首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
Outer hair cells (OHC) possess voltage-dependent membrane bound molecular motors, identified as the solute carrier protein SLC26a5, that drive somatic motility at acoustic frequencies. The electromotility (eM) of OHCs provides for cochlear amplification, a process that enhances auditory sensitivity by up to three orders of magnitude. In this study, using whole cell voltage clamp and mechanical measurement techniques, we identify disparities between voltage sensing and eM that result from stretched exponential electromechanical behavior of SLC26a5, also known as prestin, for its fast responsiveness. This stretched exponential behavior, which we accurately recapitulate with a new kinetic model, the meno presto model of prestin, influences the protein’s responsiveness to chloride binding and provides for delays in eM relative to membrane voltage driving force. The model predicts that in the frequency domain, these delays would result in eM phase lags that we confirm by measuring OHC eM at acoustic frequencies. These lags may contribute to canceling viscous drag, a requirement for many models of cochlear amplification.  相似文献   

2.
Pendrin and prestin both belong to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Pendrin (SLC26A4) is a chloride-iodide transporter that is found at the luminal membrane of follicular cells in the thyroid gland as well as in the endolymphatic duct and sac of the inner ear, whereas prestin (SLC26A5) is expressed in the plasma membrane of cochlear outer hair cells and functions as a unique voltage-dependent motor. We recently identified a motif that is critical for the motor function of prestin. We questioned whether it was possible to create a chimeric pendrin protein with motor capability by integrating this motility motif from prestin. The chimeric pendrin was constructed by substituting residues 160-179 in human pendrin with residues 156-169 from gerbil prestin. Non-linear capacitance and somatic motility, two hallmarks representing prestin function, were measured from chimeric pendrin-transfected human embryonic kidney 293 cells using the voltage clamp technique and photodiode-based displacement measurement system. We showed that this 14-amino acid substitution from prestin was able to confer pendrin with voltage-dependent motor capability despite the amino acid sequence disparity between pendrin and prestin. The molecular mechanism that facilitates motor function appeared to be the same as prestin because the motor activity depended on the concentration of intracellular chloride and was blocked by salicylate treatment. Radioisotope-labeled formate uptake measurements showed that the chimeric pendrin protein retained the capability to transport formate, suggesting that the gain of motor function was not at the expense of its inherent transport capability. Thus, the engineered pendrin was capable of both transporting anions and generating force.  相似文献   

3.
Prestin, a transporter-like protein of the SLC26A family, acts as a piezoelectric transducer that mediates the fast electromotility of outer hair cells required for cochlear amplification and auditory acuity in mammals. Non-mammalian prestin orthologues are anion transporters without piezoelectric activity. Here, we generated synthetic prestin (SynPres), a chimera of mammalian and non-mammalian prestin exhibiting both, piezoelectric properties and anion transport. SynPres delineates two distinct domains in the protein's transmembrane core that are necessary and sufficient for generating electromotility and associated non-linear charge movement (NLC). Functional analysis of SynPres showed that the amplitude of NLC and hence electromotility are determined by the transport of monovalent anions. Thus, prestin-mediated electromotility is a dual-step process: transport of anions by an alternate access cycle, followed by an anion-dependent transition generating electromotility. The findings define structural and functional determinants of prestin's piezoelectric activity and indicate that the electromechanical process evolved from the ancestral transport mechanism.  相似文献   

4.
Tuning of the outer hair cell motor by membrane cholesterol   总被引:2,自引:0,他引:2  
Cholesterol affects diverse biological processes, in many cases by modulating the function of integral membrane proteins. We observed that alterations of cochlear cholesterol modulate hearing in mice. Mammalian hearing is powered by outer hair cell (OHC) electromotility, a membrane-based motor mechanism that resides in the OHC lateral wall. We show that membrane cholesterol decreases during maturation of OHCs. To study the effects of cholesterol on hearing at the molecular level, we altered cholesterol levels in the OHC wall, which contains the membrane protein prestin. We show a dynamic and reversible relationship between membrane cholesterol levels and voltage dependence of prestin-associated charge movement in both OHCs and prestin-transfected HEK 293 cells. Cholesterol levels also modulate the distribution of prestin within plasma membrane microdomains and affect prestin self-association in HEK 293 cells. These findings indicate that alterations in membrane cholesterol affect prestin function and functionally tune the outer hair cell.  相似文献   

