首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Phytomedicine》2014,21(12):1543-1548
The association of non-steroidal anti-inflammatory drugs with certain plant extracts can increase antinociceptive activity, permitting the use of lower doses and thus limiting side effects. Therefore, the aim objective of the current study was to examine the effects of curcumin on the nociception and pharmacokinetics of diclofenac in rats. Antinociception was assessed using the formalin test. Diluted formalin was injected subcutaneously into the dorsal surface of the right hind paw. Nociceptive behavior was quantified as the number of flinches of the injected paw during 60 min after injection, and a reduction in formalin-induced flinching was interpreted as an antinociceptive response. Rats were treated with oral diclofenac (1–31 mg/kg), curcumin (3.1–100 mg/kg) or the diclofenac–curcumin combination (2.4–38.4 mg/kg). To determine the possibility of a pharmacokinetic interaction, the oral bioavailability of diclofenac (10 mg/kg) was studied in presence and the absence of curcumin (31 mg/kg). Diclofenac, curcumin, or diclofenac–curcumin combination produced an antinociceptive effect on the formalin test. ED30 values were estimated for the individual drugs, and an isobologram was constructed. The derived theoretical ED30 for the antinociceptive effect (19.2 mg/kg) was significantly different from the observed experimental ED30 value (9.8 mg/kg); hence, the interaction between diclofenac and curcumin that mediates the antinociceptive effect was synergistic. Notwithstanding, the interaction does not appear to involve pharmacokinetic mechanisms, as oral curcumin failed to produce any significant alteration in oral diclofenac bioavailability. Data suggest that the diclofenac–curcumin combination can interact at the systemic level and may have therapeutic advantages for the clinical treatment of inflammatory pain.  相似文献   

2.
Tramadol is an atypical opioid with a complex mechanism of action including a synergistic interaction between the parent drug and an active metabolite. The local action of the parent drug is poorly documented. This study was designed to evaluate the site-site interaction of the antinociception produced by tramadol given by two different routes. The effects of individual and fixed-ratio combinations of intraplantar (i.pl.) and intraperitoneal (i.p.) tramadol were evaluated using the formalin test in rats. Isobolographic analysis was employed to identify the synergy produced by combinations. In both first and second phases of the formalin test, tramadol was active not only by the systemic (ED50 10.2+/-2.1 and 7.1+/-0.5 mg/kg i.p.) but also by the local route (ED50 171.0+/-44.8 and 134.6 microg/paw i.pl.). The isobolographic analysis revealed a "self-synergism" in the antinociceptive effect between the two routes of administration, as the experimental ED50 (211.1+/-13.6 and 45.9+/-3.9 "dose units" phase 1 and 2, respectively) of the combination was significantly lower than the theoretical ED50 (422.2+/-50.5 and 138.5+/-9.2 "dose units"). The mechanism underlying this self-synergism appears to be partially opioid since systemic but not local naloxone reversed the potentiation. The observed dual-site interaction in the antinociceptive action of tramadol provides insights for alternatives in the management of pain.  相似文献   

3.
The peripheral antinociceptive effect of the selective COX-2 inhibitor celecoxib in the formalin-induced inflammatory pain was compared with that of resveratrol (COX-1 inhibitor) and diclofenac (non-selective COX inhibitor). Rats received local pretreatment with saline, celecoxib, diclofenac or resveratrol followed by 50 microl of either 1% or 5% formalin. Peripheral administration of celecoxib did not produce antinociception at either formalin concentration. In contrast, diclofenac and resveratrol produced a dose-dependent antinociceptive effect in the second phase of both 1% and 5% formalin test. The peripheral antinociception produced by diclofenac or resveratrol was due to a local action, as drug administration in the contralateral paw was ineffective. Results indicate that the selective COX-2 inhibitor celecoxib does not produce peripheral antinociception in formalin-induced inflammatory pain. In contrast, selective COX-1 and non-selective COX inhibitors (resveratrol and diclofenac, respectively) are effective drugs in this model of pain.  相似文献   

