首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosolic phospholipases A2 (cPLA2) and cyclooxygenases-1 and -2 (COX-1 and -2) play a pivotal role in the metabolism of arachidonic acid (AA) and in eicosanoid production. The coordinate regulation and expression of these enzymes is not well defined. In this study, the effect of phorbol 12-myristate 13-acetate (PMA), tumor necrosis factor (TNF), lipopolysaccharide (LPS) and macrophage-colony stimulating factor (M-CSF) on AA release and prostaglandin E2 (PGE2) production and the expression of cPLA2 and COX-1 and -2 were investigated in U937 human pre-monocytic cells and fully differentiated macrophages. Treatment of U937 cells with PMA or macrophages with LPS increased AA release and PGE2 production. Incubation of U937 cells or macrophages for 8 h with all stimuli elevated cPLA2 expression. In contrast, cPLA2 expression was reduced upon further incubation of U937 cells or macrophages for 24 h with all stimuli indicating a bi-phasic expression pattern of this enzyme. PMA induced COX-1 expression in U937 cells whereas LPS induced COX-2 expression in macrophages. Although TNF and M-CSF induced a significant amount of AA release in both cell models, they failed to induce a comparable production of PGE2 since they were unable to induce the coordinate expression of the downstream key enzymes, COX-1 or COX-2. The results suggest that the enhancement of AA release in both U937 cells and macrophages may be caused by both increased cPLA2 activity and elevated cPLA2 protein expression. In addition, PMA stimulates PGE2 production via up-regulation of COX-1, and likely COX-2, expression in U937 cells whereas LPS stimulates PGE2 production via induction of COX-2 expression in macrophages.  相似文献   

2.
This study investigates the ways in which two proinflammatory cytokines, tumor necrosis factor α (TNF) and interleukin-1β (IL1), cause increased production of prostaglandin E2(PGE2) in rabbit articular chondrocytes (RAC). Rabbit articular chondrocytes in primary culture were incubated with IL1, TNF, or both. Arachidonic acid (AA) release, PGE2production, and the activities of cytosolic phospholipase A2(cPLA2), secreted phospholipase A2(sPLA2), and cyclooxygenase (COX) were measured. The mRNA levels of cPLA2, sPLA2, and COX-2 were also measured by Northern blotting, using specific complementary DNA probes. Incubation of IL1-stimulated RAC with TNF further increased PGE2production. This synergy did not involve PLA2stimulation, as there were no increases in AA release, cPLA2and sPLA2activities, or mRNA. In contrast, TNF increased the effect of IL1 on COX-2 activity and mRNA level. These results show that TNF and IL1 act in synergy in PGE2production in articular chondrocytes. As sPLA2and cPLA2do not seem to be involved, COX-2 appears to be the best target for a specific anti-inflammatory strategy against cartilage degradation.  相似文献   

3.
4.
Phospholipases A2 (PLA2) are the enzymatic keys for the activation of the arachidonic acid (AA) cascade and the subsequent synthesis of pro-inflammatory prostanoids (prostaglandins and tromboxanes). Prostanoids play critical roles in the initiation and modulation of inflammation and their levels have been reported increased in several neurological and neurodegenerative disorders, including multiple sclerosis (MS).Here, we aimed to determine whether brain expression PLA2 enzymes and the terminal prostagland in levels are changed during cuprizone-induced demyelination and in the subsequent remyelination phase.Mice were given the neurotoxicant cuprizone through the diet for six weeks to induce brain demyelination. Then, cuprizone was withdrawn and mice were returned to a normal diet for 6 weeks to allow spontaneous remyelination.We found that after 4-6 weeks of cuprizone, sPLA2(V) and cPLA2, but not iPLA2(VI), gene expression was upregulated in the cortex, concomitant with an increase in the expression of astrocyte and microglia markers. Cyclooxygenase (COX)-2 gene expression was consistently upregulated during all the demyelination period, whereas COX-1 sporadically increased only at week 5 of cuprizone exposure. However, we found that at the protein level only sPLA2(V) and COX-1 were elevated during demyelination, with COX-1 selectively expressed by activated and infiltrated microglia/macrophages and astrocytes. Levels of PGE2, PGD2, PGI2 and TXB2 were also increased during demyelination. During remyelination, none of the PLA2 isoforms was significantly changed, whereas COX-1 and -2 were sporadically upregulated only at the gene expression level. PGE2, PGI2 and PGD2 levels returned to normal, whereas TXB2 was still upregulated after 3 weeks of cuprizone withdrawal.Our study characterizes for the first time time-dependent changes in the AA metabolic pathway during cuprizone-induced demyelination and the subsequent remyelination and suggests that sPLA2(V) is the major isoform contributing to AA release.  相似文献   

