首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Bacteria are often iron-limited, and hence produce extracellular iron-scavenging siderophores. A crucial feature of siderophore production is that it can be an altruistic behaviour (individually costly but benefitting neighbouring cells), thus siderophore producers can be invaded by non-producing social ‘cheats’. Recent studies have shown that siderophores can also bind other heavy metals (such as Cu and Zn), but in this case siderophore chelation actually reduces metal uptake by bacteria. These complexes reduce heavy metal toxicity, hence siderophore production may contribute to toxic metal bioremediation. Here, we show that siderophore production in the context of bioremediation is also an altruistic trait and can be exploited by cheating phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. Specifically, we show that in toxic copper concentrations (i) siderophore non-producers evolve de novo and reach high frequencies, and (ii) producing strains are fitter than isogenic non-producing strains in monoculture, and vice versa in co-culture. Moreover, we show that the evolutionary effect copper has on reducing siderophore production is greater than the reduction observed under iron-limited conditions. We discuss the relevance of these results to the evolution of siderophore production in natural communities and heavy metal bioremediation.  相似文献   

2.
Most bacteria, fungi, and some plants respond to Fe stress by the induction of high-affinity Fe transport systems that utilize biosyrthetic chelates called siderophores. To competitively acquire Fe, some microbes have transport systems that enable them to use other siderophore types in addition to their own. Bacteria such as Escherichia coli achieve this ability by using a combination of separate siderophore receptors and transporters, whereas other microbial species, such as Streptomyces pilosus, use a low specificity, high-affinity transport system that recognizes more than one siderophore type. By either strategy, such versatility may provide an advantage under Fe-limiting conditions; allowing use of siderophores produced at another organism's expense, or Fe acquisition from siderophores that could otherwise sequester Fe in an unavailable form.Plants that use microbial siderophores may also be more Fe efficient by virtue of their ability to use a variety of Fe sources under different soil conditions. Results of our research examining Fe transport by oat indicate parity in plant and microbial requirements for Fe and suggest that siderophores produced by root-colonizing microbes may provide Fe to plants that can use the predominant siderophore types. In conjunction with transport mechanisms, ecological and soil chemical factors can influence the efficacy of siderophores and phytosiderophores. A model presented here attempts to incorporate these factors to predict conditions that may govern competition for Fe in the plant rhizosphere. Possibly such competition has been a factor in the evolution of broad transport capabilities for different siderophores by microorganisms and plants.  相似文献   

3.
Aims: As a toxic metal, cadmium (Cd) affects microbial and plant metabolic processes, thereby potentially reducing the efficiency of microbe or plant‐mediated remediation of Cd‐polluted soil. The role of siderophores produced by Streptomyces tendae F4 in the uptake of Cd by bacteria and plant was investigated to gain insight into the influence of siderophores on Cd availability to micro‐organisms and plants. Methods and Results: The bacterium was cultured under siderophore‐inducing conditions in the presence of Cd. The kinetics of siderophore production and identification of the siderophores and their metal‐bound forms were performed using electrospray ionization mass spectrometry. Inductively coupled plasma spectroscopy was used to measure iron (Fe) and Cd contents in the bacterium and in sunflower plant grown in Cd‐amended soil. Siderophores significantly reduced the Cd uptake by the bacterium, while supplying it with iron. Bacterial culture filtrates containing three hydroxamate siderophores secreted by S. tendae F4 significantly promoted plant growth and enhanced uptake of Cd and Fe by the plant, relative to the control. Furthermore, application of siderophores caused slightly more Cd, but similar Fe uptake, compared with EDTA. Bioinoculation with Streptomyces caused a dramatic increase in plant Fe content, but resulted only in slight increase in plant Cd content. Conclusion: It is concluded that siderophores can help reduce toxic metal uptake in bacteria, while simultaneously facilitating the uptake of such metals by plants. Also, EDTA is not superior to hydroxamate siderophores in terms of metal solubilization for plant uptake. Significance and Impact of the Study: The study showed that microbial processes could indirectly influence the availability and amount of toxic metals taken up from the rhizosphere of plants. Furthermore, although EDTA is used for chelator‐enhanced phytoremediation, microbial siderophores would be ideal for this purpose.  相似文献   

