首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
This paper describes the effect of predation by larvae of theatherinid Odontesthes bonariensis upon the zooplankton communityduring a 3-month experiment Three-day-old larvae were stockedin 45 m2 concrete tanks at rates of 100 and 200 fish m–2Gut content analyses showed that the larvae consumed relativelysmall prey all along the experiment Morphological (mouth width)and physiological (gastric inefficiency) constraints seems tohave precluded the capture of the largest prey. The prey community,however, showed all the symptoms generally ascribed to size-selectivepredation upon the largest individuals: decrease in maximumzooplankton size and mean cladoceran size, decrease in cladoceranand copepod biomass, extinction of the largest zooplankton species(Daphnia stmilis), increase in rotifer biomass, etc It is concludedthat size-selective predation is not a necessary condition forthe commonly observed decrease in zooplankton size after theincrease in density of a vertebrate predator. The ecologicalimplications of this result are discussed. Present address: Department of Biology, Lehigh University, WilliamsHall 31, Bethlehem, PA 18015-3189, USA  相似文献   

2.
This study evaluated the effects of fertilizer type and fish density on early growth and survival of silver therapon Leiopotherapon plumbeus (Kner, 1864) larvae reared in outdoor tanks. In the first experiment, larvae (1.92 ± 0.09 mm total length) were stocked into nine, 4 m3 tanks at an initial density of 0.5 larvae L?1 and reared for 42 days at an ambient temperature of 28.8–30.7°C. Three treatments with three replicates each were compared: organic (chicken manure, OF) or inorganic fertilizers (ammonium phosphate, IF) applied once every 2 weeks, and the unfertilized (NF) tanks serving as the control group. Water quality, zooplankton densities, survival or growth of L. plumbeus larvae did not vary significantly in either fertilized or unfertilized tanks. Fertilization resulted in elevated nutrient concentrations, which did affect survival (2.10%–6.07%) of the fish larvae. In the second experiment, larvae were stocked at densities of 0.4 or 0.6 larvae L?1 in tanks fertilized at 4–5 days interval with OF and IF for 30 days. Growth performance of L. plumbeus larvae was affected by fish density, with significantly larger (20.04 ± 2.65 mm in total length) and higher specific growth rate (SGR; 6.97 ± 0.48% day?1) at 0.4 larvae L?1 than at 0.6 L?1. Fry production did not vary significantly between fish density treatment groups given the same fertilizer types, but survival rates were improved at 0.4 L?1. Together, production of L. plumbeus larvae in outdoor tanks can be optimized at a lower stocking density, regardless of the type of fertilizer used.  相似文献   

3.
Food availability and predation risk have been shown to affect phenotypes during early life history of fishes. Galaxias maculatus, a small fish widely distributed around the southern hemisphere, clearly exhibits a complex trade-off between feeding and predation avoidance during growth over the larval period. We studied the effect of different environmental variables on diet, growth, mortality, and morphology through field surveys and data revision in the literature for limnetic G. maculatus larvae in five oligotrophic lakes of Patagonia. Both number of food categories and prey ingested by larvae were directly related to zooplankton density. Larval growth rate was related with zooplankton density and temperature. Lakes with high zooplankton densities and low predation risk had larvae with deeper bodies and shorter caudal peduncles, while in lakes with less food and high predation risk larvae were slender with shallower bodies and longer peduncles. Food availability and predation risk seem to operate on the swimming performance of G. maculatus larvae through the slenderness of the body and the length of the caudal peduncle. The observed phenotypic variation in growth and morphology could be a key feature that has allowed this species to successfully colonize a wide variety of environments in the southern hemisphere.  相似文献   

4.
M. Büns  H. T. Ratte 《Oecologia》1991,88(4):470-476
Summary Chaoborus crystallinus fourth-instar larvae were reared individually at 14°, 17° and 20° C under different food conditions. Daphnia magna of 1.25 mm average length served as prey. The following were measured: amount of prey ingested, larval weight gain, duration of fourth instar, body weight of the adults, and egg number per female. At a given temperature, the body weight, egg-number and developmental rate increased with food consumption. At a given food consumption, higher temperatures caused a decrease in body weight and egg number, and an increase in developmental rate. Gross production efficiencies for fourth-instar larvae were highest at temperatures around 17° C. The results clearly indicate that from an energetic point of view higher temperatures are disadvantageous. In C. crystallinus vertical migration is evidently a way of lowering the temperature to which the animals are exposed and hence optimizing food conversion into biomass and offspring production, especially if prey densities are below the saturation level.  相似文献   