5.
6.
Interleukin-1 (IL-1) is a potent inducer of prostaglandin E2 (PGE2) synthesis. We previously showed that ceramide accumulates in fibroblasts treated with IL-1 and that it enhances IL-1-induced PGE2 production. The present study was undertaken to determine the mechanism(s) by which ceramide and IL-1 interact to enhance PGE2 production by examining their respective effects on the rate-limiting enzymes in PGE2 synthesis, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and cytosolic phospholipase A2 (cPLA2). IL-1-induced PGE2 synthesis required 8 h even though COX-1 was constitutively expressed (both mRNA and protein) and enzymatically active in untreated cells. Conversely, COX-2 mRNA was barely detectable in untreated cells but within 2 h, ceramide or IL-1 alone induced a 5 and 20 fold increase in COX-2 mRNA, respectively. However, IL-1 induced COX-2 protein synthesis was only detectable 6-7 h after maximal COX-2 mRNA induction; COX-2 protein accumulation was not induced by ceramide alone. Ceramide however, reduced the length of time required for IL- 1 to induce COX-2 protein accumulation and increased COX-2 protein accumulation. IL-1 induced a 15 fold increase in COX-1 mRNA including an alternatively spliced form of COX-1. IL-1, but not ceramide induced cPLA2 mRNA and protein expression which corresponded with the initiation of PGE2 synthesis. These observations indicate that, (1) while either ceramide or IL-1 rapidly induced COX-2 mRNA, COX-2 protein only accumulated in IL- 1 treated cells after a delay of 6-7 h, (2) IL-1-induced PGE2 synthesis required both COX-2 and cPLA2 protein synthesis and, (3) ceramide enhanced (temporally and quantitatively) IL-1-induced COX-2 protein accumulation resulting in enhanced PGE2 production.  相似文献   

7.
Patterns of arachidonic acid release and metabolism were altered in human synovial fibroblasts following exposure to cytokines. Recombinant interleukin-1 induced an approximate 3-fold in crease in [3H]-AA release, a 7-fold increase in PGE2 production and a 2-fold increase in PLA2 activity in human synovial fibroblasts. Recombinant tumor necrosis factor induced similar responses, however, the magnitude was less than that mediated by interleukin-1. A combination of the two cytokines had an additive effect on [3H]-AA release and PLA2 activity while PGE2 production was similar to that detected using interleukin-1 alone. [3H]-AA, was released in substantial amounts when sodium fluoride was used as a stimulus but PGE2 was not. These data show that tumor necrosis factor and interleukin-1 can both activate synovial cell PLA2 and induce generation of PGE2, but act in an additive rather than a synergistic fashion. Furthermore, the data show that PGE2 production is not always concordant with [3H]-AA release, suggesting that appropriate enzyme(s) must be activated.  相似文献   

8.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1beta, TNFalpha and IFNgamma), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

9.
The COX-2/PGE2 pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, PGE2, in cancer survival remain unknown. Herein, we investigated PGE2-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with PGE2 activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. PGE2 not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of PGE2, and restored the menadione-induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the PGE2-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that PGE2 signaling acts in an autocrine manner, and specific inhibition of PGE2 will provide a novel approach for the treatment of leukemia. [BMB Reports 2015; 48(2): 109-114]  相似文献   

10.
7β-hydroxy-epiandrosterone (7β-OH-EPIA) has been shown to be cytoprotective in various organs including the brain. It has also been shown that prostaglandin D2 (PGD2) and its spontaneous metabolite 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are also cytoprotective. It is possible that these prostaglandins derived from circulating mononuclear cells may mediate the actions of 7β-OH-EPIA. The aim of this study, therefore, was to ascertain the effect of 7β-OH-EPIA (in the absence or presence of tumour necrosis factor-α (TNF-α)), a pro-inflammatory stimulus, on the biosynthesis of PGD2, PGE2 and 15d-PGJ2 from human mononuclear cells. Prostaglandins were measured by enzyme immunoassay (EIA). 7β-OH-EPIA alone induced a concentration-dependant increase in the production of PGD2. TNF-α increased PGD2 levels which were enhanced by 7β-OH-EPIA. 7β-OH-EPIA increased 15d-PGJ2 levels both in the absence and presence of TNF-α. 7β-OH-EPIA alone had no effect on PGE2 biosynthesis but suppressed TNF-α-induced PGE2 circa 50%. 7β-OH-EPIA also increased the level of free arachidonic acid and radiolabelled prostaglandins in cells pre-incubated with radiolabelled arachidonic acid, indicating that the increase may occur via the enhanced release of substrate arachidonic acid. 7β-OH-EPIA did not affect levels of the anti-inflammatory cytokine IL-10 indicating that this is an unlikely mechanism by which 7β-OH-EPIA induces its actions but more likely exerts its effects via the production of cytoprotective prostaglandins.  相似文献   