5.
The remarkable hearing sensitivity and frequency selectivity in mammals is attributed to cochlear amplifier in the outer hair cells (OHCs). Prestin, a membrane protein in the lateral wall of OHC plasma membrane, is required for OHC electromotility and cochlear amplifier. In addition, GLUT5, a fructose transporter, is reported to be abundant in the plasma membrane of the OHC lateral wall and has been originally proposed as the OHC motor protein. Here we provide evidence of interactions between prestin/prestin and prestin/GLUT5 in transiently transfected HEK293T cells. We used a combination of techniques: (1) membrane colocalization by confocal microscopy, (2) fluorescence resonance energy transfer (FRET) by fluorescence activated cell sorting (FACS), (3) FRET by acceptor photobleaching, (4) FRET by fluorescence lifetime imaging (FRET-FLIM), and (5) coimmunoprecipitation. Our results suggest that homomeric and heteromeric prestin interactions occur in native OHCs to facilitate its electromotile function and that GLUT5 interacts with prestin for its elusive function.  相似文献   

6.
The cylindrical outer hair cell (OHC) of Corti’s organ drives cochlear amplification by a voltage-dependent activation of the molecular motor, prestin (SLC26a5), in the cell’s lateral membrane. The voltage-dependent nature of this process leads to the troublesome observation that the membrane resistor-capacitor filter could limit high-frequency acoustic activation of the motor. Based on cable theory, the unique 30 nm width compartment (the extracisternal space, ECS) formed between the cell’s lateral membrane and adjacent subsurface cisternae (SSC) could further limit the influence of receptor currents on lateral membrane voltage. Here, we use dual perforated/whole-cell and loose patch clamp on isolated OHCs to sequentially record currents resulting from excitation at apical, middle, and basal loose patch sites before and after perforated patch rupture. We find that timing of currents is fast and uniform before whole-cell pipette washout, suggesting little voltage attenuation along the length of the lateral membrane. Prior treatment with salicylate, a disrupter of the SSC, confirms the influence of the SSC on current spread. Finally, a cable model of the OHC, which can match our data, indicates that the SSC poses a minimal barrier to current flow across it, thereby facilitating rapid delivery of voltage excitation to the prestin-embedded lateral membrane.  相似文献   

7.
The motor protein, prestin, situated in the basolateral plasma membrane of cochlear outer hair cells (OHCs), underlies the generation of somatic, voltage-driven mechanical force, the basis for the exquisite sensitivity, frequency selectivity and dynamic range of mammalian hearing. The molecular and structural basis of the ontogenetic development of this electromechanical force has remained elusive. The present study demonstrates that this force is significantly reduced when the immature subcellular distribution of prestin found along the entire plasma membrane persists into maturity, as has been described in previous studies under hypothyroidism. This observation suggests that cochlear amplification is critically dependent on the surface expression and distribution of prestin. Searching for proteins involved in organizing the subcellular localization of prestin to the basolateral plasma membrane, we identified cochlear expression of a novel truncated prestin splice isoform named prestin 9b (Slc26A5d) that contains a putative PDZ domain-binding motif. Using prestin 9b as the bait in a yeast two-hybrid assay, we identified a calcium/calmodulin-dependent serine protein kinase (CASK) as an interaction partner of prestin. Co-immunoprecipitation assays showed that CASK and prestin 9b can interact with full-length prestin. CASK was co-localized with prestin in a membrane domain where prestin-expressing OHC membrane abuts prestin-free OHC membrane, but was absent from this area for thyroid hormone deficiency. These findings suggest that CASK and the truncated prestin splice isoform contribute to confinement of prestin to the basolateral region of the plasma membrane. By means of such an interaction, the basal junction region between the OHC and its Deiter’s cell may contribute to efficient generation of somatic electromechanical force.  相似文献   

8.
Johnson SL  Beurg M  Marcotti W  Fettiplace R 《Neuron》2011,70(6):1143-1154
Outer hair cells (OHCs) provide amplification in the mammalian cochlea using somatic force generation underpinned by voltage-dependent conformational changes of the motor protein prestin. However, prestin must be gated by changes in membrane potential on a cycle-by-cycle basis and the periodic component of the receptor potential may be greatly attenuated by low-pass filtering due to the OHC time constant (τ(m)), questioning the functional relevance of this mechanism. Here, we measured τ(m) from OHCs with a range of characteristic frequencies (CF) and found that, at physiological endolymphatic calcium concentrations, approximately half of the mechanotransducer (MT) channels are opened at rest, depolarizing the membrane potential to near -40 mV. The depolarized resting potential activates a voltage-dependent K+ conductance, thus minimizing τ(m) and expanding the membrane filter so there is little receptor potential attenuation at the cell's CF. These data suggest that minimal τ(m) filtering in vivo ensures optimal activation of prestin.  相似文献   