5.
Synopsis Feeding and growth rates of 1–3 wk old herring larvae from four different stocks were compared in laboratory experiments (8°C). For most of the larval groups, feeding rate was saturated at nauplii (Acartia tonsa, nauplii stages 3–5) densities over 301–1 (5 g d.w. 1–1). Specific growth rate increased asymptotically with nauplii density, and reached about 6% d–1 at densities over 120 nauplii 1–1. The growth rates attained in the laboratory were similar to field measured growth rates of similarly aged herring larvae at comparable food densities. Since food particles were homogenously distributed in the laboratory tanks, patches of dense plankton concentrations are, thus, apparently not necessary for larval growth and survival in the sea. Growth efficiency differed between larval groups, with large sized larvae being the most efficient in transforming ingested matter into growth. The difference probably relates to different sizes rather than to the different geographical origins of the larvae.  相似文献   

6.
The feeding activity of an individual fish larva is described by an equation which includes parameters for the area successfully searched, probability of food capture multiplied by the cross-sectional perceptive visual field, larval swimming speed and the time required to consume a unit of food energy. The proportion of ingested food energy used for metabolism increases exponentially with increasing swimming speed. The model predicts that food consumption rate increases asymptotically whereas metabolic rate increases exponentially. This results in a predicted growth rate curve that reaches a maximum at a certain swimming speed and decreases at both higher and lower speeds. The model can be used to predict the influence of type of prey, prey density, water temperature etc. on larval growth. An expression describing how many hours per day fish larvae must forage in order to grow at a certain daily body weight gain allows the limits of environmental conditions for positive, zero and negative growth rate to be set. Results of simulations demonstrated that the optimum swimming speed for maximum growth of coregonid larvae increased with an increase in food density, decrease in water temperature or decrease of prey vulnerability. At optimum ‘theoretical’ swimming speed an increase in water temperature from 5 to 17° C required the food density to be increased from 20 to 80 copepods l?1 in order to maintain a daily growth increment of 2%. The minimum Artemia density required for maintenance metabolism increased from 10 to 30 items 11 over the same temperature increase from 5 to 17° C, and food densities required for 8% growth rates were 26 and 56 Artemia nauplii l?1 at 5 and 17° C, respectively. Contrary to previous findings, results of the present study suggest that metabolic rates of actively feeding fish larvae may be from 5 to 50 times the standard metabolic rate: earlier studies suggested that a factor of 2–3 may be generally applicable.  相似文献   

7.
Growth of pike larvae: effects of prey, turbidity and food quality   总被引:1,自引:0,他引:1  
We studied experimentally the effects of turbidity and prey composition on pike larval growth and hypothesized that pike larval growth varies with turbidity and food quality. We reared the first-feeding pike larvae (Esox lucius) in laboratory tanks with (1) clear or (2) turbid water provided with zooplankton rations from (3) an inner and (4) an outer archipelago site. The sites differ in physical features, salinity, eutrophication status, zooplankton community structure and density. Pike larvae showed the highest weight increase in clear water with zooplankton from the outer site and the poorest weight increase in turbid water with zooplankton as prey from the inner site. Our fatty acid analysis revealed that unsaturated fatty acid levels were highest in the outer site. The relative percentage of copepods was also higher in the outer site. This study supports the hypothesis that turbidity weakens the ability of pike larvae to capture certain prey. Further, zooplankton community composition matters in turbid water, but is not a primary factor in clear water.  相似文献   

8.
Torras  X.  Cardona  L.  Gisbert  E. 《Hydrobiologia》2000,429(1-3):49-57
Flathead grey mullet (Mugil cephalus L.) stocked in fish ponds were long considered to feed primarily on detritus. However, recent research has found that they obtain much of their food from plankton and that they have a detrimental effect on pond zooplankton and large phytoplankton, whilst enhancing small phytoplankton. It has been suggested that flathead grey mullet may also increase the internal phosphorus loading of the ecosystem, which would also increase phytoplankton density. To test whether zooplankton removal or nutrient release from the sediment is the better explanation for phytoplankton enhancement in the presence of flathead grey mullet, the ecosystems of fish-less tanks, tanks with a 60 m mesh filter and tanks stocked at a fish density of 243 g m-3 were compared. In the presence of flathead grey mullets, cladocerans, ostracods and chironomid larvae became scarcer than in the control tanks, while there were more small phytoplankton and mud snails. The green algae Cladophora sp. did not occur at all. The presence of a mechanical filter also reduced cladoceran, ostracod and chironomid densities and increased phtyoplankton and mud snail density. However, the situation observed in filter tanks was intermediate between that observed in the fish tanks and the control tanks, due to the lower filtering efficiency of the mechanical filter. The organic matter content of the sediment decreased throughout the experiment in the control and filter tanks, but remained stable in fish tanks. Phosphorus and nitrogen concentrations were not affected by any treatment. These results showed that flathead grey mullet enhanced phytoplankton development due to the removal of large cladocerans and not as a consequence of nutrient release. Furthermore, the flathead grey mullet strongly modified the benthic community, probably due to direct predation.  相似文献   