11.
Cytosolic phospholipase A2α (cPLA2α) up-regulation has been reported in human colorectal cancer cells, thus we aimed to elucidate its role in the proliferation of the human colorectal cancer cell line, HT-29. EGF caused a rapid activation of cPLA2α which coincided with a significant increase in cell proliferation. The inhibition of cPLA2α activity by pyrrophenone or by antisense oligonucleotide against cPLA2α (AS) or inhibition of prostaglandin E2 (PGE2) production by indomethacin resulted with inhibition of cell proliferation, that was restored by addition of PGE2. The secreted PGE2 activated both protein kinase A (PKA) and PKB/Akt pathways via the EP2 and EP4 receptors. Either, the PKA inhibitor (H-89) or the PKB/Akt inhibitor (Ly294002) caused a partial inhibition of cell proliferation which was restored by PGE2. But, inhibited proliferation in the presence of both inhibitors could not be restored by addition of PGE2. AS or H-89, but not Ly294002, inhibited CREB activation, suggesting that CREB activation is mediated by PKA. AS or Ly294002, but not H-89, decreased PKB/Akt activation as well as the nuclear localization of β-catenin and cyclin D1 and increased the plasma membrane localization of β-catenin with E-cadherin, suggesting that these processes are regulated by the PKB pathway. Similarly, Caco-2 cells exhibited cPLA2α dependent proliferation via activation of both PKA and PKB/Akt pathways. In conclusion, our findings suggest that the regulation of HT-29 proliferation is mediated by cPLA2α-dependent PGE2 production. PGE2via EP induces CREB phosphorylation by the PKA pathway and regulates β-catenin and cyclin D1 cellular localization by PKB/Akt pathway.  相似文献   

12.
Astrocytes comprise the major cell type in the central nervous system (CNS) and they are essential for support of neuronal functions by providing nutrients and regulating cell-to-cell communication. Astrocytes also are immune-like cells that become reactive in response to neuronal injury. Phospholipases A2 (PLA 2) are a family of ubiquitous enzymes that degrade membrane phospholipids and produce lipid mediators for regulating cellular functions. Three major classes of PLA 2 are expressed in astrocytes: group IV calcium-dependent cytosolic PLA 2 (cPLA2), group VI calcium-independent PLA 2 (iPLA2), and group II secretory PLA 2 (sPLA2). Upregulation of PLA 2 in reactive astrocytes has been shown to occur in a number of neurodegenerative diseases, including stroke and Alzheimer’s disease. This review focuses on describing the effects of oxidative stress, inflammation, and activation of G protein-coupled receptors on PLA 2 activation, arachidonic acid (AA) release, and production of prostanoids in astrocytes.  相似文献   

13.
During vascular interventions, oxidized low-density lipoprotein and lysophosphatidylcholine (lysoPC) accumulate at the site of arterial injury, inhibiting endothelial cell (EC) migration and arterial healing. LysoPC activates canonical transient receptor potential 6 (TRPC6) channels, leading to a prolonged increase in intracellular calcium ion concentration that inhibits EC migration. However, an initial increase in intracellular calcium ion concentration is required to activate TRPC6, and this mechanism remains elusive. We hypothesized that lysoPC activates the lipid-cleaving enzyme phospholipase A2 (PLA2), which releases arachidonic acid (AA) from the cellular membrane to open arachidonate-regulated calcium channels, allowing calcium influx that promotes externalization and activation of TRPC6 channels. The focus of this study was to identify the roles of calcium-dependent and/or calcium-independent PLA2 in lysoPC-induced TRPC6 externalization. We show that lysoPC induced PLA2 enzymatic activity and caused AA release in bovine aortic ECs. To identify the specific subgroup and the isoform(s) of PLA2 involved in lysoPC-induced TRPC6 activation, transient knockdown studies were performed in the human endothelial cell line EA.hy926 using siRNA to inhibit the expression of genes encoding cPLA2α, cPLA2γ, iPLA2β, or iPLA2γ. Downregulation of the β isoform of iPLA2 blocked lysoPC-induced release of AA from EC membranes and TRPC6 externalization, as well as preserved EC migration in the presence of lysoPC. We propose that blocking TRPC6 activation and promoting endothelial healing could improve the outcomes for patients undergoing cardiovascular interventions.  相似文献   