4.
Alves DP  Tatsuo MA  Leite R  Duarte ID 《Life sciences》2004,74(20):2577-2591
In order to investigate to the contribution of K+ channels on the peripheral antinociception induced by diclofenac, we evaluated the effect of several K+ channel blockers, using the rat paw pressure test, in which sensitivity is increased by intraplantar injection (2 microg) of prostaglandin E2. Diclofenac administered locally into the right hindpaw (25, 50, 100 and 200 microg) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. This blockade of PGE2 mechanical hyperalgesia induced by diclofenac (100 microg/paw) was antagonized in a dose-dependent manner by intraplantar administration of the sulphonylureas glibenclamide (40, 80 and 160 microg) and tolbutamide (80, 160 and 320 microg), specific blockers of ATP-sensitive K+ channels, and it was observed even when the hyperalgesic agent used was carrageenin, while the antinociceptive action of indomethacin (200 microg/paw), a typical cyclo-oxygenase inhibitor, over carrageenin-induced hyperalgesia was not affected by this treatment. Charybdotoxin (2 microg/paw), a blocker of large conductance Ca2+-activated K+ channels and dequalinium (50 microg/paw), a selective blocker of small conductance Ca2+-activated K+ channels, did not modify the effect of diclofenac. This effect was also unaffected by intraplantar administration of non-specific voltage-dependent K+ channel blockers tetraethylammonium (1700 microg) and 4-aminopyridine (100 microg) or cesium (500 microg), a non-specific K+ channel blocker. The peripheral antinociceptive effect induced by diclofenac was antagonized by NG-Nitro L-arginine (NOarg, 50 microg/paw), a NO synthase inhibitor and methylene blue (MB, 500 microg/paw), a guanylate cyclase inhibitor, and this antagonism was reversed by diazoxide (300 microg/paw), an ATP-sensitive K+ channel opener. We also suggest that an endogenous opioid system may not be involved since naloxone (50 microg/paw) did not affect diclofenac-induced antinociception in the PGE2-induced hyperalgesia model. This study provides evidence that the peripheral antinociceptive effect of diclofenac may result from activation of ATP-sensitive K+ channels, possible involving stimulation of L-arginine/NO/cGMP pathway, while Ca2+-activated K+ channels, voltage-dependent K+ channels as well as endogenous opioids appear not to be involved in the process.  相似文献   

5.
Ortiz MI 《Life sciences》2012,90(1-2):8-12
AimsRecent evidence has shown that systemic administration of sulfonylureas and biguanides block the diclofenac-induced antinociception, but not the effect produced by indomethacin. However, there are no reports about the peripheral interaction between analgesics and the biguanides metformin and phenformin. Therefore, this work was undertaken to determine whether glibenclamide and glipizide and the biguanides metformin and phenformin have any effect on the peripheral antinociception induced by diclofenac and indomethacin.Main methodsDiclofenac and indomethacin were administered locally in the formalin-injured rat paw, and the antinociceptive effect was evaluated using the 1% formalin test. To determine whether peripheral antinociception induced by diclofenac or indomethacin was mediated by either the ATP-sensitive K+ channels or biguanides-induced mechanisms, the effect of pretreatment with the appropriates vehicles or glibenclamide, glipizide, metformin and phenformin on the antinociceptive effect induced by local peripheral diclofenac and indomethacin was assessed.Key findingsLocal peripheral injections of diclofenac (50–200 μg/paw) and indomethacin (200–800 μg/paw) produced a dose-dependent antinociception during the second phase of the test. Local pretreatment with glibenclamide, glipizide, metformin and phenformin blocked the diclofenac-induced antinociception. On the other hand, the pretreatment with glibenclamide and glipizide did not prevent the local antinociception produced by indomethacin. Nonetheless, metformin and phenformin reversed the local antinociception induced by indomethacin.SignificanceData suggest that diclofenac could activate the K+ channels and biguanides-dependent mechanisms to produce its peripheral antinociceptive effects in the formalin test. Likewise, a biguanides-dependent mechanism could be activated by indomethacin consecutively to generate its peripheral antinociceptive effect.  相似文献   