9.
L. Cardona  P. Royo  X. Torras 《Hydrobiologia》2001,462(1-3):233-240
Some mugilid fish are known to enhance small phytoplankton in freshwater macrophyte-free environments due to zooplankton depletion. This suggests that they may have negative effects on natural macrophyte beds of freshwater and oligohaline lagoons due to phytoplantkon enhancement. To test this hypothesis, we compared the ecosystems of control enclosures that contained no fish with those of enclosures stocked with Liza saliens at two different densities. The occurrence of L. saliens at a density of 321±92.42 kg ha–1 reduced cladoceran density, depleted epiphytic chironomid larvae, enhanced mayfly nymphs and cyclopoid copepods and reduced the organic matter content of sediment, all in comparison with control enclosures. At a density of 673±42.04 kg ha–1, L. saliens reduced total zooplankton density, depleted epiphytic and sediment dwelling chironomid larvae and enhanced mayfly nymphs. The organic matter contents of sediment was not affected. These results showed that L. saliens was very effective in reducing zooplankton density even when macrophyte biomass was high. However, these effects do not affect phytoplankton density, probably because zooplankton was dominated by species with low filter-feeding rates and macrophytes depleted nutrients.  相似文献   

10.
Summary Transparency reduces the chances of detection of large planktonic animals by visual predators. An important constraint on the transparency of planktonic animals may be ingested food which could be seen through the body, thereby increasing the vulnerability of transparent zooplankton to visual predators. To test this hypothesis, we presented fed and un-fed Chaoborus larvae to juvenile coho salmon (Oncorhynchus kisutch). Overall, the presence of prey in the gut of Chaoborus increased their probability of capture by 68%. Predation risks due to the visibility of ingested food increased in proportion to meal size: larvae with nearly full gut were captured about three times faster on the average than larvae which had little food in their gut. Although Chaoborus larvae may be able to reduce this increased predation risk by migrating downward to low light levels, this behavior would reduce feeding opportunities by removing the larvae from surface waters where prey density is generally high. In this way, visual predators may limit the growth and the maximum size that can be achieved by transparent animals.  相似文献   

11.
SUMMARY.
  • 1 The direct and indirect effects of predation by larval fish (Rhamdia sapo) on zooplankton in rearing tanks are analysed. Rhamdia sapo larvae showed an unusual species-selectivity for Acanthocyclops robustus, the main invertebrate predator present.
  • 2 Acanthocyclops robustus populations were markedly reduced, presumably as a direct consequence of species-selective removal. Other zooplanktonic prey were not significantly affected by R. sapo predation.
  • 3 Rotifers increased in tanks with fish, but this was not related to herbivorous crustacean variables (biomass, mean weight, abundance and species composition). On the contrary, rotifer biomass was negatively correlated with some A. robustus variables (biomass and mean weight of adults + copepodites and nauplii biomass). Thus, the rotifer increase appears to be an indirect effect of predation on A. robustus by R. sapo larvae.
  相似文献   

12.
The impact of Pseudorasbora parva, a common zooplanktivorous fish species in Japan, on a zooplankton community was analyzed in experimental tanks, half of which were stocked with the fish. Different zooplankton species showed different responses to the introduction of the fish. In the presence of the fish, the populations of the large cladoceran Ceriodaphnia and the predatory copepod Mesocyclops were reduced, but the population of the herbivorous copepod Eodiaptomus and the small cladocerans Bosmina fatalis and Bosminopsis deitersi increased relative to the controls. The increase of Mesocyclops seen in the control tanks might have suppressed the populations of the small cladocerans, which are vulnerable to invertebrate predation. The results suggest that the population densities of the large prey items preferred by the fish, Ceriodaphnia and Mesocyclops, were controlled directly by fish predation, but the population densities of the smaller and less preferred zooplankton were controlled indirectly through the food-web cascade.  相似文献   