14.
Zileuton has been demonstrated to act as an anti-inflammatory agent by virtue of its well-known ability to inhibit 5-lipoxygenase (5-LO). However, the effects of zileuton on cardiovascular disease and cardiomyocyte apoptosis are unclear. Here, we investigated the effects of zileuton on apoptosis of cardiac myogenic H9c2 cells and neonatal rat cardiomyocytes (NRCMs), and examined the possible role of PKCδ-mediated induction of COX-2 in these effects. Treatment of H9c2 cells with zileuton efficiently induced COX-2 expression and PGE2 biosynthesis in a time- and dose-dependent manner. Zileuton also exerted a profound protective effect against H2O2-induced oxidative stress, a mimic of reperfusion damage in vitro, and this protective effect was abolished by COX-2-selective inhibitor. When we investigated the signalling pathways involved in zileuton-induced COX-2 expression, we found that zileuton acts as a PKCδ activator, causing it to translocate from the cytosol to nucleus. Inhibition of PKCδ activation with rottlerlin, a PKCδ-specific inhibitor, abolished the zileuton-induced protection against H2O2-induced cell death and inhibited zileuton-induced COX-2 expression and PGE2 production. The protective effect of zileuton was dramatically diminished by treatment with LY294002 or PD98059. Furthermore, zileuton-stimulated ERK1/2 and Akt phosphorylation was attenuated by rottlerin, indicating that PKCδ might act upstream of ERK1/2 and Akt. Moreover, inhibition of either ERK1/2 or Akt activation abolished zileuton-induced COX-2 expression. Knockdown of PKCδ with siRNA also reversed the protective effect of zileuton and blocked the induction of COX-2. These results suggest that zileuton-induced COX-2 expression is sequentially mediated through PKCδ-dependent activation of ERK1/2 and Akt. Based on these findings, we propose that zileuton might provide a new therapeutic strategy for ischemia/reperfusion injury of the heart.  相似文献   

15.
Macrophages are a major source of lipid mediators in the human lung. Expression and contribution of cytosolic (cPLA2) and secreted phospholipases A2 (sPLA2) to the generation of lipid mediators in human macrophages are unclear. We investigated the expression and role of different PLA2s in the production of lipid mediators in primary human lung macrophages. Macrophages express the alpha, but not the zeta isoform of group IV and group VIA cPLA2 (iPLA2). Two structurally-divergent inhibitors of group IV cPLA2 completely block arachidonic acid release by macrophages in response to non-physiological (Ca2+ ionophores and phorbol esters) and physiological agonists (lipopolysaccharide and Mycobacterium protein derivative). These inhibitors also reduce by 70% the synthesis of platelet-activating factor by activated macrophages. Among the full set of human sPLA2s, macrophages express group IIA, IID, IIE, IIF, V, X and XIIA, but not group IB and III enzymes. Me-Indoxam, a potent and cell impermeable inhibitor of several sPLA2s, has no effect on arachidonate release or platelet-activating factor production. Agonist-induced exocytosis is not influenced by cPLA2 inhibitors at concentrations that block arachidonic acid release. Our results indicate that human macrophages express cPLA2-alpha, iPLA2 and several sPLA2s. Cytosolic PLA2-alpha is the major enzyme responsible for lipid mediator production in human macrophages.  相似文献   

16.
The purpose of this study was to elucidate the role of NO and O-2 on enzymatic components of cyclooxygenase (COX) pathway in peritoneal macrophages. Activation of murine peritoneal macrophages by lipopolysaccharides (LPS) resulted in time-dependent production of nitric oxide (NO) and prostaglandin E2 (PGE2). This stimulation was also accompanied by the production of other reactive oxygen species such as superoxide (O-2), and by increased expression of COX-2. Our results provide evidence that O-2 may be involved in the pathways that result in arachidonate release and PGE2 formation by COX-2 in murine peritoneal macrophages stimulated by LPS. However, we were not able to demonstrate that NO participates in the regulation of PG production under our experimental conditions.  相似文献   

17.
β-Amyloid peptide (Aβ) 1–42, involved in the pathogenesis of Alzheimer’s disease, binds copper ions to form Aβ · Cun complexes that are able to generate H2O2 in the presence of a reductant and O2. The production of H2O2 can be stopped with chelators. More reactive than H2O2 itself, hydroxyl radicals HO (generated when a reduced redox active metal complex interacts with H2O2) are also probably involved in the oxidative stress that creates brain damage during the disease. We report in the present work a method to monitor the effect of chelating agents on the production of hydrogen peroxide by metallo-amyloid peptides. The addition of H2O2 associated to a pre-incubation step between ascorbate and Aβ · Cun allows to study the formation of H2O2 but also, at the same time, its transformation by the copper complexes. Aβ · Cun peptides produce but do not efficiently degrade H2O2. The reported analytic method, associated to precipitation experiments of copper-containing amyloid peptides, allows to study the inhibition of H2O2 production by chelators. The action of a ligand such as EDTA is probably due to the removal of the copper ions from Aβ · Cun, whereas bidentate ligands such as 8-hydroxyquinolines probably act via the formation of ternary complexes with Aβ · Cun. The redox activity of these bidentate ligands can be modulated by the incorporation or the modification of substituents on the quinoline heterocycle.  相似文献   

18.

