首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arrangements of cortical microtubules (MTs) and of cellulose microfibrils in the median longitudinal cryosections of the vegetative shoot apex of Vinca major L., were examined by immunofluorescence microscopy and polarizing microscopy, respectively. The arrangement of MTs was different in the various regions of the apex: the MTs tended to be arranged anticlinally in tunica cells, randomly in corpus cells, and transversely in cells of the rib meristem. However, in the inner layers of the tunica in the flank region of the apex, cells with periclinal, oblique or random arrangements of MTs were also observed. In leaf primordia, MTs were arranged anticlinally in cells of the superficial layers and almost randomly in the inner cells. Polarizing microscopy of cell walls showed that the arrangement of cellulose microfibrils was anticlinal in tunica cells, random in corpus cells, and transverse in cells of the rib meristem; thus, the patterns of arrangement of microfibrils were the same as those of MTs in the respective regions. These results indicate that the different patterns of arrangement of MTs and microfibrils result in specific patterns of expansion in the three regions. These differences may be necessary to maintain the organization of the tissues in the shoot apex.Abbreviations MT(s) microtubule(s) - lp length of the youngest leaf primordium  相似文献   

2.
In the regeneration of a shoot from a leaf of the succulent, Graptopetalum paraguayense E. Walther the first new organs are leaf primordia. The original arrangement of cellulose microfibrils and of microtubules (MTs) in the epidermis of the leaf-forming site is one of parallel, straight lines. In the new primordium both structures still have a congruent arrangement but it is roughly in the form of concentric circles that surround the new cylindrical organ. The regions which undergo the greatest shift in orientation (90°) were studied in detail. Departures from the original cellulose alignment are detected in changes in the polarized-light image. Departures from the original cortical MT arrangement are detected using electron microscopy. The over-all reorganization of the MT pattern is followed by the tally of MT profiles, the various regions being studied in two perpendicular planes of section. This corrects for the difference in efficiency in counting transverse versus longitudinal profiles of MTs. Reorientation takes place sporadically, cell by cell, for both the cellulose microfibrils and the MTs, indicating a coordinated reorientation of the two structures. That MTs and cellulose microfibrils reorient jointly in individual cells was shown by reconstruction of the arrays of cortical MTs in paradermal sections of individual cells whose recent change in the orientation of cellulose deposition had been detected with polarized light. Closeness of the two alignments was also indicated by images where the MT and microfibril alignments co-varied within a single cell. The change-over in alignment of the MTs appears to involve stages where arrays of contrasting orientation co-exist to give a criss-cross image. During this critical reorganization, the frequency of the MTs is high. It falls during subsequent enlargement of the organ. It was found that the rearrangement of the cortical MTs to approximate a series of concentric circles on the residual meristem occurred before the emergence of leaf primordia. Through their apparent influence on microfibril alignments, the changes in MT disposition, described here, have the potential to generate major biophysical changes that accompany organogenesis.Abbreviation MT(s) microtubule(s)  相似文献   

3.
The arrangements of cortical microtubules (MTs) in a tip-growing protonemal cell of Adiantum capillus-veneris L. and of cellulose microfibrils (MFs) in its wall were examined during blue-light (BL)-induced apical swelling. In most protonemal cells which had been growing in the longitudinal direction under red light, apical swelling was induced within 2 h of the onset of BL irradiation, and swelling continued for at least 8 h. During the longitudinal growth under red light, the arrangement of MFs around the base of the apical hemisphere (the subapical region) was perpendicular to the cell axis, while a random arrangement of MFs was found at the very tip, and a roughly axial arrangement was observed in the cylindrical region of most cells. This orientation of MFs corresponds to that of the cortical MTs reported previously (Murata et al. 1987, Protoplasma 141, 135–138). In cells irradiated with BL, a random rather than transverse arrangement of both MTs and MFs was found in the subapical region. Time-course studies showed that this reorientation occurred within 1 h after the onset of the BL irradiation, i.e. it preceded the change in growth pattern. These results indicate that the orientation of cortical MTs and of cellulose MFs is involved in the regulation of cell diameter in a tip-growing Adiantum protonemal cell.Abbreviations BL blue light - MF(s) microfibril(s) - MT(s) microtubule(s)  相似文献   

