motility assay coverslip, we provide strong evidence that most of the MLCK is bound directly to SMM through the telokin domain and some may also be bound to both SMM and to co-purifying actin through the N-terminal actin-binding domain. These results suggest that this MLCK may play a role in the initiation of contraction.  相似文献   

2.
The function of the uterine smooth muscle in gestation and parturition is affected by a variety of hormones and biomolecules, some of which alter the intracellular levels of cAMP and Ca2+. Since the activity of smooth muscle MLCK has been shown to be modulated by phosphorylation, the effect of this modification of pregnant sheep myometrium (psm) MLCK by the catalytic subunit of cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was studied. In contrast to other smooth muscle MLCK reported, PKA incorporates 2.0–2.2 moles phosphate into a mole of psm MLCK both in the presence and absence of Ca2+-calmodulin. Modification of serine residues inhibited the activity of the enzyme. PKC also incorporated 2.0–2.1 moles of phosphate per mole psmMLCK under both conditions but had no effect on the MLCK activity. Sequential phosphorylation by PKC and PKA incorporated 3.8–4.1 moles phosphate suggesting that the amino acid residues modified by the two kinases are different. Phosphoamino acid analysis of the MLCK revealed that PKC phosphorylated serine and threonine residues. The double reciprocal plots of the enzyme activity and calmodulin concentrations showed that the Vmax of the reaction is not altered by phosphorylation by PKA but the calmodulin concentration require for half-maximal activation is increased about 4-fold. Only 10 out of 17 monoclonal antibodies to various regions of the turkey gizzard MLCK cross-reacted with psmMLCK suggesting structural differences between these enzymes. Comparison of the deduced amino acid sequence of the cDNA encoding the C-terminal half of the psmMLCK molecule showed that while cgMLCK and psmMLCK are highly homologous, a number of nonconservative substitutions are present, particularly near the PKA phosphrylation site B (S828).  相似文献   

3.
A new class of stimulators of basal activity of a number of calmodulin-dependent enzymes have been previously isolated from bovine hypothalamus. One of these stimulators, denoted as C3, has been purified to homogeneity by reverse phase HPLC and tentatively identified as thymosin 4 (1–39) by mass spectrometry and Edman microsequence analysis. The stimulating effect of C3 on rabbit skeletal muscle MLCK basal activity was compared with that of thymosin 1 and thymosin 4 (16–38). Evidence is presented that all the indicated compounds are Ca2+-independent high-affinity MLCK stimulators. The potency of the stimulators in activating the enzyme was: C3>4>(CaM+Ca2+>1.This revised version was published online in June 2005 with corrections to the author name Gurvits.  相似文献   

4.
Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). To elucidate the structural mechanism of activation, we have studied RLC phosphorylation in tarantula thick filaments, whose high-resolution structure is known. In the relaxed state, tarantula RLCs are ∼ 50% non-phosphorylated and 50% mono-phosphorylated, while on activation, mono-phosphorylation increases, and some RLCs become bi-phosphorylated. Mass spectrometry shows that relaxed-state mono-phosphorylation occurs on Ser35, while Ca2+-activated phosphorylation is on Ser45, both located near the RLC N-terminus. The sequences around these serines suggest that they are the targets for protein kinase C and myosin light chain kinase (MLCK), respectively. The atomic model of the tarantula filament shows that the two myosin heads (“free” and “blocked”) are in different environments, with only the free head serines readily accessible to kinases. Thus, protein kinase C Ser35 mono-phosphorylation in relaxed filaments would occur only on the free heads. Structural considerations suggest that these heads are less strongly bound to the filament backbone and may oscillate occasionally between attached and detached states (“swaying” heads). These heads would be available for immediate actin interaction upon Ca2+ activation of the thin filaments. Once MLCK becomes activated, it phosphorylates free heads on Ser45. These heads become fully mobile, exposing blocked head Ser45 to MLCK. This would release the blocked heads, allowing their interaction with actin. On this model, twitch force would be produced by rapid interaction of swaying free heads with activated thin filaments, while prolonged exposure to Ca2+ on tetanus would recruit new MLCK-activated heads, resulting in force potentiation.  相似文献   