Objective

To explore the effects of atorvastatin on expression of cyclooxygenase-2 (COX-2) in human pulmonary epithelial cells (A549).

Methods

A549 cells were incubated in DMEM medium containing lipopolysaccharide (LPS) in the presence or absence of atorvastatin. After incubation, the medium was collected and the amount of prostaglandin E2 (PGE2) was measured by enzyme-linked immunosorbent assay (ELISA). The cells were harvested, and COX-2 mRNA and protein were analyzed by RT-PCR and western-blot respectively.

Results

LPS increased the expression of COX-2 mRNA and production of PGE2 in a dose- and time-dependent manner in A549. Induction of COX-2 mRNA and protein by LPS were inhibited by atorvastatin in a dose-dependent manner. Atorvastatin also significantly decreased LPS-induced production of PGE2. There was a positive correlation between reduced of COX-2 mRNA and decreased of PGE2 (r = 0.947, P < 0.05).

Conclusion

Atorvastatin down-regulates LPS-induced expression of the COX-2 and consequently inhibits production of PGE2 in cultured A549 cells.  相似文献   

19.
Cholinergic muscarinic receptors, when stimulated by arecoline, can activate cytosolic phospholipase A2 (cPLA2) to release arachidonic acid (AA) from membrane phospholipid. This signal can be imaged in the brain in vivo using quantitative autoradiography following the intravenous injection of radiolabeled AA, as an increment in a regional brain AA incorporation coefficient k*. Arecoline increases k* significantly in brain regions having muscarinic M1,3,5 receptors in wild-type but not in cyclooxygenase (COX)-2 knockout mice. To further clarify the roles of COX enzymes in the AA signal, in this paper we imaged k* following arecoline (5 mg/kg i.p.) or saline in each of 81 brain regions of unanesthetized rats pretreated 6 h earlier with the non-selective COX inhibitor flurbiprofen (FB, 60 mg/kg s.c.) or with vehicle. Baseline values of k* were unaffected by FB treatment, which however reduced by 80% baseline brain concentrations of prostaglandin E2 (PGE2) and thromboxane B2 (TXB2), eicosanoids preferentially derived from AA via COX-2 and COX-1, respectively. In vehicle-pretreated rats, arecoline increased the brain PGE2 but not TXB2 concentration, as well as values for k* in 77 of the 81 brain regions. FB-pretreatment prevented these arecoline-provoked changes. These results and those reported in COX-2 knockout mice suggest that the AA released in brain following muscarinic receptor-mediated activation is lost via COX-2 to PGE2 but not via COX-1 to TXB2, and that increments in k* following arecoline largely represent replacement by unesterified plasma AA of this loss.  相似文献   

20.
Cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 controls many aspects of colon cancer development, modulating from apoptosis resistance and cell proliferation to angiogenesis, invasion, and metastasis. Here, we investigated the role of different phospholipases (PL)A2 in supplying arachidonic acid (AA) for COX-2-dependent PGE2 generation and signaling pathways involved in activation of colon cancer cells by a physiologically relevant stimulus. To emulate the hypertonic environment found physiologically in colon, the human colon cancer cell line Caco-2 was maintained in hypertonic complete DMEM medium. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked AA release, COX-2 induction and PGE2 generation. Selective secretory (s)PLA2 and calcium-independent (i)PLA2 inhibitors did not modify PGE2 generation, while either COX-2 or cytosolic (c)PLA2 inhibitors completely inhibited PGE2 generation. cPLA2-α was responsible for AA supply for PGE2 generation, but had no role in COX-2 induction. Mitogen-activated protein (MAP) kinases, ERK 1/2, p38, and JNK, participated in the signaling events that lead to PGE2 generation by modulating AA release, but only ERK 1/2 was involved in COX-2 upregulation. Our results indicate that hypertonic stress activates PGE2 generation by Caco-2 cells through a mechanism dependent on MAP kinase-regulated AA mobilization, increased cPLA2-α activity, and COX-2 induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号