4.
Summary Placental cells in the ovarian transmitting tissue ofLilium spp. are organized as transfer cells with inbuddings facing the ovarian locule. A detailed analysis of microtubule (MT) organization during development of these polarized cells is reported here. Formation of wall projections occurs at the apical part of the cell starting on the day of anthesis, and a fully mature secretion zone is found four days after anthesis. MTs are organized into distinct cortical and central arrays. The cortical array undergoes a unique transition at anthesis. MTs in the basal half of the cell remain in longitudinal bundles while in the apical half of the cell their longitudinal orientation is replaced by a transverse alignment. One day after anthesis, these transverse bundles become a meshwork of short, randomly organized MTs, while MTs in the basal half of the cell retain their longitudinal alignment. The realignment of MTs in the apical half of the cell coincides with the deposition of the secondary cell wall. The central array is composed of short, randomly arranged strands of MTs in the cytoplasm between the nucleus and the apical and basal periclinal walls of the cell. This array first appears as solitary strands in the apical part of the cell one day before anthesis. The central array extends during development and is eventually seen in the basal half of the cell. We propose that MTs in the cortical region near the apical wall act as templates for the deposition of cellulose microfibrils in the secondary cell wall. MTs in the central array in these transfer cells may be involved in the trafficking of vesicles and/or positioning of organelles near the secretion zone.Abbreviations MT microtubule - daa day after anthesis - dba day before anthesis  相似文献   

5.
The mechanism by which cortical microtubules (MTs) control the orientation of cellulose microfibril deposition in elongating plant cells was investigated in cells of the green alga, Closterium sp., preserved by ultrarapid freezing. Cellulose microfibrils deposited during formation of the primary cell wall are oriented circumferentially, parallel to cortical MTs underlying the plasma membrane. Some of the microfibrils curve away from the prevailing circumferential orientation but then return to it. Freeze-fracture electron microscopy shows short rows of particle rosettes on the P-face of the plasma membrane, also oriented perpendicular to the long axis of the cell. Previous studies of algae and higher plants have provided evidence that such rosettes are involved in the deposition of cellulose microfibrils. The position of the rosettes relative to the underlying MTs was visualized by deep etching, which caused much of the plasma membrane to collapse. Membrane supported by the MTs and small areas around the rosettes resisted collapse. The rosettes were found between, or adjacent to, MTs, not directly on top of them. Rows of rosettes were often at a slight angle to the MTs. Some evidence of a periodic structure connecting the MTs to the plasma membrane was apparent in freeze-etch micrographs. We propose that rosettes are not actively or directly guided by MTs, but instead move within membrane channels delimited by cortical MTs attached to the plasma membrane, propelled by forces derived from the polymerization and crystallization of cellulose microfibrils. More widely spaced MTs presumably allow greater lateral freedom of movement of the rosette complexes and result in a more meandering pattern of deposition of the cellulose fibrils in the cell wall.Abbreviations E-face exoplasmic fracture face - MT microtubule - P-face protoplasmic fracture-face  相似文献   

6.
Burk DH  Ye ZH 《The Plant cell》2002,14(9):2145-2160
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.  相似文献   

7.
The arrangement of cortical microtubules (MTs) during spore formation in Equisetum arvense was examined by immunofluorescence microscopy. The arrangement of MTs was observed to change during sporoderm formation. During exospore formation, the cortical MTs of the tapetum appeared along the tapetal plasma membrane that enclosed each developing spore cell. After exospore formation, the arrangement of the cortical MTs changed into one of separate bands of MTs arranged spirally (spiral bands of MTs). The spiral bands of MTs were superimposed on the developing elaters. This new pattern corresponded to the pattern of cellulose microfibrils deposited in the inner layer of the elater, suggesting that these spiral bands are involved in the deposition of the cellulose microfibrils in the elater. We conclude that the spiral bands of MTs are functionally equivalent to cortical MTs in secondary wall formation.  相似文献   