5.
Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca2+ channel (CaV1.2) regulates Ca2+ entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with CaV1.2 under low resting [Ca2+], but is poised to change conformation and position when intracellular [Ca2+] rises. CaM binding Ca2+, and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A1588, and C1614 and the IQ motif studied as overlapping peptides IQ1644 and IQ1650 as well as their effect on calcium binding. (Ca2+)4-CaM bound to all four peptides very favorably (Kd ≤ 2 nM). Linkage analysis showed that IQ1644-1670 bound with a Kd ~ 1 pM. In the pre-IQ region, (Ca2+)2-N-domain bound preferentially to A1588, while (Ca2+)2-C-domain preferred C1614. When bound to C1614, calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM.  相似文献   

6.
In airway smooth muscles, kinase/phosphatase-dependent phosphorylation and dephosphorylation of the myosin light chain (MLC) have been revealed by many authors as important steps in calcium (Ca2+) signalling pathway from the variation of Ca2+ concentration in cytosol to the force development. Here, a theoretical analysis of the control action of MLC-kinase (MLCK) and MLC-phosphatase (MLCP) in Ca2+ signalling is presented and related to the general control principles of these enzymes, which were previously studied by Reinhart Heinrich and his co-workers. The kinetic scheme of the mathematical model considers interactions among Ca2+, calmodulin (CaM) and MLCK and the well-known 4-state actomyosin latch bridge model, whereby a link between them is accomplished by the conservation relation of all species of MLCK. The mathematical model predicts the magnitude and velocity of isometric force in smooth muscles upon transient biphasic Ca2+ signal. The properties of signal transduction in the system such as the signalling time, signal duration and signal amplitude, which are reflected in the properties of force developed, are studied by the principles of the metabolic control theory. The analysis of our model predictions confirms as shown by Reinhart Heinrich and his co-workers that MLCK controls the amplitude of signal more than its duration, whereas MLCP controls both. Finally, the simulations of elevated total content of MLCK, a typical feature of bronchial muscles of asthmatic subjects and spontaneously hypertensive rats as well as potentiation of MLCP catalytic activity, are carried out and are discussed in view of an increase in the force magnitude.  相似文献   

7.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

8.
Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the Kd for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant Kd in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a Kd value of CaM with PMCA (5.8 ± 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (Kd = 9.8 ± 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM.  相似文献   