6.
In this study, we characterized the role of delta(1) and delta(2) opioids receptors, as well the involvement of the l-arginine/NO/cGMP pathway in the peripheral antinociception induced by delta-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). The paw pressure test was utilized, in which pain sensitivity is increased by intraplantar injection of prostaglandin E(2) (2 microg). Administration of SNC80 (20, 40 and 80 microg/paw) decreased the hyperalgesia induced by prostaglandin E(2) in a dose-dependent manner. The possibility that the higher dose of SNC80 (80 microg) has a central or systemic effect was excluded, since administration of the drug into the contralateral paw did not elicit antinociception in the right paw. 7-Benzylidenenaltrexone (BNTX), 5, 10 and 20 microg/paw, and 17-(Cyclopropylmethyl)-6,7-didehydro-3,14beta-dihydroxy-4,5alpha-epoxy-6,7-2',3'-benzo[b]furanomorphinan (naltriben), 2.5, 5 and 10 microg/paw, delta(1) and delta(2) opioid receptor antagonist respectively, elicited partial antagonism of the peripheral antinociceptive effect of the SNC80 (80 microg). The BNTX (10 microg/paw)-naltriben (5 microg/paw) combination completely antagonized the peripheral antinociception induced by SNC80 (80 microg). Further, blockers of the l-arginine/NO/cGMP pathway, N(G)-nitro-l-arginine (12, 18 and 24 microg/paw) and methylene blue (125, 250 and 500 microg/paw) were observed reverting the peripheral antinociceptive effect of SNC80. This study provides evidence that the peripheral antinociception induced by SNC80 occurs via delta(1) and delta(2) receptors and may result from l-arginine/NO/cGMP pathway activation.  相似文献   

7.
Despite the classical peripheral pronociceptive effect of noradrenaline (NA), recently studies showed the involvement of NA in antinociceptive effect under immune system interaction. In addition, the participation of the NO/cGMP/KATP pathway in the peripheral antinociception has been established by our group as the molecular mechanism of another adrenoceptor agonist xylazine. Thus the aim of this study was to obtain pharmacological evidences for the involvement of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect induced by exogenous noradrenaline. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) (2μg/paw). All drugs were locally administered into the right hind paw of male Wistar rats. NA (5, 20 and 80ng/paw) elicited a local inhibition of hyperalgesia. The non-selective NO synthase inhibitor l-NOarg (12, 18 and 24μg/paw) antagonized the antinociception effect induced by the highest dose of NA. The soluble guanylyl cyclase inhibitor ODQ (25, 50 and 100μg/paw) antagonized the NA-induced effect; and cGMP-phosphodiesterase inhibitor zaprinast (50μg/paw) potentiated the antinociceptive effect of NA low dose (5ng/paw). In addition, the local effect of NA was antagonized by a selective blocker of an ATP-sensitive K(+) channel, glibenclamide (20, 40 and 80μg/paw). On the other hand, the specifically voltage-dependent K(+) channel blocker, tetraethylammonium (30μg/paw), Ca(2+)-activated K(+) channel blockers of small and large conductance types dequalinium (50μg/paw) and paxilline (20μg/paw), respectively, were not able to block local antinociceptive effect of NA. The results provide evidences that NA probably induces peripheral antinociceptive effects by activation of the NO/cGMP/KATP pathway.  相似文献   

8.
Domperidone, a prokinetic drug with minimal extrapyramidal side-effects was investigated for its antinociceptive response in mice using formalin assay procedure. Two parameters namely the pain score and the time spent by the animal in licking/biting the formalin injected paw were considered. Domperidone (1, 2.5 or 5 mg/kg; ip) injected 15 min prior to formalin effectively reduced the pain score bringing it to zero at the 15th minute and was also effective till 30 min but to a lesser degree. This effect of domperidone (2.5 mg/kg) was significantly attenuated in naloxone pretreated mice indicating a partial role for opioid pathways. In the other parameter i.e. time spent in licking/biting, domperidone in all the doses employed failed to modify significantly the same by the animal in the early phase. In contrast, a dose related inhibition of the time spent was recorded in the late phase. Besides, a trend towards the enhancement of the inhibitory effect of domperidone (2.5 mg/kg) in the late phase was noticed in naloxone pretreated mice. Possibly, the peripheral analgesic mechanisms may play a role in this response since the late phase was considered akin to inflammation. The results confirm the antinociceptive effect of domperidone and suggest that caution be exercised while selecting the parameters when formalin assay is employed.  相似文献   