8.
Summary A mature stomate of the water fernAzolla consists of a single apparently unspecialized annular guard cell (GC) with two nuclei surrounding an elongated pore aligned longitudinally in the leaf. During development, the guard mother cell develops a preprophase band (PPB) of microtubules (MTs) oriented transverse to the leaf axis. This is followed by a cell plate which fuses with the parental walls at the PPB site. Subsequently only the central part of the cell plate is consolidated, while the parts to either side become perforated and tenuous and may disperse completely, forming a single composite GC.Meanwhile, a dense array of MTs appears along both faces of the central part of the new wall, oriented normal to the leaf surface. Further MT arrays radiate out across the periclinal walls from the region of the consolidated cell plate. Putative MT nucleating sites are seen along the cell edges between these anticlinal and periclinal arrays. Polarized light microscopy reveals cellulose deposition parallel to the periclinal MT arrays. At the same time lamellar material is deposited within the new anticlinal wall. As the GC complex elongates, a split appears in these lamellae creating an initially transverse slit which then opens up to become first circular and ultimately an elongated pore aligned in the long axis of the leaf,i.e., at right angles to the wall in which it originated. The radiating pattern of cellulose microfibrils in the periclinal walls contributes to the shaping of the pore. Elongation at the apical and basal ends of the GC is restricted by longitudinal microfibril orientation, while that at the sides is facilitated by transverse alignment.  相似文献   

9.
Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation. In this study, we used field emission scanning electron microscopy analysis of cryo-planed tissues to determine the arrangement of cellulose microfibrils in various faces of cells undergoing cytokinesis or specialized development, including cell types in which cellulose cannot be imaged by conventional approaches. In dividing cells, we detected microfibrillar meshworks in the cell plates, consistent with the concentration at the cell plate of cellulose synthase complexes, as detected by fluorescently tagged CesA6. We also observed a loss of parallel cellulose microfibril orientation in walls of the mother cell during cytokinesis, which corresponded with the loss of fluorescently tagged cellulose synthase complexes from these surfaces. In recently formed guard cells, microfibrils were randomly organized and only formed a highly ordered circumferential pattern after pore formation. In pit fields, cellulose microfibrils were arranged in circular patterns around plasmodesmata. Microfibrils were random in most cotyledon cells except the epidermis and were parallel to the growth axis in trichomes. Deposition of cellulose microfibrils was spatially delineated in metaxylem and protoxylem cells of the inflorescence stem, supporting recent studies on microtubule exclusion mechanisms.  相似文献   

10.
An excised fern apex and young leaf primordium when seen in polarized light show distinct multicellular domains of parallel cellulose alignment which reflect the successive segmentations of the apical cell. The superficial walls of the most recent apical cell derivatives show the effects of highly ordered cellulose deposition in which the microfibrils lie parallel to the newly formed cell plate.  相似文献   

11.
The cell walls of Fusarium sulphureum have a microfibrillar component that is randomly arranged. X-ray-diffraction diagrams of the microfibrils are consistent with a high degree of crystallinity and show that they are chitin. The chitin microfibrils of the peripheral walls envelop the hyphal apex and extend across the septae. During the first 8h in culture, the conversion of conidial cells to chlamydospores is evidenced by a swelling of the cells and the original microfibrils remain randomly arranged. Within 24h new wall material is deposited as the cells expand and the wall thickens. The new microfibrils are indistinguishable from those of the original conidial cells. After 3 days in culture, the chlamydospores are fully developed and have the characteristic thick wall which is a continuous layer of randomly arranged microfibrils. Chlamydospores maintained in a conversion medium for 8 days have microfibrils identical with those in 3-day-old cultures; thus a further change in the microfibril orientation did not occur during that period. Alkaline hydrolysis of the walls removes most of the electron-dense staining constituents from the inner wall layer and leaves the outer wall layer intact. This treatment also reveals some of the wall microfibrils. An additional treatment of the walls with HAc/H2O2 completely removes the wall components that react positively to heavy metal stains. The results are discussed in relation to the structure of other fungal cell walls.  相似文献   

