首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

2.
The crystal structure of glucooligosaccharide oxidase from Acremonium strictum was demonstrated to contain a bicovalent flavinylation, with the 6- and 8alpha-positions of the flavin isoalloxazine ring cross-linked to Cys(130) and His(70), respectively. The H70A and C130A single mutants still retain the covalent FAD, indicating that flavinylation at these two residues is independent. Both mutants exhibit a decreased midpoint potential of approximately +69 and +61 mV, respectively, compared with +126 mV for the wild type, and possess lower activities with k(cat) values reduced to approximately 2 and 5%, and the flavin reduction rate reduced to 0.6 and 14%. This indicates that both covalent linkages increase the flavin redox potential and alter the redox properties to promote catalytic efficiency. In addition, the isolated H70A/C130A double mutant does not contain FAD, and addition of exogenous FAD was not able to restore any detectable activity. This demonstrates that the covalent attachment is essential for the binding of the oxidized cofactor. Furthermore, the crystal structure of the C130A mutant displays conformational changes in several cofactor and substrate-interacting residues and hence provides direct evidence for novel functions of flavinylation in assistance of cofactor and substrate binding. Finally, the wild-type enzyme is more heat and guanidine HCl-resistant than the mutants. Therefore, the bicovalent flavin linkage not only tunes the redox potential and contributes to cofactor and substrate binding but also increases structural stability.  相似文献   

3.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

4.
In order to gain insight into the light-driven repair of DNA by the enzyme DNA photolyase, the conformation of the photoactive cofactor FAD, a flavin adenine dinucleotide, has been studied by molecular dynamic simulations. In contrast to FAD in the gas phase and in water where the MD procedure yields various "open" I-shaped as well as "closed" U-shaped conformations, the calculations of FAD binding to the enzyme show essentially a single U-shaped conformation of this cofactor which, so far, is unique among FAD-carrying proteins. It is characteristic for this U-shaped conformation that the FAD components occupy opposite sides of the pocket in the surface of the protein which provides the binding site for the defect pyrimidine dimer structure on DNA. In fact, the calculated U-shaped conformation is very close to the one revealed by the X-ray structure analysis of DNA photolyase. Moreover, the simulations yield details on the binding of the photoactive isoalloxazine moiety and the dynamics of the amino acids forming the binding cavity of the enzyme.  相似文献   

5.
Structural changes in Escherichia coli DNA photolyase induced by binding of a (cis,syn)-cyclobutane pyrimidine dimer (CPD) are studied by continuous-wave electron paramagnetic resonance and electron-nuclear double resonance spectroscopies, using the flavin adenine dinucleotide (FAD) cofactor in its neutral radical form as a naturally occurring electron spin probe. The electron paramagnetic resonance/electron-nuclear double resonance spectral changes are consistent with a large distance (> or =0.6 nm) between the CPD lesion and the 7,8-dimethyl isoalloxazine ring of FAD, as was predicted by recent model calculations on photolyase enzyme-substrate complexes. Small shifts of the isotropic proton hyperfine coupling constants within the FAD's isoalloxazine moiety can be understood in terms of the cofactor binding site becoming more nonpolar because of the displacement of water molecules upon CPD docking to the enzyme. Molecular orbital calculations of hyperfine couplings using density functional theory, in conjunction with an isodensity polarized continuum model, are presented to rationalize these shifts in terms of the changed polarity of the medium surrounding the FAD cofactor.  相似文献   

6.
NADPH-cytochrome P450 oxidoreductase catalyzes transfer of electrons from NADPH, via two flavin cofactors, to various cytochrome P450s. The crystal structure of the rat reductase complexed with NADP(+) has revealed that nicotinamide access to FAD is blocked by an aromatic residue (Trp-677), which stacks against the re-face of the isoalloxazine ring of the flavin. To investigate the nature of interactions between the nicotinamide, FAD, and Trp-677 during the catalytic cycle, three mutant proteins were studied by crystallography. The first mutant, W677X, has the last two C-terminal residues, Trp-677 and Ser-678, removed; the second mutant, W677G, retains the C-terminal serine residue. The third mutant has the following three catalytic residues substituted: S457A, C630A, and D675N. In the W677X and W677G structures, the nicotinamide moiety of NADP(+) lies against the FAD isoalloxazine ring with a tilt of approximately 30 degrees between the planes of the two rings. These results, together with the S457A/C630A/D675N structure, allow us to propose a mechanism for hydride transfer regulated by changes in hydrogen bonding and pi-pi interactions between the isoalloxazine ring and either the nicotinamide ring or Trp-677 indole ring. Superimposition of the mutant and wild-type structures shows significant mobility between the two flavin domains of the enzyme. This, together with the high degree of disorder observed in the FMN domain of all three mutant structures, suggests that conformational changes occur during catalysis.  相似文献   