4.
More than 60% of species examined from a total of 421 strains of heterotrophic marine bacteria which were isolated from marine sponges and seawater were observed to have no detectable siderophore production even when Fe(III) was present in the culture medium at a concentration of 1.0 pM. The growth of one such non-siderophore-producing strain, alpha proteobacterium V0210, was stimulated under iron-limited conditions with the addition of an isolated exogenous siderophore, N,N'-bis (2,3-dihydroxybenzoyl)-O-serylserine from a Vibrio sp. Growth was also stimulated by the addition of three exogenous siderophore extracts from siderophore-producing bacteria. Radioisotope studies using (59)Fe showed that the iron uptake ability of V0210 increased only with the addition of exogenous siderophores. Biosynthesis of a hydroxamate siderophore by V0210 was shown by paper electrophoresis and chemical assays for the detection of hydroxamates and catechols. An 85-kDa iron-regulated outer membrane protein was induced only under iron-limited conditions in the presence of exogenous siderophores. This is the first report of bacterial iron uptake through an induced siderophore in response to exogenous siderophores. Our results suggest that siderophores are necessary signaling compounds for growth and for iron uptake by some non-siderophore-producing marine bacteria under iron-limited conditions.  相似文献   

5.
Siderophores, biogenic chelating agents that facilitate Fe(III) uptake through the formation of strong complexes, also form strong complexes with Mn(III) and exhibit high reactivity with Mn (hydr)oxides, suggesting a pathway by which Mn may disrupt Fe uptake. In this review, we evaluate the major biogeochemical mechanisms by which Fe and Mn may interact through reactions with microbial siderophores: competition for a limited pool of siderophores, sorption of siderophores and metal–siderophore complexes to mineral surfaces, and competitive metal-siderophore complex formation through parallel mineral dissolution pathways. This rich interweaving of chemical processes gives rise to an intricate tapestry of interactions, particularly in respect to the biogeochemical cycling of Fe and Mn in marine ecosystems.  相似文献   

6.
Some microbial public goods can provide both individual and community‐wide benefits, and are open to exploitation by non‐producing species. One such example is the production of metal‐detoxifying siderophores. Here, we investigate whether conflicting selection pressures on siderophore production by heavy metals – a detoxifying effect of siderophores, and exploitation of this detoxifying effect – result in a net increase or decrease. We show that the proportion of siderophore‐producing taxa increases along a natural heavy metal gradient. A causal link between metal contamination and siderophore production was subsequently demonstrated in a microcosm experiment in compost, in which we observed changes in community composition towards taxa that produce relatively more siderophores following copper contamination. We confirmed the selective benefit of siderophores by showing that taxa producing large amounts of siderophore suffered less growth inhibition in toxic copper. Our results suggest that ecological selection will favour siderophore‐mediated decontamination, with important consequences for potential remediation strategies.  相似文献   

7.
Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandii siderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe(3+). Thus, competition between Fe(3+) and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn(2+), and Mn(2+). We found that all five of these metal ions partially inhibited uptake of (55)Fe-protochelin and (55)Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase.  相似文献   

8.
More than 60% of species examined from a total of 421 strains of heterotrophic marine bacteria which were isolated from marine sponges and seawater were observed to have no detectable siderophore production even when Fe(III) was present in the culture medium at a concentration of 1.0 pM. The growth of one such non-siderophore-producing strain, alpha proteobacterium V0210, was stimulated under iron-limited conditions with the addition of an isolated exogenous siderophore, N,N′-bis (2,3-dihydroxybenzoyl)-O-serylserine from a Vibrio sp. Growth was also stimulated by the addition of three exogenous siderophore extracts from siderophore-producing bacteria. Radioisotope studies using 59Fe showed that the iron uptake ability of V0210 increased only with the addition of exogenous siderophores. Biosynthesis of a hydroxamate siderophore by V0210 was shown by paper electrophoresis and chemical assays for the detection of hydroxamates and catechols. An 85-kDa iron-regulated outer membrane protein was induced only under iron-limited conditions in the presence of exogenous siderophores. This is the first report of bacterial iron uptake through an induced siderophore in response to exogenous siderophores. Our results suggest that siderophores are necessary signaling compounds for growth and for iron uptake by some non-siderophore-producing marine bacteria under iron-limited conditions.  相似文献   

9.