12.
K. Uehara  T. Hogetsu 《Protoplasma》1993,172(2-4):145-153
Summary The arrangement of cortical microtubules during the development of the secondary wall and bordered pits in the tracheids ofTaxus was examined by immunofluorescence and electron microscopy. The cambial region of radial longitudinal sections of developing young shoots (2–3 years old) contains cells at various stages of differentiation from cambial cells to tracheids. At the early stage of formation of bordered pits, circular bands of microtubules were seen to be associated with the inner edge of the border of the developing pit. In other regions than the pit secondary wall of uniform thickness was laid down, and obliquely oriented cortical microtubules ran parallel to one another. These cortical microtubules also covered the surface of the border of the developing pit on the side facing the center of the cell. As the border of the pit developed, a circular band of MTs remained associated with the inner edge of border, suggesting that the MTs were involved in the formation of the rim of the bordered pit, extending the initial border thickening, which consisted of concentrically oriented cellulose microfibrils. After completion of the formation of the bordered pit, helical thickenings became apparent. The obliquely oriented microtubules were organized in bands parallel to one another, being superimposed on the helical thickenings. The involvement of MTs in the formation of bordered pits and helical thickening is discussed.  相似文献   

13.
Summary Serial thin sectioning for electron microscopy was carried out on the cortical cytoplasm of surface cells of the apical dome ofVinca minor. The cellulose reinforcement pattern in the outer epidermal walls forming this surface is known to correlate well with the decussate phyllotaxis pattern. The purpose of this study was to determine the location of microtubules immediately under these epidermal walls as a first step toward finding out how the cellulose pattern arises. First, correspondence between the patterns of microtubules and cellulose was checked. Second, the role of potential orienting cues for the alignment of microtubule arrays in specific cells was evaluated.Microtubule arrays which were well or moderately ordered (70% of the total interphase cells) generally had alignment parallel to the adjacent leaf base, as has been seen for cellulose. The aligned features or cues potentially correlating with a given array were: (1) orientation and length of the previous anticlinal cross-wall, (2) alignment of microtubules in adjacent cells, and (3) direction of inferred stretch, parallel to the nearby leaf bases. All three features were found to agree with the microtubule alignment in 17 of 34 cells with ordered arrays. At least two features agreed in 33 of the 34 cases. All 34 cells with ordered arrays had at least one feature parallel to the array. Random association between microtubule orientation and these features would lead to such correlations less than 0.01% of the time. Thirty percent of the interphase cells showed no obvious order. Most of these cells were located in the central linear corridor region of the apex. The unordered cells were more likely than the ordered cells to have more than one orientation specified by the potential cues; i.e., no single orientation parallel to all of the cues existed. This indicates that uniformity of the orientation cues may be as important as their direction.  相似文献   

14.
Characteristics of the deposition of cellulose microfibrilsduring formation of polylamellate walls and the arrangementof cortical microtubules in the tip-growing bipolar cells ofChamaedoris orientalis were examined by replica preparationmethods and indirect immunofluorescence microscopy. The polylamellatewall is made up of two or three kinds of wall lamella whichdiffer in terms of the orientation of microfibrils. Individuallamellae were periodically initiated one after another fromthe pole that was situated exactly at each growing apex of thecell and they were deposited basipetally. The orientation ofmicrofibrils in each lamella was constant during deposition.Microfibrils in different lamellae were deposited at the sametime through the cell wall but the timing of the depositionwas staggered between neighboring lamellae so that the microfibrilswould not be interwoven. By contrast, cortical microtubuleswere persistently arranged longitudinally all over the celland no focal points to which they converged helically were visible,even around the cell apices. The mechanisms that regulate theformation of the polylamellate wall are discussed and a modelfor interpreting the involvement of the cortical microtubulesin such mechanisms is proposed. (Received July 31, 1989; Accepted January 27, 1990)  相似文献   