9.
Hao S  Takahata O  Iwasaki H 《Life sciences》2000,66(15):PL195-PL204
It is known that spinal morphine produces antinociception that is modulated by alpha 2-adrenoceptors. Endomorphin-1, a newly-isolated endogenous opioid ligand, shows the greatest selectivity and affinity for the mu-opiate receptor of any endogenous substance found to date and may serve as a natural ligand for the mu-opiate receptor. We examined the antinociceptive effects of endomorphin-1 administered intrathecally (i.t.) in the rat tail flick, tail pressure and formalin tests. Intrathecal endomorphin-1 produced dose-dependent antinociceptive effects in the three tests. ED50 (CI95) values for antinociception of i.t. endomorphin-1 in the tail flick test and tail pressure test were 1.9 (0.96-3.76) nmol and 1.8 (0.8-4.2) nmol, respectively. ED50 (CI95) values for phase 1 and phase 2 in the formalin test were 12.5 (7.9-19.8) nmol and 17.5 (10.2-30) nmol, respectively. Pretreatment with i.t. beta-funaltrexamine (a mu-opioid receptor selective antagonist) significantly antagonized the antinociceptive effects of endomorphin-1 in the three tests. Beta-funaltrexamine alone had not effects on the three tests. The antinociceptive effects of endomorphin-1 were also antagonized by i.t. yohimbine (an alpha 2-adrenoceptor selective antagonist). The combination of ineffective doses of i.t. clonidine (an alpha 2-adrenoceptor agonist) and endomorphin-1 produced a significant antinociception in the three tests. The results showed that intrathecal endomorphin-1 produced antinociception in a dose-dependent manner in the rat tail flick, tail pressure and formalin tests, which was mediated by spinal mu-opioid receptors and modulated by alpha 2-adrenoceptors.  相似文献   

10.
Reis GM  Duarte ID 《Life sciences》2007,80(14):1268-1273
We investigated the effect of chloride and potassium channel blockers on the antinociception induced by GABA(C) receptor agonist CACA (cis-4-aminocrotonic acid) using the paw pressure test, in which pain sensitivity was increased by an intraplantar injection (2 microg) of prostaglandin E(2) (PGE(2)). CACA administered locally into the right hindpaw (25, 50 and 100 microg/paw) elicited a dose-dependent antinociceptive effect which was demonstrated to be local, since only higher doses produced an effect when injected in the contralateral paw. The GABA(C) receptor antagonist (1,2,5,6 tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA; 5, 10 and 20 microg/paw) antagonized, in a dose-dependent manner, the peripheral antinociception induced by CACA (100 microg), suggesting a specific effect. This effect was reversed by the chloride channel coupled receptor blocker picrotoxin (0.8 microg/paw). Glibenclamide (160 microg) and tolbutamide (320 microg), blockers of ATP-sensitive potassium channels, charybdotoxin (2 microg), a large-conductance potassium channel blocker, dequalinium (50 microg), a small-conductance potassium channel blocker, and cesium (500 microg), a non-specific potassium channel blocker did not modify the peripheral antinociception induced by CACA. This study provides evidence that activation of GABA(C) receptors in the periphery induces antinociception, that this effect results from the activation of chloride channel coupled GABA(C) receptors and that potassium channels appear not to be involved.  相似文献   

11.
Gender difference in the antinociceptive effect of tramadol and gabapentin (alone or in combination) were investigated in mice. For investigation of acute antinociceptive effect, tramadol and gabapentin were administered to mice by intraperitoneal injection and per os, respectively, and antinociceptive activity was measured by the tail-flick test 30 min after drug administration. For investigation of the development of antinociceptive tolerance to analgesics, mice were injected with tramadol (60 mg/kg), alone or in combination with gabapentin (75 mg/kg), twice daily for seven consecutive days and the tail-flicks were tested on experimental days 1, 3, 5 and 7. Results showed there was a lower ED50 value of tramadol antinociception in males than in females, indicating that females were less sensitive to the drug. Gabapentin produces a limited antinociception in both males and females. The combination of gabapentin and tramadol produced synergistic effect without gender difference. Repeated administration of tramadol produced antinociceptive tolerance in both genders. Gabapentin produced synergistic effect in tramadol-tolerant mice and repeated administration of gabapentin did not alter the synergistic effect in tramadol-tolerant mice. Because females show a higher overall prevalence of pain and less sensitivity to opioids, our finding may suggest a clinical significance of combined use of the two drugs.  相似文献   