7.
Quinone reductase 2 (NQO2) is a broadly expressed enzyme implicated in responses to a number of compounds, including protein kinase inhibitors, resveratrol, and antimalarial drugs. NQO2 includes a flavin adenine dinucleotide (FAD) cofactor, but X-ray crystallographic analysis of human NQO2 expressed in Escherichia coli showed that electron density for the isoalloxazine ring of FAD was weak and there was no electron density for the adenine mononucleotide moiety. Reversed-phase high-performance liquid chromatography (HPLC) of the NQO2 preparation indicated that FAD was not present and only 38% of the protomers contained flavin mononucleotide (FMN), explaining the weak electron density for FAD in the crystallographic analysis. A method for purifying NQO2 and reconstituting with FAD such that the final content approaches 100% occupancy with FAD is presented here. The enzyme prepared in this manner has a high specific activity, and there is strong electron density for the FAD cofactor in the crystal structure. Analysis of NQO2 crystal structures present in the Protein Data Bank indicates that many may have sub-stoichiometric cofactor content and/or contain FMN rather than FAD. This method of purification and reconstitution will help to optimize structural and functional studies of NQO2 and possibly other flavoproteins.  相似文献   

8.
Flavin reductases use flavins as substrates and are distinct from flavoenzymes which have tightly bound flavins. The reduced flavin can serve to reduce ferric complexes and iron proteins. In Escherichia coli, reactivation of ribonucleotide reductase is achieved by reduced flavins produced by flavin reductase. The crystal structure of E. coli flavin reductase reveals that the enzyme structure is similar to the structures of the ferredoxin reductase family of flavoproteins despite very low sequence similarities. The main difference between flavin reductase and structurally related flavoproteins is that there is no binding site for the AMP moiety of FAD. The direction of the helix in the flavin binding domain, corresponding to the phosphate binding helix in the flavoproteins, is also slightly different and less suitable for phosphate binding. Interactions for flavin substrates are instead provided by a hydrophobic isoalloxazine binding site that also contains a serine and a threonine, which form hydrogen bonds to the isoalloxazine of bound riboflavin in a substrate complex.  相似文献   

9.
Phe(1395) stacks parallel to the FAD isoalloxazine ring in neuronal nitric-oxide synthase (nNOS) and is representative of conserved aromatic amino acids found in structurally related flavoproteins. This laboratory previously showed that Phe(1395) was required to obtain the electron transfer properties and calmodulin (CaM) response normally observed in wild-type nNOS. Here we characterized the F1395S mutant of the nNOS flavoprotein domain (nNOSr) regarding its physical properties, NADP(+) binding characteristics, flavin reduction kinetics, steady-state and pre-steady-state cytochrome c reduction kinetics, and ability to shield its FMN cofactor in response to CaM or NADP(H) binding. F1395S nNOSr bound NADP(+) with 65% more of the nicotinamide ring in a productive conformation with FAD for hydride transfer and had an 8-fold slower rate of NADP(+) dissociation. CaM stimulated the rates of NADPH-dependent flavin reduction in wild-type nNOSr but not in the F1395S mutant, which had flavin reduction kinetics similar to those of CaM-free wild-type nNOSr. CaM-free F1395S nNOSr lacked repression of cytochrome c reductase activity that is typically observed in nNOSr. The combined results from pre-steady-state and EPR experiments revealed that this was associated with a lesser degree of FMN shielding in the NADP(+)-bound state as compared with wild type. We conclude that Phe(1395) regulates nNOSr catalysis in two ways. It facilitates NADP(+) release to prevent this step from being rate-limiting, and it enables NADP(H) to properly regulate a conformational equilibrium involving the FMN subdomain that controls reactivity of the FMN cofactor in electron transfer.  相似文献   