15.
The arrangement of cortical microtubules (MTs) in differentiating tracheids of Abies sachalinensis Masters was examined by confocal laser scanning microscopy after immunofluorescent staining. The arrays of MTs in the tracheids during formation of the primary wall were not well ordered and the predominant orientation changed from longitudinal to transverse. During formation of the secondary wall, the arrays of MTs were well ordered and their orientation changed progressively from a flat S-helix to a steep Z-helix and then to a flat S-helix as the differentiation of tracheids proceeded. The orientation of cellulose microfibrils (MFs) on the innermost surface of cell walls changed in a similar manner to that of the MTs. These results provide strong evidence for the co-alignment of MTs and MFs during the formation of the semi-helicoidal texture of the cell wall in conifer tracheids.Abbreviations MT cortical microtubule - MF cellulose microfibril - S1, S2 and S3 the outer, middle and inner layers of the secondary wall The authors thank Mr. T. Itoh of the Electron Microscope Laboratory, Faculty of Agriculture, Hokkaido University, for his technical assistance. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan (no. 06404013).  相似文献   

16.
S. Kimura  T. Itoh 《Protoplasma》1995,186(1-2):24-33
Summary The tunicate,Metandrocarpa uedai, contains a large quantity of cellulose; however, it is not known how and where the cellulose is synthesized. Based on evidence from electron diffraction and conventional thin-sectioning for electron microscopy, this study shows that the glomerulocyte is involved in the synthesis of cellulose. The bundles of microfibrils in the glomerulocyte as well as the tunic were identified as cellulose I using selected area electron diffraction analysis. The diffraction pattern of cellulose in the glomerulocyte was similar to that from the tunic, suggesting that the crystallization of cellulose already is initiated in the glomerulocyte. The diameter of cellulose microfibrils, both in the glomerulocyte and the tunic was the same, about 16 nm. These results suggest that the glomerulocyte is the most probable site for the synthesis of cellulose in the tunic ofM. uedai. Using thin-sectioning techniques, a series of observations showed that individual microfibrils are primarily assembled in structures tentatively identified as vacuole-like structures, then they are bundled by a tapering region within the vacuole-like structures. These bundles of microfibrils are deposited in a continuously circular arrangement. The microtubules are oriented parallel to the bundles of microfibrils at the tapering vacuole-like structure, and they may be involved in the tapering of these structures (perhaps controlling the shape). This study also provides the first account for the involvement of a vacuole-like structure in the synthesis of cellulose microfibrils among living organisms.  相似文献   

17.
Hodick D 《Planta》1994,195(1):43-49
The unicellular protonema of Chara fragilis Desv. was investigated in order to establish a reaction chain for negative gravitropism in tip-growing cells. The time course of gravitropic bending after stimulation at angles of 45 degrees or 90 degrees showed three distinct phases of graviresponse. During the first hour after onset of stimulation a strong upward shift of the tip took place. This initial response was followed by an interval of almost straight growth. Complete reorientation was achieved in a third phase with very low bending rates. Gravitropic reorientation could be completely abolished by basipetal centrifugation of the cells, which lastingly removed conspicuous dark organelles from the protonema tip, thus identifying them as statoliths. Within minutes after onset of gravistimulation most or all statoliths were transported acropetally from their resting position 20-100 micrometers from the cell apex to the lower side of the apical dome. This transport is actin-dependent since it could be inhibited with cytochalasin B. Within minutes after arrival of the statoliths, the apical dome flattened on its lower side and bulged on the upper one. After this massive initial response the statoliths remained firmly sedimented, but the distance between this sedimented complex and the cell vertex increased from 7 micrometers to 22 micrometers during the first hour of stimulation and bending rates sharply declined. From this it is concluded that only statoliths inside the apical dome convey information about the spatial orientation of the cell in the gravitropic reaction chain. After inversion of the protonema the statoliths transiently arranged into a disk-shaped complex about 8 micrometers above the vertex. When this statolith complex tilted towards one side of the apical dome, growth was shifted in the opposite direction and bending started. It is argued that the statoliths intruding into the apical dome may displace a growth-organizing structure from its symmetrical position in the apex and may thus cause bending by bulging. In the positively gravitropic Chara rhizoids only a more stable anchorage of the growth-organizing structure is required. As a consequence, sedimented statoliths cannot dislocate this structure from the vertex. Instead they obstruct a symmetrical distribution of cell-wall-forming vesicles around the structure and thus cause bending by bowing.  相似文献   