It has been proposed that clays could have served as key factors in promoting the increase in complexity of organic matter in primitive terrestrial and extraterrestrial environments. The aim of this work is to study the adsorption–desorption of two dicarboxylic acids, fumaric and succinic acids, onto clay minerals (sodium and iron montmorillonite). These two acids may have played a role in prebiotic chemistry, and in extant biochemistry, they constitute an important redox couple (e.g. in Krebs cycle) in extant biochemistry. Smectite clays might have played a key role in the origins of life. The effect of pH on sorption has been tested; the analysis was performed by UV–vis and FTIR-ATR spectroscopy, X-ray diffraction and X-ray fluorescence. The results show that chemisorption is the main responsible of the adsorption processes among the dicarboxylic acids and clays. The role of the ion, present in the clay, is fundamental in the adsorption processes of dicarboxylic acids. These ions (sodium and iron) were selected due to their relevance on the geochemical environments that possibly existed into the primitive Earth. Different mechanisms are proposed to explain the sorption of dicarboxylic acids in the clay. In this work, we propose the formation of complexes among metal cations in the clays and dicarboxylic acids. The organic complexes were probably formed in the prebiotic environments enabling chemical processes, prior to the appearance of life. Thus, the data presented here are relevant to the origin of life studies.

  相似文献   

10.
X. Hu  G. L. Boyer 《Applied microbiology》1996,62(11):4044-4048
The bacterium Bacillus megaterium ATCC 19213 is known to produce two hydroxamate siderophores, schizokinen and N-deoxyschizokinen, under iron-limited conditions. In addition to their high affinity for ferric ions, these siderophores chelate aluminum. Aluminum was absorbed by B. megaterium ATCC 19213 through the siderophore transport receptor, providing an extra pathway for aluminum accumulation into iron-deficient bacteria. At low concentrations of the metal, siderophore-mediated uptake was the dominant process for aluminum accumulation. At high concentrations of aluminum, passive transport dominated and siderophore production slowed the passive transport of aluminum into the cell. Siderophore production was affected by the aluminum content in the media. High concentrations of aluminum increased production of siderophores in iron-limited cultures, and this production continued into stationary phase. Aluminum did not stimulate siderophore production in iron-replete cultures. The production of siderophores markedly affected aluminum uptake. This has direct implications on the toxicity of heavy metals under iron-deficient conditions.  相似文献   

11.
Siderophores of six fungi viz. Aspergillus sp. ABp4, Aureobacidium pullulans, Penicillium oxalicum, P. chrysosporium, Mycotypha africana and Syncephalastrum racemosum were examined for their (1) electrophoretic mobilities to determine the acidic, basic or neutral charge; (2) Fe (III) binding nature viz., mono-, di-, or trihydroxamate; (3) amino acid composition; and (4) NMR (nuclear magnetic resonance) spectroscopy to determine their structure. Electrophoretic mobilities of siderophores of 3 fungi (P. oxalicum, P. chrysosporium, and M, africana) exhibited net basic charge, siderophores of 2 fungi (Aspergillus sp. ABp4 and S. racemosum) were acidic and 1 fungus (A. pullullans) was neutral. Electrophoresis of ferrated siderophore at pH 2 and colour of the spots indicated that siderophores of Aspergillus sp. ABp4 and P. oxalicum and A. pullulans were trihydroxamates, whereas siderophore of P. chrysosporium was dihydroxamate. Amino acid composition of siderophores purified by XAD-2 column chromatography, revealed the presence of asparagine, histidine, and proline in Aspergillus sp. ABp4, serine and alanine in P. chrysosporium, and valine in M. africana. The structure of purified siderophores as revealed by NMR spectroscopy identified siderophore of AB - 2670 (A. pullulans) as asperchrome F1, and AB-513 (M. africana) as rhizoferrin. The peak obtained for siderophore AB-5 (Aspergillus sp. ABp4) did not show resemblance to any known siderophore, therefore may be an exception.  相似文献   

12.
Siderophores are low-molecular-weight iron chelators that are produced and exported by bacteria, fungi and plants during periods of nutrient deprivation. The structures, biosynthetic logic, and coordination chemistry of these molecules have fascinated chemists for decades. Studies of such fundamental phenomena guide the use of siderophores and siderophore conjugates in a variety of medicinal applications that include iron-chelation therapies and drug delivery. Sensing applications constitute another important facet of siderophore-based technologies. The high affinities of siderophores for both ferric ions and siderophore receptors, proteins expressed on the cell surface that are required for ferric siderophore import, indicate that these small molecules may be employed for the selective capture of metal ions, proteins, and live bacteria. This minireview summaries progress in methods that utilize native bacterial and fungal siderophore scaffolds for the detection of Fe(iii) or microbial pathogens.  相似文献   