9.
Protein–protein interactions play central roles in physiological and pathological processes. The bases of the mechanisms of drug action are relevant to the discovery of new therapeutic targets. This work focuses on understanding the interactions in protein–protein–ligands complexes, using proteins calmodulin (CaM), human calcium/calmodulin‐dependent 3′,5′‐cyclic nucleotide phosphodiesterase 1A active human (PDE1A), and myosin light chain kinase (MLCK) and ligands αII–spectrin peptide (αII–spec), and two inhibitors of CaM (chlorpromazine (CPZ) and malbrancheamide (MBC)). The interaction was monitored with a fluorescent biosensor of CaM (hCaM M124C–mBBr). The results showed changes in the affinity of CPZ and MBC depending on the CaM–protein complex under analysis. For the Ca2+–CaM, Ca2+–CaM–PDE1A, and Ca2+–CaM–MLCK complexes, CPZ apparent dissociation constants (Kds) were 1.11, 0.28, and 0.55 μM, respectively; and for MBC Kds were 1.43, 1.10, and 0.61 μM, respectively. In competition experiments the addition of calmodulin binding peptide 1 (αII–spec) to Ca2+hCaM M124C–mBBr quenched the fluorescence (Kd = 2.55 ± 1.75 pM) and the later addition of MBC (up to 16 μM) did not affect the fluorescent signal. Instead, the additions of αII–spec to a preformed Ca2+hCaM M124C–mBBr–MBC complex modified the fluorescent signal. However, MBC was able to displace the PDE1A and MLCK from its complex with Ca2+–CaM. In addition, docking studies were performed for all complexes with both ligands showing an excellent correlation with experimental data. These experiments may help to explain why in vivo many CaM drugs target prefer only a subset of the Ca2+–CaM regulated proteins and adds to the understanding of molecular interactions between protein complexes and small ligands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Calcium is necessary for secretion of pituitary hormones. Many of the biological effects of Ca2+ are mediated by the Ca2+-binding protein calmodulin (CaM), which interacts specifically with proteins regulated by the Ca2+-CaM complex. One of these proteins is myosin light chain kinase (MLCK), a Ca2+-calmodulin dependent enzyme that phosphorylates the regulatory light chains of myosin, and has been implicated in motile processes in both muscle and non-muscle tissues. We determined the content and distribution of CaM and CaM-binding proteins in bovine pituitary homogenates, and subcellular fractions including secretory granules and secretory granule membranes. CaM measured by radioimmunoassay was found in each fraction; although approximately one-half was in the cytosolic fraction, CaM was also associated with the plasma membrane and secretory granule fractions. CaM-binding proteins were identified by an 251-CaM gel overlay technique and quantitated by densitometric analysis of the autoradiograms. Pituitary homogenates contained nine major CaM-binding proteins of 146, 131, 90, 64, 58, 56, 52, 31 and 22 kilodaltons (kDa). Binding to all the bands was specific, Cat+-sensitive, and displaceable with excess unlabeled CaM. Severe heat treatment (100°C, 15 min), which results in a 75% reduction in phosphodiesterase activation by CaM, markedly decreased 251I-CaM binding to all protein bands. Secretory granule membranes showed enhancement for CaM-binding proteins with molecular weights of 184, 146, 131, 90, and 52000. A specific, affinity purified antibody to chicken gizzard MLCK bound to the 146 kDa band in homogenates, centrifugal subcellular fractions, and secretory granule membranes. No such binding was associated with the granule contents. The enrichment of MLCK and other CaM-binding proteins in pituitary secretory granule membranes suggests a possible role for CaM and/or CaM-binding proteins in granule membrane function and possibly exocytosis.  相似文献   

11.
We investigated theoretically and experimentally the Ca2+-contraction coupling in rat tracheal smooth muscle. [Ca2+]i, isometric contraction and myosin light chain (MLC) phosphorylation were measured in response to 1 mM carbachol. Theoretical modeling consisted in coupling a model of Ca2+-dependent MLC kinase (MLCK) activation with a four-state model of smooth muscle contractile apparatus. Stimulation resulted in a short-time contraction obtained within 1 min, followed by a long-time contraction up to the maximal force obtained in 30 min. ML-7 and Wortmannin (MLCK inhibitors) abolished the contraction. Chelerythrine (PKC inhibitor) did not change the short-time, but reduced the long-time contraction. [Ca2+ i responses of isolated myocytes recorded during the first 90 s consisted in a fast peak, followed by a plateau phase and, in 28% of the cells, superimposed Ca2+ oscillations. MLC phosphorylation was maximal at 5 s and then decreased whereas isometric contraction followed a Hill-shaped curve. The model properly predicts the time course of MLC phosphorylation and force of the short-time response. With oscillating Ca2+ signal, the predicted force does not oscillate. According to the model, the amplitude of the plateau and the frequency of oscillations encode for the amplitude of force, whereas the peak encodes for force velocity. The long-time phase of the contraction, associated with a second increase in MLC phosphorylation, may be explained, at least partially, by MLC phosphatase (MLCP) inhibition, possibly via PKC inhibition.  相似文献   