12.
Heliopsis longipes is an herbaceous plant found in Mexico, used traditionally for its analgesic and anesthetic activities. Plant extracts in combined use with synthetic drugs may represent a therapeutic advantage for the clinical treatment of pain, allowing the use of lower doses, and limiting side-effects. Therefore, the main objective of this study was to determine the possible pharmacological interaction between Heliopsis longipes ethanolic extract (HLEE) and diclofenac in the Hargreaves model of thermal hyperalgesia in the mouse. HLEE, diclofenac or fixed-dose ratio HLEE–diclofenac combinations were administered systemically to mice and the antihyperalgesic effect was evaluated using the thermal hyperalgesia test. All treatments produced a dose-dependent antihyperalgesic effect. ED30 values were estimated for all the treatments and an isobologram was constructed. The derived theoretical ED30 value for the HLEE–diclofenac combination was 54.4±9.4 mg/kg body wt, significantly higher than the actually observed experimental ED30 value, 8.6±4.0 mg/kg body wt. This result corresponds to synergistic interaction between HLEE and diclofenac in the Hargreaves model of thermal hyperalgesia. Data suggest that low doses of the HLEE–diclofenac combination can interact synergistically at the systemic level and that this association may therefore represent a therapeutic advantage for the clinical treatment of inflammatory pain.  相似文献   

13.
Ochi T  Motoyama Y  Goto T 《Life sciences》2000,66(23):2239-2245
We investigated the antinociceptive effect of a novel anti-inflammatory and analgesic drug, 3-(difluoromethyl)-1-(4-methoxyphenyl)-5-[4-(methylsulfinyl)phenyl]pyraz ole (FR140423), in the tail-pinch test in mice, and evaluated the mechanism of action of FR140423 using L-leucyl-L-arginine (Leu-Arg), a kyotorphin (endogenous Met-enkephalin releaser) receptor antagonist, L-NG-nitroarginine methylester (L-NAME), an inhibitor of nitric oxide (NO) synthase, and methylene blue (MB), an inhibitor of activation of guanylate cyclase. Oral administration of FR140423, at doses of 5-80 mg/kg, produced a dose-dependent antinociceptive effect with an ED50 value of 18 mg/kg. This antinociception was reversed by intrathecal (i.t.) (10 microg/mouse), but not by intracerebroventricular (i.c.v.) (100 microg/mouse), injection of Leu-Arg. Moreover, the antinociceptive effect of i.t. injection of FR140423 with an ED50 value of 3.7 microg/mouse was completely antagonized by co-administered Leu-Arg 10 microg/mouse. However, L-NAME (2000 mg/kg s.c.) and MB (200 mg/kg s.c.) did not antagonize the antinociception of FR140423. These findings suggest that FR140423 plays a role in nociceptive modulation in the spinal cord, being antinociceptive via the kyotorphin-Met-enkephalin pathway but not via the peripheral NO-cyclic GMP pathway.  相似文献   

14.
The involvement of nitric oxide in the analgesic effects of ketamine   总被引:11,自引:0,他引:11  
We investigated the contribution of NO-cyclic GMP (cGMP) pathway to the antinociceptive effects of ketamine in mice by using the nitric oxide synthase inhibitor, nitro(g)- L-arginine methyl ester (L-NAME). Intraperitoneal (i.p.) (1, 5 or 10 mg/kg) or intrathecal (i.th.) (10, 30 or 60 microg/mouse) administration of ketamine produced dose-dependent antinociceptive effects in the acetic acid-induced writhing and formalin tests but not in the tail-flick nor in hot-plate tests. Pretreatment of mice with L-NAME (10 mg/kg, i.p.) which produced no antinociception on its own, significantly inhibited the antinociceptive effect of ketamine (1, 5 or 10 mg/kg, i.p.). However, L-NAME (30 microg/mouse) was given intrathecally, it neither modified the antinociceptive effect of i.th. ketamine (10, 30 or 60 microg/mouse) nor did it produce an antinociceptive effect alone. These data suggest that the activation of the NO-cGMP pathway probably at the supraspinal level, but not spinal level, contributes to the antinociceptive effects of ketamine.  相似文献   