13.
Both molybdate and iron are metals that are required by the obligately aerobic organism Azotobacter vinelandii to survive in the nutrient-limited conditions of its natural soil environment. Previous studies have shown that a high concentration of molybdate (1 mM) affects the formation of A. vinelandii siderophores such that the tricatecholate protochelin is formed to the exclusion of the other catecholate siderophores, azotochelin and aminochelin. It has been shown previously that molybdate combines readily with catecholates and interferes with siderophore function. In this study, we found that the manner in which each catecholate siderophore interacted with molybdate was consistent with the structure and binding potential of the siderophore. The affinity that each siderophore had for molybdate was high enough that stable molybdo-siderophore complexes were formed but low enough that the complexes were readily destabilized by Fe3+. Thus, competition between Fe3+ and molybdate did not appear to be the primary cause of protochelin accumulation; in addition, we determined that protochelin accumulated in the presence of vanadate, tungstate, Zn2+, and Mn2+. We found that all five of these metal ions partially inhibited uptake of 55Fe-protochelin and 55Fe-azotochelin complexes. Also, each of these metal ions partially inhibited the activity of ferric reductase, an enzyme important in the deferration of ferric siderophores. Our results suggest that protochelin accumulates in the presence of molybdate because protochelin uptake and conversion into its component parts, azotochelin and aminochelin, are inhibited by interference with ferric reductase.  相似文献   

14.
Azotobacter vinelandii is a terrestrial diazotroph well studied for its siderophore production capacity and its role as a model nitrogen fixer. In addition to Fe, A. vinelandii siderophores are used for the acquisition of the nitrogenase co‐factors Mo and V. However, regulation of siderophore production by Mo‐ and V‐limitation has been difficult to confirm and knowledge of the full suite of siderophores synthesized by this organism has only recently become available. Using this new information, we conducted an extensive study of siderophore production in N2‐fixing A. vinelandii under a variety of trace metal conditions. Our results show that under Fe‐limitation the production of all siderophores increases, while under Mo‐limitation only catechol siderophore production is increased, with the strongest response seen in protochelin. We also find that the newly discovered A. vinelandii siderophore vibrioferrin is almost completely repressed under Mo‐ and V‐limitation. An examination of the potential nitrogen ‘cost’ of siderophore production reveals that investments in siderophore N can represent as much as 35% of fixed N, with substantial differences between cultures using the Mo‐ as opposed to the less efficient V‐nitrogenase.  相似文献   

15.
Nodule isolates from the cowpea miscellany group of legumes produced varying concentrations of catecholate and hydroxamate types of siderophores under iron-limiting conditions. The nodule isolates differed with respect to siderophore cross-utilizing abilities; some were proficient at using siderophores of other nodule isolates (homologous siderophores) while others could utilize siderophores produced by other rhizospheric bacteria (heterologous siderophores). Utilization of siderophore of rhizospheric bacterium PsB, a plant pathogen, benefited the nodule isolate G11 in terms of growth under iron-limiting laboratory conditions, while PsB was clearly inhibited in the presence of G11. Plate assays showed that siderophore of G11 could withhold iron from PsB and hence PsB was inhibited in the presence of G11. Isolates G11 and PsB when applied simultaneously to peanut seedlings under sterile soil conditions, provided a clear advantage to the plant in terms of reduction in the inhibitory effect of PsB. The count of the nodule isolate G11 increased in the soil when co-inoculated with PsB, as compared to when inoculated alone. Thus, the increased growth of the plant can be attributed to the iron sequestration and plant growth promoting properties of G11. The isolate G11 could utilize the siderophores produced by many other rhizospheric isolates while the siderophore of G11 was not being utilized by these rhizospheric isolates.  相似文献   

16.
Abstract

Mycorrhizal fungi, which commonly occur in natural as well as agricultural soils, are known to enhance plant uptake of nutrients, including metal ions present as trace concentrations. As mycorrhizal infection is a widespread feature of plant communities, it seems appropriate to review the data on mycorrhizal fungi and their potential to produce siderophores.