12.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

13.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

14.
Eukaryotic elongation factor 2 kinase (eEF‐2K) regulates protein synthesis by phosphorylating eukaryotic elongation factor 2 (eEF‐2), thereby reducing its affinity for the ribosome and suppressing global translational elongation rates. eEF‐2K is regulated by calmodulin (CaM) through a mechanism that is distinct from that of other CaM‐regulated kinases. We had previously identified a minimal construct of eEF‐2K (TR) that is activated similarly to the wild‐type enzyme by CaM in vitro and retains its ability to phosphorylate eEF‐2 efficiently in cells. Here, we employ solution nuclear magnetic resonance techniques relying on Ile δ1‐methyls of TR and Ile δ1‐ and Met ε‐methyls of CaM, as probes of their mutual interaction and the influence of Ca2+ thereon. We find that in the absence of Ca2+, CaM exclusively utilizes its C‐terminal lobe (CaMC) to engage the N‐terminal CaM‐binding domain (CBD) of TR in a high‐affinity interaction. Avidity resulting from additional weak interactions of TR with the Ca2+‐loaded N‐terminal lobe of CaM (CaMN) at increased Ca2+ levels serves to enhance the affinity further. These latter interactions under Ca2+ saturation result in minimal perturbations in the spectra of TR in the context of its complex with CaM, suggesting that the latter is capable of driving TR to its final, presumably active conformation, in the Ca2+‐free state. Our data are consistent with a scenario in which Ca2+ enhances the affinity of the TR/CaM interactions, resulting in the increased effective concentration of the CaM‐bound species without significantly modifying the conformation of TR within the final, active complex.  相似文献   

15.
We investigated the concentration- and Ca2+-dependent effects of CaM mutants, CaM12 and CaM34, in which Ca2+-binding to its N- and C-lobes was eliminated, respectively, on the CaV1.2 Ca2+ channel by inside-out patch clamp in guinea-pig cardiomyocytes. Both CaM12 and CaM34 (0.7-10 μM) applied with 3 mM ATP produced channel activity after “rundown”. Concentration-response curves were bell-shaped, similar to that for wild-type CaM. However, there was no obvious leftward shift of the curves by increasing [Ca2+], suggesting that both functional lobes of CaM were necessary for the Ca2+-dependent shift. However, channel activity induced by the CaM mutants showed Ca2+-dependent decrease, implying a Ca2+ sensor existing besides CaM. These results suggest that both N- and C-lobes of CaM are required for the Ca2+-dependent regulations of CaV1.2 Ca2+ channels.  相似文献   

16.
Current knowledge suggests that cell movement in the eukaryotic slime mold Dictyostelium discoideum is mediated by different signaling pathways involving a number of redundant components. Our previous research has identified a specific motility-enhancing function for epidermal growth factor-like (EGFL) repeats in Dictyostelium, specifically for the EGFL repeats of cyrA, a matricellular, calmodulin (CaM)-binding protein in Dictyostelium. Using mutants of cAMP signaling (carA, carC, gpaB, gpbA), the endogenous calcium (Ca2+) release inhibitor TMB-8, the CaM antagonist W-7, and a radial motility bioassay, we show that DdEGFL1, a synthetic peptide whose sequence is obtained from the first EGFL repeat of cyrA, functions independently of the cAMP-mediated signaling pathways to enhance cell motility through a mechanism involving Ca2+ signaling, CaM, and RasG. We show that DdEGFL1 increases the amounts of polymeric myosin II heavy chain and actin in the cytoskeleton by 24.1 ± 10.7% and 25.9 ± 2.1% respectively and demonstrate a link between Ca2+/CaM signaling and cytoskeletal dynamics. Finally, our findings suggest that carA and carC mediate a brake mechanism during chemotaxis since DdEGFL1 enhanced the movement of carA/carC cells by 844 ± 136% compared to only 106 ± 6% for parental DH1 cells. Based on our data, this signaling pathway also appears to involve the G-protein β subunit, RasC, RasGEFA, and protein kinase B. Together, our research provides insight into the functionality of EGFL repeats in Dictyostelium and the signaling pathways regulating cell movement in this model organism. It also identifies several mechanistic components of DdEGFL1-enhanced cell movement, which may ultimately provide a model system for understanding EGFL repeat function in higher organisms.  相似文献   