13.
Bag-type enclosures (75 m3) with bottom sheets and tube-type enclosures (105 m3) open to the bottom sediment were stocked with exotic whitefish (Coregonus lavaretus maraena) to study their predation effects on the plankton community. The fish fed mainly on adult chironomids during the period of their emergence (earlier part of the experimental period). Thereafter, the food preference was shifted to larvae of chironomids and crustacean zooplankters. The predation effects on the plankton community were not evident in the bag-type enclosures where zooplankton densities were consistently low. The fish reduced the crustacean populations composed ofBosmina fatalis, B. longirostris andCyclops vicinus in the tube-type enclosures where the prey density was high (above ca. 50 individuals 1−1). The results suggested that the intensity of predation depended on the prey density. Rotifers increased in the fish enclosure, probably becauseCoregonus reduced the predation pressure byCyclops vicinus on rotifers and allowed the latter to increase. In the fish enclosures, no marked changes in species composition were observed. Zooplankton predated by the fish seemed to be distributed near the walls of the enclosures. Problems of enclosure experiments for examining the effects of fish predation on pelagic zooplankton communities are discussed.  相似文献   

14.
We determined in situ feeding rates of three co-occurring coastal mysid species using [methyl-3H]-thymidine-labelled algal detritus (Lessonia corrugata), NaH14CO3-labelled phytoplankton (Isochrysis galbana) and zooplankton (Artemia sp. nauplii). All three species showed a wide and overlapping range of feeding rates on the three food types, suggesting they were broadly omnivorous. However, selectivity studies often showed a strong preference for animal prey. Although there was an overlap in the types of food the mysids ingested, some degree of feeding niche partitioning was demonstrated. Paramesopodopsis rufa tended to be more carnivorous, Tenagomysis tasmaniae fed least on zooplankton and phytoplankton, and largely on algal detritus, and Anisomysis mixta australis ingested few zooplankters, and moderate amounts of algal detritus and phytoplankton. Handling editor: P. Viaroli  相似文献   

15.
Experiments were conducted to determine optimum stocking density for Clarias batrachus larvae and fry during hatchery rearing. The increase in stocking density decreased the total weight, specific growth rate (SGR) and percent weight gain of Clarias larvae during a 13‐day experiment. Survival rate was highest at a stocking density of 1000 m?2 and lowest at 5000 m?2. Stocking density did not influence the total biomass production of larvae. Clarias batrachus fry performance was studied during a 28‐day hatchery rearing experiment whereby fry stocked at a density of 100 m?2 attained the highest total body weight (P < 0.05). The survival rate greatly declined to 59–61% by a density increase to 300 m?2 and above. Stocking density influenced growth and survival of C. batrachus larvae and fry during hatchery rearing. The best performance was obtained when larvae were stocked at 2000 m?2; survival was highest with C. batrachus fry stocked at 200 m?2.  相似文献   

16.
Fauvet  Guillaume  Claret  Cécile  Marmonier  Pierre 《Hydrobiologia》2001,464(1-3):121-131
An enclosure study was conducted in Ranger Lake in south-central Ontario, Canada from 4 July to 5 August 1997 to determine predation effects of the larvae of the phantom midge fly Chaoboruson the zooplankton community. Zooplankton assemblages were established in 12 enclosures (2 m in diameter, 7.5 m deep). Three densities of fourth-instar Chaoborus trivittatus (0 l–1, 0.1 l–1 and 0.5 l–1) were introduced as predator treatments to the enclosures. Temperature, dissolved oxygen and zooplankton community composition were monitored for six weeks. To determine if the zooplankton community composition changed, a repeated measures multivariate analysis was performed on percent biomass of Bosmina and calanoid copepods. There were no significant differences in mean taxon percent biomass among predator treatments. There were significant differences in mean taxon percent biomass between water layers (epilimnion and metalimnion). There were also significant differences in lengths of Bosmina and calanoid copepods among predator treatments at the end of the experiment. Crop content analysis of C. trivittatusshowed that Bosmina constituted 88–98% of the prey items found in the crops. These results demonstrate that the use of deep enclosures, a Chaoborus species which vertically migrates, and lower natural densities of Chaoborus may provide prey with an important natural refuge from predation and so allow a more accurate determination of the predation impact of Chaoborus trivittatusin temperate lakes where fish control Chaoborus densities.  相似文献   