Based on a bioassay with Aureobacteriumflavescens JG-9 it was shown that a number of ectomycorrhizal fungi (EM) produce hydroxamate siderophores. Also an arbuscular mycorrhizal (AM) grass species, which showed greater iron uptake than nonmycorrhizal controls, tested positively when bioassayed for hydroxamate siderophores. Encoid mycorrhizal fungi, too, have been demonstrated to be capable of producing hydroxamate-type siderophores. However, only in the case of the eridoid mycorrhizal fungi the main siderophores have been isolated and subsequently identified as ferricrocin and fusigen, respectively. The biotechnological and ecological significance of studies of the siderophore biosynthesis by mycorrhizal fungi is discussed.  相似文献   

17.
Hydroxamate-siderophore production and utilization by marine eubacteria   总被引:4,自引:0,他引:4  
Siderophore (iron-binding chelator) production was examined in 30 strains of open ocean bacteria from the generaVibrio, Alteromonas, Alcaligenes, Pseudomonas, andPhotobacterium. The results showed that hydroxamate-type siderophore production was widely distributed in various marine species, except for isolates ofAlteromonas macleodii andV. nereis. In all cases, the ability to produce siderophores was under the control of iron levels in the medium and satisfied the iron requirements of the siderophore bioassay organism. On the basis of chemical assay and bacterial bioassays, none of the examined isolates produced phenolate-type siderophores. Several isolates produces siderophores that were neither hydroxamatenor phenolate-type siderophores. Some strains such asAlteromonas communis produce siderophores that could be used by many other isolates. In contrast, the siderophore produced byAlcaligenes venustus had little cross-strain utilization. These findings suggest that the ability to produce siderophores may be common to open ocean bacteria.  相似文献   

18.
Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). While it has been hypothesized that the global production of siderophores by heterotrophic bacteria and some cyanobacteria constitutes the bulk of organic ligands binding iron in the ocean because stability constants of siderophores and these organic ligands are similar, and because ligand concentrations rise sharply in response to iron fertilization events, direct evidence for this proposal is lacking. This lack is due to the difficulty in characterizing these ligands due both to their extremely low concentrations and their highly heterogeneous nature. The situation for characterizing photoactive siderophores in situ is more problematic because of their expected short lifetimes in the photic zone. An alternative approach is to make use of high sensitivity molecular technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their “biochemical potential” and utilize this information as a proxy for the presence of these siderophores in the marine environment. Here we show, using qPCR primers designed to detect biosynthetic genes for the siderophores vibrioferrin, petrobactin and aerobactin that such genes are widespread and based on their abundance, the “biochemical potential” for photoactive siderophore production is significant. Concurrently we also briefly examine the microbial biodiversity responsible for such production as a function of depth and location across a North Atlantic transect.  相似文献   

19.
The siderophores of Bacillus anthracis are critical for the pathogen’s proliferation and may be necessary for its virulence. Bacillus anthracis str. Sterne cells were cultured in iron free media and the siderophores produced were isolated and purified using a combination of XAD-2 resin, reverse-phase FPLC, and size exclusion chromatography. A combination of 1H and 13C NMR spectroscopy, UV spectroscopy and ESI-MS/MS fragmentation were used to identify the primary siderophore as petrobactin, a catecholate species containing unusual 3,4-dihydroxybenzoate moieties, previously only identified in extracts of Marinobacter hydrocarbonoclasticus. A secondary siderophore was observed and structural analysis of this species is consistent with that reported for bacillibactin, a siderophore observed in many species of bacilli. This is the first structural characterization of a siderophore from B. anthracis, as well as the first characterization of a 3,4-DHB containing catecholate in a pathogen.  相似文献   

20.
In this study, we performed a detailed characterization of the siderophore metabolome, or “chelome,” of the agriculturally important and widely studied model organism Azotobacter vinelandii. Using a new high-resolution liquid chromatography-mass spectrometry (LC-MS) approach, we found over 35 metal-binding secondary metabolites, indicative of a vast chelome in A. vinelandii. These include vibrioferrin, a siderophore previously observed only in marine bacteria. Quantitative analyses of siderophore production during diazotrophic growth with different sources and availabilities of Fe showed that, under all tested conditions, vibrioferrin was present at the highest concentration of all siderophores and suggested new roles for vibrioferrin in the soil environment. Bioinformatic searches confirmed the capacity for vibrioferrin production in Azotobacter spp. and other bacteria spanning multiple phyla, habitats, and lifestyles. Moreover, our studies revealed a large number of previously unreported derivatives of all known A. vinelandii siderophores and rationalized their origins based on genomic analyses, with implications for siderophore diversity and evolution. Together, these insights provide clues as to why A. vinelandii harbors multiple siderophore biosynthesis gene clusters. Coupled with the growing evidence for alternative functions of siderophores, the vast chelome in A. vinelandii may be explained by multiple, disparate evolutionary pressures that act on siderophore production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号