15.
Singh VP  Patil CS  Kulkarni SK 《Life sciences》2006,78(11):1168-1174
Drug combinations have the potential advantage of greater analgesia over monotherapy. The present study was aimed to assess any possible interaction (additive or potentiation) in the antinociceptive effects of etoricoxib; a novel cyclooxygenase-2 inhibitor, and tramadol; a typical opioid agonist when administered in combination against mechanical hyperalgesia induced by spinal cord injury in rats. The nature of interaction was analyzed using surface of synergistic interaction (SSI) analysis and an isobolographic analysis. Etoricoxib or tramadol when administered alone to rats, exhibited different antihyperalgesic potencies (ED50 etoricoxib: 0.58+/-0.19 mg/kg, po; ED50 tramadol: 9.85+/-0.57 mg/kg, po). However, both the drugs were found to be long acting against this model of hyperalgesia. Further, etoricoxib and tramadol were co-administered in fixed ratios of ED50 fractions. One combination (0.29/4.79 mg/kg, po: etoricoxib/tramadol) exhibited additivity and other three combinations (0.15/2.39, 0.08/1.19, and 0.04/0.59 mg/kg, po: etoricoxib/tramadol) resulted in potentiation when analyzed by SSI. The SSI was calculated from the total antihyperalgesic effect produced by the combination after the subtraction of the antihyperalgesic effect produced by each of the individual drug. In the isobolographic analysis, the experimental ED50 was found to be far below the line of additivity also indicating a significant (P < 0.05) synergistic antihyperalgesic effect when etoricoxib and tramadol was co-administered to rats. The synergistic antihyperalgesic effect of etoricoxib and tramadol combination suggests that these combinations may have clinical utility in mechanical hyperalgesia associated with spinal injury.  相似文献   

16.
The antiinflammatory effect of low-intensity extremely-high-frequency electromagnetic radiation (EHF EMR, 42.0 GHz, 0.1 mW/cm2) was studied in comparison to the effects of the antiinflammatory drug sodium diclofenac and the antihistamine clemastine in acute inflammatory reaction in mice of NMRI outbred stock. The local inflammatory reaction was induced by intraplantar injection of zymosan to the left hind paw. Intraperitoneal injections of 2, 3, 5, 10, and 20 mg/kg of sodium diclofenac or 0.02, 0.1, 0.2, 0.4, and 0.6 mg/kg of clemastine were made 30 min after the initiation of inflammation. An hour after the initiation of inflammation, animals were whole-body exposed to EHF EMR for 20 min. The inflammatory reaction was assessed 3–8 h after initiation by measuring the footpad edema and hyperthermia of the inflamed paw. Sodium diclofenac (5–20 mg/kg) reduced the exudative edema by ~26% compared to the control. Hyperthermia of the inflamed paw decreased by 60% with an increase in the diclofenac dose to 20 mg/kg. EHF EMR reduced both the footpad edema and hyperthermia by ~20%. This was comparable to the effect of a single therapeutic dose of diclofenac (3–5 mg/kg). The combination of diclofenac and exposure to EHF EMR produced a partial additive effect. Clemastine (0.02–0.4 mg/kg) did not affect the exudative edema, but at a dose of 0.6 mg/kg, edema was reduced by 14–22% five to eight hours after zymosan injection. Clemastine caused a dose-dependent increase in hyperthermia of inflamed paw at doses 0.02–0.2 mg/kg and did not affect the hyperthermia at doses 0.4 and 0.6 mg/kg. A combination of clemastine and EHF EMR exposure resulted in a dose-dependent abolishment of the antiinflammatory effect of EHF EMR. Our results suggest that both arachidonic acid metabolites and histamine are involved in the achievement of the antiinflammatory effects of low-intensity EHF EMR.  相似文献   

17.
C.Y. Yao  J. Wang  D. Dong  F.G. Qian  J. Xie  S.L. Pan   《Phytomedicine》2009,16(9):823-829
In the present work, we studied the effect of laetispicine, an amide alkaloid isolated from the stems of Piper laetispicum (Piperaceae), in forced swimming, open field, acetic acid writhing and formalin tests in KM mice to assess antidepressant and antinociceptive effects. A significant and dose-dependent decrease in the immobility time, as evaluated by the forced swimming test, was observed after laetispicine administration (38.18, 39.79, 58.77 and 67.28% decreased at the doses of 5, 10, 20, 40 mg/kg, respectively), suggesting an antidepressant effect. Furthermore, in the open field test, laetispicine at the given doses did not alter the number of crossings and rearing, as compared to controls. Results from writhing and formalin tests showed that laetispicine reduced the number of writhing in mice in a dose-dependent manner, attenuated the licking and spiting time of the injected paw in the first phase of formalin test. The antinociceptive effect of laetispicine was not affected by pre-treatment (i.p.) with naloxone (2 mg/kg). In conclusion, we showed that laetispicine possessed significant antidepressant and antinociceptive properties, making this drug potentially useful in depression and pain.  相似文献   