10.
Zhao G  Bruckner RC  Jorns MS 《Biochemistry》2008,47(35):9124-9135
Monomeric sarcosine oxidase (MSOX) catalyzes the oxidation of N-methylglycine and contains covalently bound FAD that is hydrogen bonded at position N(5) to Lys265 via a bridging water. Lys265 is absent in the homologous but oxygen-unreactive FAD site in heterotetrameric sarcosine oxidase. Isolated preparations of Lys265 mutants contain little or no flavin but can be covalently reconstituted with FAD. Mutation of Lys265 to a neutral residue (Ala, Gln, Met) causes a 6000- to 9000-fold decrease in apparent turnover rate whereas a 170-fold decrease is found with Lys265Arg. Substitution of Lys265 with Met or Arg causes only a modest decrease in the rate of sarcosine oxidation (9.0- or 3.8-fold, respectively), as judged by reductive half-reaction studies which show that the reactions proceed via an initial enzyme.sarcosine charge transfer complex and a novel spectral intermediate not detected with wild-type MSOX. Oxidation of reduced wild-type MSOX (k = 2.83 x 10(5) M(-1) s(-1)) is more than 1000-fold faster than observed for the reaction of oxygen with free reduced flavin. Mutation of Lys265 to a neutral residue causes a dramatic 8000-fold decrease in oxygen reactivity whereas a 250-fold decrease is observed with Lys265Arg. The results provide definitive evidence for Lys265 as the site of oxygen activation and show that a single positively charged amino acid residue is entirely responsible for the rate acceleration observed with wild-type enzyme. Significantly, the active sites for sarcosine oxidation and oxygen reduction are located on opposite faces of the flavin ring.  相似文献   

11.
Flavin adenine dinucleotide (FAD) and three different flavoproteins in aqueous solution were subjected to redox-triggered Fourier transform infrared difference spectroscopy. The acquired vibrational spectra show a great number of positive and negative peaks, pertaining to the oxidized and reduced state of the molecule, respectively. Density functional theory calculations on the B3LYP/6-31G(d) level were employed to assign several of the observed bands to vibrational modes of the isoalloxazine moiety of the flavin cofactor in both its oxidized and, for the first time, its reduced state. Prominent modes measured for oxidized FAD include nu(C(4)=O) and nu(C(2)=O) at 1716 and 1674 cm(-1), respectively, nu(C(4a)=N(5)) at 1580 cm(-1), and nu(C(10a)=N(1)) at 1548 cm(-1). Measured modes of the reduced form of FAD include nu(C(2)=O) at 1692 cm(-1), nu(C(4)=O) at 1634 cm(-1), and nu(C(4a)=C(10a)) at 1600 cm(-1). While the overall shape of the enzyme spectra is similar to the shape of the spectrum of free FAD, there are numerous differences in detail. In particular, the nu(C=N) modes of the flavin exhibit frequency shifts in the protein-bound form, most prominently for pyruvate oxidase where nu(C(10a)=N(1)) downshifts by 14 cm(-1) to 1534 cm(-1). The significance of this shift and a possible explanation in connection with the bent conformation of the flavin cofactor in this enzyme are discussed.  相似文献   

12.
The catabolism of toxic phenols in the thermophilic organism Bacillus thermoglucosidasius A7 is initiated by a two-component enzyme system. The smaller flavin reductase PheA2 component catalyzes the NADH-dependent reduction of free FAD according to a ping-pong bisubstrate-biproduct mechanism. The reduced FAD is then used by the larger oxygenase component PheA1 to hydroxylate phenols to the corresponding catechols. We have determined the x-ray structure of PheA2 containing a bound FAD cofactor (2.2 A), which is the first structure of a member of this flavin reductase family. We have also determined the x-ray structure of reduced holo-PheA2 in complex with oxidized NAD (2.1 A). PheA2 is a single domain homodimeric protein with each FAD-containing subunit being organized around a six-stranded beta-sheet and a capping alpha-helix. The tightly bound FAD prosthetic group (K(d) = 10 nm) binds near the dimer interface, and the re face of the FAD isoalloxazine ring is fully exposed to solvent. The addition of NADH to crystalline PheA2 reduced the flavin cofactor, and the NAD product was bound in a wide solvent-accessible groove adopting an unusual folded conformation with ring stacking. This is the first observation of an enzyme that is very likely to react with a folded compact pyridine nucleotide. The PheA2 crystallographic models strongly suggest that reactive exogenous FAD substrate binds in the NADH cleft after release of NAD product. Nanoflow electrospray mass spectrometry data indeed showed that PheA2 is able to bind one FAD cofactor and one FAD substrate. In conclusion, the structural data provide evidence that PheA2 contains a dual binding cleft for NADH and FAD substrate, which alternate during catalysis.  相似文献   