17.
This study examined the diet composition, feeding preferences, and mouth morphology of the silver therapon (Leiopotherapon plumbeus, Kner 1864) larvae under captive conditions. Larvae were reared in outdoor tanks (4 m3) with natural food grown 2 weeks prior to start of larval rearing. Food preference was measured by the Chesson's electivity index (αi). Gut content analysis of larvae sampled between 5 and 25 days after hatching (DAH) showed the dominance in the diet by zooplankton, mainly copepod nauplii, cladocerans and insect larvae. Small fish larvae (5–9 DAH; 3.32–6.29 mm standard length) preferred cladocerans, ciliates and copepod nauplii; whereas older larvae (12–25 DAH; 5.45–19.26 mm standard length) preferred insect larvae over cladocerans and adult insects. The mouth gape size at 5 DAH was 359 μm and increased to 3.75 mm at 40 DAH when body size grew at an average rate of 0.59 mm d?1. The standard length (SL) of L. plumbeus larvae was strongly associated with mouth size (r2 = 0.98, P < 0.05), indicating a progressive increase of ingested prey size of the fish larvae. These results clarified the early life feeding ecology of this species, which is essential in developing effective hatchery techniques.  相似文献   

18.
Synopsis Feeding of and food availability for larvae of Hypoatherina tropicalis were investigated in One Tree Lagoon, Great Barrier Reef, Australia, during November 1981 and January 1982. These surface-dwelling larvae and their microzooplankton prey were sampled as near to simultaneously as possible on 12 occasions during the daytime. Larvae of all sizes (5–17 mm SL) fed successfully over the observed range of mean prey densities (12–235 per liter), and the overall feeding incidence was 98.9%. Larger larvae consumed greater numbers and more categories of prey than did smaller larvae. Larvae selected copepods of all sizes, and nauplii, gastropods, bivalves, and foraminiferans that were greater than 75 ¢s mm in width. Tintinnids (mostly 37–74 µm in width) were generally avoided by larvae, but were occasionally important in the diets when they constituted more than 60% of the total available prey, regardless of the density of the selected prey categories. Larvae less than 14 mm SL ingested meroplankton (gastropods, bivalves, foraminiferans, and polychaetes) in direct relation to the densities available, and without regard to the densities of copepods available. However, the largest larvae (14–17 mm SL) ingested meroplankton in inverse relation to the density of copepods available, indicating that larvae consumed more meroplankton when the concentration of copepods was low. Such flexibility and opportunism in feeding behavior may increase the larvae's chances of obtaining adequate nutrition during periods of suboptimal feeding conditions.  相似文献   

19.
Summary Densities of the cladoceran, Holopedium gibberum, were manipulated in 18 enclosures containing juvenile (age 0+) yellow perch (Perca flavescens) and mean-lake densities of other zooplankton. In enclosures, where nearlake densities of all zooplankton species including Holopedium were maintained, young-of-the-year perch grew significantly heavier and longer than in experimental enclosures where Holopedium was excluded. Holopedium comprised between 15–45% of the diet (wet weight) of perch in the first 2 weeks of July in the control treatment (Holopedium at or near ambient lake densities) and only 3–7% of total biomass ingested in the experimental treatment (Holopedium density selectively reduced). Predation on Holopedium decreased dramatically after the 2nd week of July in the control treatment after which Chaoborus, chironomids, and Sida became dominant prey items (by weight) of juvenile perch. These findings suggest that growth and survivorship of age 0+ perch in Precambrian Shield lakes may be coupled to Holopedium abundance. Thus, utilization of Holopedium by young-of-the-year yellow perch may affect recruitment of this species since overwintering survivorship, range of accessible prey sizes or species, and vulnerability of juvenile perch to predation by larger fish depend on body size, which is reduced when Holopedium is excluded from the diet.  相似文献   

20.
North American invasions of the predatory cladoceran Bythotrephes longimanus have resulted in declines in native zooplankton abundance, species richness, and diversity. In the field, population maxima of Bythotrephes are positively correlated to those of their zooplankton prey. To test the hypothesis that increased prey availability enhances Bythotrephes fitness, we reared Bythotrephes in the laboratory on three mixed-species prey densities (equivalent to 15, 30, and 45 prey organisms day?1; designated “low,” “medium,” and “high” food treatments, respectively) over 22 days at 21°C. Bythotrephes consumed the daily equivalent of 9, 14, and 22 prey organisms at the low, medium, and high food densities. Smaller, slower prey were most often selected. Indeed, with increasing prey density, Bythotrephes’ predation rates increased, resulting in significantly higher population growth rates, net reproductive rates, growth, and first brood clutch and offspring sizes; significantly faster generation times; and shorter maximum life spans. We propose that the positive relationship between Bythotrephes population maxima and prey seen in the field is largely due to increased predation rates by Bythotrephes when prey abundance is high and the fitness benefits that ensue. Our findings may be useful for Bythotrephes risk and impact assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号