18.
Cholinergic-NO-cGMP mediation of sildenafil-induced antinociception   总被引:2,自引:0,他引:2  
Acetylcholine and cholinomimetic agents with predominant muscarinic action are known to increase the concentration of cGMP by activation of nitric oxide signaling pathway in the nociceptive conditions. The present study was aimed to investigate the NO-cGMP-PDE5 pathway in nociceptive conditions in the experimental animals. Nociceptive threshold was assessed by acetic acid-induced writhing assay (chemonociception) or carrageenan-induced hyperalgesia. Sildenafil [1-5 mg/kg, ip, 50-200 microg/paw, intraplantar (ipl)] produced dose dependent antinociception in both the tested models. Coadministration of acetylcholine (50 mcg/paw, ipl) or cholinomimetic agent, neostigmine (0.1 mcg/kg, ip and 25 ng/paw, ipl) augmented the peripheral antinociceptive effect of sildenafil. This effect was sensitive to blockade by L-NAME (20 mg/kg, ip, 100 microg/paw, ipl), a non-selective NOS inhibitor and methylene blue (1 mg/kg, ip), a guanylate cyclase inhibitor, which per se had little or no effect in both the models of nociception. Further, the per se analgesic effect of acetylcholine and neostigmine was blocked by both L-NAME and methylene blue in the models of nociception, suggesting the activation of NO-cGMP pathway. Also, both L-NAME and methylene blue blocked the per se analgesic effect of sildenafil. These results indicate the peripheral accumulation of cGMP may be responsible for antinociceptive effect, and a possible interaction between cholinergic agents and PDE5 system in models of nociception.  相似文献   

19.
Alpinia zerumbet (Pers.) Burtt. et Smith is an aromatic plant that is distributed widely in the tropical and sub-tropical regions of the world. In Brazil, where A. zerumbet is called "colonia", it is used widely in folk medicine for the treatment of various diseases, including hypertension. In the present study, the antinociceptive effects of the orally administered essential oil of A. zerumbet (EOAz) were evaluated in male Swiss mice (20-25 g each). In the acetic acid-induced writhing test, EOAz (30, 100 and 300 mg/kg body wt.; n = 10, n = 13 and n = 15, respectively) was effective at all doses. In the hot-plate test, EOAz significantly increased the latency at doses of 100 and 300 mg/kg body wt., but not at 30 mg/kg body wt., at all observation times up to the 180th min (n = 10 for each dose). In the formalin test, EOAz significantly reduced paw licking time in the second phase of the test at 100 mg/kg body wt. (n = 10), but decreased it in both phases at 300 mg/kg body wt. (n = 10). At 30 mg/kg body wt., the effect of EOAz did not differ from control values in either phase of the formalin test (n = 10). Pretreatment with naloxone (5 mg/kgbodywt., i.p.) caused a significant reversal of the analgesic effect of 300 mg/kg body wt. EOAz (n = 8) that was complete for the first phase, but only partial for the second phase of the formalin test. The data show that orally administered OEAz promotes a dose-dependent antinociceptive effect, with a mechanism of action which probably involves the participation of opiate receptors.  相似文献   

20.
FTY720 is a novel immunosuppressive drug that inhibits the egress of lymphocytes from secondary lymphoid tissues and thymus. In its phosphorylated form FTY720 is a potent S1P receptor agonist. Recently it was also shown that FTY720 can reduce prostaglandin synthesis through the direct inhibition of the cytosolic phospholipase A2 (cPLA2). Since prostaglandins are important mediators of nociception, we studied the effects of FTY720 in different models of nociception. We found that intraperitoneal administration of FTY720 reduced dose-dependently the nociceptive behaviour of rats in the formalin assay. Although the antinociceptive doses of FTY720 were too low to alter the lymphocyte count, prostanoid concentrations in the plasma were dramatically reduced. Surprisingly, intrathecally administered FTY720 reduced the nociceptive behaviour in the formalin assay without altering spinal prostaglandin synthesis, indicating that additional antinociceptive mechanisms beside the inhibition of prostaglandin synthesis are involved. Accordingly, FTY720 reduced also the nociceptive behaviour in the spared nerve injury model for neuropathic pain which does not depend on prostaglandin synthesis. In this model the antinociceptive effect of FTY720 was similar to gabapentin, a commonly used drug to treat neuropathic pain. Taken together we show for the first time that FTY720 possesses antinociceptive properties and that FTY720 reduces nociceptive behaviour during neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号