17.
Multiple drug resistance protein 1 (MDR1) is composed of two homologous halves separated by an intracellular linker region. The linker has been reported to bind myosin regulatory light chain (RLC), but it is not clear how this can occur in the context of a myosin II complex. We characterized MDR1-RLC interactions and determined that binding occurs via the amino terminal of the RLC, a domain that typically binds myosin heavy chain. MDR1-RLC interactions were sensitive to the phosphorylation state of the light chain in that phosphorylation by myosin light chain kinase (MLCK) resulted in a loss of binding in vitro. We used ML-7, a specific inhibitor of MLCK, to study the functional consequences of disrupting RLC phosphorylation in intact cells. Pretreatment of polarized Madin-Darby canine kidney cells stably expressing MDR1 with ML-7 produced a significant increase in apical to basal permeability and a corresponding decrease in the efflux ratio (threefold; p < 0.01) of [3H]-digoxin, a classic MDR1 substrate. Together these data show that MDR1-mediated transport of [3H]-digoxin can be modulated by pharmacological manipulation of myosin RLC, but direct MDR1-RLC interactions are atypical and not explained by the structure of the myosin II holoenzyme.  相似文献   

18.
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.  相似文献   

19.
Skeletal muscle phosphorylase kinase (PhK) is a Ca2+-dependent enzyme complex, (αβγδ)4, with the δ subunit being tightly bound endogenous calmodulin (CaM). The Ca2+-dependent activation of glycogen phosphorylase by PhK couples muscle contraction with glycogen breakdown in the “excitation-contraction-energy production triad.” Although the Ca2+-dependent protein-protein interactions among the relevant contractile components of muscle are well characterized, such interactions have not been previously examined in the intact PhK complex. Here we show that zero-length cross-linking of the PhK complex produces a covalent dimer of its catalytic γ and CaM subunits. Utilizing mass spectrometry, we determined the residues cross-linked to be in an EF hand of CaM and in a region of the γ subunit sharing high sequence similarity with the Ca2+-sensitive molecular switch of troponin I that is known to bind actin and troponin C, a homolog of CaM. Our findings represent an unusual binding of CaM to a target protein and supply an explanation for the low Ca2+ stoichiometry of PhK that has been reported. They also provide direct structural evidence supporting co-evolution of the coordinate regulation by Ca2+ of contraction and energy production in muscle through the sharing of a common structural motif in troponin I and the catalytic subunit of PhK for their respective interactions with the homologous Ca2+-binding proteins troponin C and CaM.  相似文献   

20.
Although multifunctional Ca2+/calmodulin-dependent protein kinases (CaM-kinases) are widely distributed in animal cells, the occurrence of CaM-kinases in the basidiomycetous mushroom has not previously been documented. When the extracts from various developmental stages from mycelia to the mature fruiting body of Coprinus cinereus were analyzed by Western blotting using Multi-PK antibodies, which had been generated to detect a wide variety of protein serine/threonine kinases (Ser/Thr kinases), a variety of stage-specific Ser/Thr kinases was detected. Calmodulin (CaM) overlay assay using digoxigenin-labeled CaM detected protein bands of 65 kDa, 58 kDa, 46 kDa, 42 kDa, and 38 kDa only in the presence of CaCl2, suggesting that these bands were CaM-binding proteins. When the CaM-binding fraction was prepared from mycelial extract of C. cinereus by CaM-Sepharose and analyzed with Multi-PK antibodies, two major immunoreactive bands corresponding to 65 kDa and 46 kDa were detected. CaM-binding fraction, thus obtained, exhibited Ca2+/CaM-dependent protein kinase activity toward protein substrates such as histones. These CaM-kinases were found to be highly expressed in the actively growing mycelia, but not in the resting mycelial cells. Mycelial growth was enhanced by the addition of CaCl2 in the culture media, but inhibited by the addition of EGTA or trifluoperazine, a potent CaM inhibitor. This suggested that CaM-dependent enzymes including CaM-kinases play crucial roles in mycelial growth of basidiomycete C. cinereus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号