18.
The mechanism of the toxic effects on plant cells of sulfite, a product of the air pollutant sulfur dioxide, is not well understood. Therefore, changes in the fine structure and organization of microtubules and microfibrils induced by sulfite were studied by electron and light microscopy in the protonemata of the fernAdiantum capillusveneris L. Under red-light conditions, growing protonemata fumigated with 0.05 or 0.1 μ1/1 SO2 for 1 to 4 days showed abnormalities, such as apical swelling, and they sometimes burst at the apex. The incidence of abnormalities seemed to be correlated with the concentration of the sulfite dissolved in the culture medium. At an appropriate concentration (3.3–6.6. mM) of sulfite (applied as K2SO3), cell swelling at the apical region of protonema was also induced. When the concentration of sulfite was as high as 6.6 mM, more than 60% of protonemata burst at the tip. During the apical swelling, no distinct changes were observed in the fine structure of organelles, such as the chloroplasts, mitochondria, microbodies, Golgi bodies and nucleus. However, the arrangement of cortical microtubules and that of the innermost layer of microfibrils around the subapical region of protonemata were changed from transverse to the cell axis (i.e., circular) to random and the cell wall was thickened. These observations suggest that sulfite may influence the mechanisms that maintain the transverse orientation of microtubules in the subapical region of a protonema and that the resultant random arrangement of microtubules induces the random arrangement of microfibrils and leads to apical swelling.  相似文献   

19.
Detergent extracts of microsomal fractions from suspension cultured cells of Rubus fruticosus (blackberry) were tested for their ability to synthesize in vitro sizable quantities of cellulose from UDP-glucose. Both Brij 58 and taurocholate were effective and yielded a substantial percentage of cellulose microfibrils together with (1-->3)-beta-d-glucan (callose). The taurocholate extracts, which did not require the addition of Mg(2+), were the most efficient, yielding roughly 20% of cellulose. This cellulose was characterized after callose removal by methylation analysis, electron microscopy, and electron and x-ray synchrotron diffractions; its resistance toward the acid Updegraff reagent was also evaluated. The cellulose microfibrils synthesized in vitro had the same diameter as the endogenous microfibrils isolated from primary cell walls. Both polymers diffracted as cellulose IV(I), a disorganized form of cellulose I. Besides these similarities, the in vitro microfibrils had a higher perfection and crystallinity as well as a better resistance toward the Updegraff reagent. These differences can be attributed to the mode of synthesis of the in vitro microfibrils that are able to grow independently in a neighbor-free environment, as opposed to the cellulose in the parent cell walls where new microfibrils have to interweave with the already laid polymers, with the result of a number of structural defects.  相似文献   

20.
The arrangements of microtubules and the cellulose microfibrilsof radial walls in tracheids of Abies sachalinensis Mastersduring the expansion of cells were examined by immunofluorescenceand field-emission scanning electron microscopy. The radialdiameter of tracheids increased to three to four times thatof cambial initial cells. Microfibrils on the innermost surfaceof primary walls of conifer tracheids at early stages were notwell ordered and most of the microfibrils were oriented longitudinally.As each cell expanded, microfibrils in the process of depositionwere still not well ordered but their orientation changed fromlongitudinal to transverse. When cell expansion ceased, microfibrilswere well ordered and oriented transversely. Cortical microtubulesshowed a change in orientation similar to that of the microfibrils.These results indicate that the orientation of cortical microtubulesis correlated with that of microfibrils as they are being laiddown and with cell morphogenesis in conifer tracheids.Copyright1995, 1999 Academic Press Microfibril, microtubule, tracheid, cell expansion, Abies sachalinensis Masters, field-emission scanning electron microscopy, immunofluorescence microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号