13.
Roitel O  Scrutton NS  Munro AW 《Biochemistry》2003,42(36):10809-10821
Cys-999 is one component of a triad (Cys-999, Ser-830, and Asp-1044) located in the FAD domain of flavocytochrome P450 BM3 that is almost entirely conserved throughout the diflavin reductase family of enzymes. The role of Cys-999 has been studied by steady-state kinetics, stopped-flow spectroscopy, and potentiometry. The C999A mutants of BM3 reductase (containing both FAD and FMN cofactors) and the isolated FAD domain are substantially compromised in their capacity to reduce artificial electron acceptors in steady-state turnover with either NADPH or NADH as electron donors. Stopped-flow studies indicate that this is due primarily to a substantially slower rate of hydride transfer from nicotinamide coenzyme to FAD cofactor in the C999A enzymes. The compromised rates of hydride transfer are not attributable to altered thermodynamic properties of the flavins. A reduced enzyme-NADP(+) charge-transfer species is populated following hydride transfer in the wild-type FAD domain, consistent with the slow release of NADP(+) from the 2-electron-reduced enzyme. This intermediate does not accumulate in the C999A FAD domain or wild-type and C999A BM3 reductases, suggesting more rapid release of NADP(+) from these enzyme forms. Rapid internal electron transfer from FAD to FMN in wild-type BM3 reductase releases NADP(+) from the nicotinamide-binding site, thus preventing the inhibition of enzyme activity through the accumulation of a stable FADH(2)-NADP(+) charge-transfer complex. Hydride transfer is reversible, and the observed rate of oxidation of the 2-electron-reduced C999A BM3 reductase and FAD domain is hyperbolically dependent on NADP(+) concentration. With the wild-type BM3 reductase and FAD domain, the rate of flavin oxidation displays an unusual dependence on NADP(+) concentration, consistent with a two-site binding model in which two coenzyme molecules bind to catalytic and regulatory regions (or sites) within a bipartite coenzyme binding site. A kinetic model is proposed in which binding of coenzyme to the regulatory site hinders sterically the release of NADPH from the catalytic site. The results are discussed in the light of kinetic and structural studies on mammalian cytochrome P450 reductase.  相似文献   

14.
Two high-resolution structures of a double mutant of bacterial cholesterol oxidase in the presence or absence of a ligand, glycerol, are presented, showing the trajectory of glycerol as it binds in a Michaelis complex-like position in the active site. A group of three aromatic residues forces the oxidized isoalloxazine moiety to bend along the N5-N10 axis as a response to the binding of glycerol in the active site. Movement of these aromatic residues is only observed in the glycerol-bound structure, indicating that some tuning of the FAD redox potential is caused by the formation of the Michaelis complex during regular catalysis. This structural study suggests a possible mechanism of substrate-assisted flavin activation, improves our understanding of the interplay between the enzyme, its flavin cofactor and its substrate, and is of use to the future design of effective cholesterol oxidase inhibitors.  相似文献   

15.
Para-hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor, FAD, by NADPH in response to binding p-hydroxybenzoate to the enzyme, and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the isoalloxazine ring within the protein structure. In this paper, we examine the effect of increased positive electrostatic potential in the active site upon the catalytic process with the enzyme mutation, Glu49Gln. This mutation removes a negative charge from a conserved buried charge pair. The properties of the Glu49Gln mutant enzyme are consistent with increased positive potential in the active site, but the mutant enzyme is difficult to study because it is unstable. There are two important changes in the catalytic function of the mutant enzyme as compared to the wild-type. First, the rate of hydroxylation of p-hydroxybenzoate by the transiently formed flavin hydroperoxide is an order of magnitude faster than in the wild-type. This result is consistent with one function proposed for the positive potential in the active site-to stabilize the negative C-4a-flavin alkoxide leaving group upon heterolytic fission of the peroxide bond. However, the mutant enzyme is a poorer catalyst than the wild-type enzyme because (unlike wild-type) the binding of p-hydroxybenzoate is a rate-limiting process. Our analysis shows that the mutant enzyme is slow to interconvert between conformations required to bind and release substrate. We conclude that the new open structure found in crystals of the Arg220Gln mutant enzyme [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613] is integral to the process of binding and release of substrate from oxidized enzyme during catalysis.  相似文献   

16.
We have analyzed structure-sequence relationships in 32 families of flavin adenine dinucleotide (FAD)-binding proteins, to prepare for genomic-scale analyses of this family. Four different FAD-family folds were identified, each containing at least two or more protein families. Three of these families, exemplified by glutathione reductase (GR), ferredoxin reductase (FR), and p-cresol methylhydroxylase (PCMH) were previously defined, and a family represented by pyruvate oxidase (PO) is newly defined. For each of the families, several conserved sequence motifs have been characterized. Several newly recognized sequence motifs are reported here for the PO, GR, and PCMH families. Each FAD fold can be uniquely identified by the presence of distinctive conserved sequence motifs. We also analyzed cofactor properties, some of which are conserved within a family fold while others display variability. Among the conserved properties is cofactor directionality: in some FAD-structural families, the adenine ring of the FAD points toward the FAD-binding domain, whereas in others the isoalloxazine ring points toward this domain. In contrast, the FAD conformation and orientation are conserved in some families while in others it displays some variability. Nevertheless, there are clear correlations among the FAD-family fold, the shape of the pocket, and the FAD conformation. Our general findings are as follows: (a) no single protein 'pharmacophore' exists for binding FAD; (b) in every FAD-binding family, the pyrophosphate moiety binds to the most strongly conserved sequence motif, suggesting that pyrophosphate binding is a significant component of molecular recognition; and (c) sequence motifs can identify proteins that bind phosphate-containing ligands.  相似文献   

17.
The VAO flavoprotein family is a rapidly growing family of oxidoreductases that favor the covalent binding of the FAD cofactor. In this review we report on the catalytic properties of some newly discovered VAO family members and their mode of flavin binding. Covalent binding of the flavin is a self-catalytic post-translational modification primarily taking place in oxidases. Covalent flavinylation increases the redox potential of the cofactor and thus its oxidation power. Recent findings have revealed that some members of the VAO family anchor the flavin via a dual covalent linkage (6-S-cysteinyl-8α-N1-histidyl FAD). Some VAO-type aldonolactone oxidoreductases favor the non-covalent binding of the flavin cofactor. These enzymes act as dehydrogenases, using cytochrome c as electron acceptor.  相似文献   

18.
Methemoglobinemia, the first hereditary disease to be identified that involved an enzyme deficiency, has been ascribed to mutations in the enzyme cytochrome b(5) reductase. A variety of defects in either the erythrocytic or microsomal forms of the enzyme have been identified that give rise to the type I or type II variant of the disease, respectively. The positions of the methemoglobinemia-causing mutations are scattered throughout the protein sequence, but the majority of the nontruncated mutants that produce type II symptoms occur close to the flavin adenine dinucleotide (FAD) cofactor binding site. While X-ray structures have been determined for the soluble, flavin-containing diaphorase domains of the rat and pig enzymes, no X-ray or NMR structure has been described for the human enzyme or any of the methemoglobinemia variants. S127P, a mutant that causes type II methemoglobinemia, was the first to be positively identified and have its spectroscopic and kinetic properties characterized that revealed altered nicotinamide adenine dinucleotide hydride (NADH) substrate binding behavior. To understand these changes at a structural level, we have determined the structure of the S127P mutant of rat cytochrome b(5) reductase to 1.8 A resolution, providing the first structural snapshot of a cytochrome b(5) reductase mutant that causes methemoglobinemia. The high-resolution structure revealed that the adenosine diphosphate (ADP) moiety of the FAD prosthetic group is displaced into the corresponding ADP binding site of the physiological substrate, NADH, thus acting as a substrate inhibitor which is consistent with both the spectroscopic and kinetic data.  相似文献   

19.
20.
Flavin‐dependent halogenases require reduced flavin adenine dinucleotide (FADH2), O2, and halide salts to halogenate their substrates. We describe the crystal structures of the tryptophan 6‐halogenase Thal in complex with FAD or with both tryptophan and FAD. If tryptophan and FAD were soaked simultaneously, both ligands showed impaired binding and in some cases only the adenosine monophosphate or the adenosine moiety of FAD was resolved, suggesting that tryptophan binding increases the mobility mainly of the flavin mononucleotide moiety. This confirms a negative cooperativity between the binding of substrate and cofactor that was previously described for other tryptophan halogenases. Binding of substrate to tryptophan halogenases reduces the affinity for the oxidized cofactor FAD presumably to facilitate the regeneration of FADH2 by flavin reductases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号