9.
The outer hair cell (OHC) underlies mammalian cochlea amplification, and its lateral membrane motor, prestin, which drives the cell's mechanical activity, is modulated by intracellular chloride ions. We have previously described a native nonselective conductance (G(metL)) that influences OHC motor activity via Cl flux across the lateral membrane. Here we further investigate this conductance and use the environmental toxin tributyltin (TBT) to better understand Cl-prestin interactions. Capitalizing on measures of prestin-derived nonlinear capacitance to gauge Cl flux across the lateral membrane, we show that the Cl ionophore TBT, which affects neither the motor nor G(metL) directly, is capable of augmenting the native flux of Cl in OHCs. These observations were confirmed using the chloride-sensitive dye MQAE. Furthermore, the compound's potent ability, at nanomolar concentrations, to equilibrate intra- and extracellular Cl concentrations is shown to surpass the effectiveness of G(metL) in promoting Cl flux, and secure a quantitative analysis of Cl-prestin interactions in intact OHCs. Using malate as an anion replacement, we quantify chloride effects on the nonlinear charge density and operating voltage range of prestin. Our data additionally suggest that ototoxic effects of organotins can derive from their disruption of OHC Cl homeostasis, ultimately interfering with anionic modulation of the mammalian cochlear amplifier. Notably, this observation identifies a new environmental threat for marine mammals by TBT, which is known to accumulate in the food chain.  相似文献   

10.
The outer hair cell from Corti's organ possesses voltage-dependent intramembranous molecular motors evolved from the SLC26 anion transporter family. The motor, identified as prestin (SLC26a5), is responsible for electromotility of outer hair cells and mammalian cochlear amplification, a process that heightens our auditory responsiveness. Here, we describe experiments designed to evaluate the effects of anions on the motor's voltage-sensor charge movement, focusing on prestin's voltage-dependent Boltzmann characteristics. We find that the nature of the anion, including species, valence, and structure, regulates characteristics of the charge movement, signifying that anions play a more complicated role than simple voltage sensing in cochlear amplification.  相似文献   

11.
The solute carrier transmembrane protein prestin (SLC26A5) drives an active electromechanical transduction process in cochlear outer hair cells that increases hearing sensitivity and frequency discrimination in mammals. A large intramembraneous charge movement, the nonlinear capacitance (NLC), is the electrical signature of prestin function. The transmembrane domain (TMD) helices and residues involved in the intramembrane charge displacement remain unknown. We have performed cysteine-scanning mutagenesis with serine or valine replacement to investigate the importance of cysteine residues to prestin structure and function. The distribution of oligomeric states and membrane abundance of prestin was also probed to investigate whether cysteine residues participate in prestin oligomerization and/or NLC. Our results reveal that 1) Cys-196 (TMD 4) and Cys-415 (TMD 10) do not tolerate serine replacement, and thus maintaining hydrophobicity at these locations is important for the mechanism of charge movement; 2) Cys-260 (TMD 6) and Cys-381 (TMD 9) tolerate serine replacement and are probably water-exposed; and 3) if disulfide bonds are present, they do not serve a functional role as measured via NLC. These novel findings are consistent with a recent structural model, which proposes that prestin contains an occluded aqueous pore, and we posit that the orientations of transmembrane domain helices 4 and 10 are essential for proper prestin function.  相似文献   

12.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

13.
The remarkable power amplifier [1] of the cochlea boosts low-level and compresses high-level vibrations of the basilar membrane (BM) [2]. By contributing maximally at the characteristic frequency (CF) of each point along its length, the amplifier ensures the exquisite sensitivity, narrow frequency tuning, and enormous dynamic range of the mammalian cochlea. The motor protein prestin in the outer hair cell (OHC) lateral membrane is a prime candidate for the cochlear power amplifier [3]. The other contender for this role is the ubiquitous calcium-mediated motility of the hair cell stereocilia, which has been demonstrated in vitro and is based on fast adaptation of the mechanoelectrical transduction channels [4, 5]. Absence of prestin [6] from OHCs results in a 40-60 dB reduction in cochlear neural sensitivity [7]. Here we show that sound-evoked BM vibrations in the high-frequency region of prestin(-/-) mice cochleae are, surprisingly, as sensitive as those of their prestin(+/+) siblings. The BM vibrations of prestin(-/-) mice are, however, broadly tuned to a frequency approximately a half octave below the CF of prestin(+/+) mice at similar BM locations. The peak sensitivity of prestin(+/+) BM tuning curves matches the neural thresholds. In contrast, prestin(-/-) BM tuning curves at their best frequency are >50 dB more sensitive than the neural responses. We propose that the absence of prestin from OHCs, and consequent reduction in stiffness of the cochlea partition, changes the passive impedance of the BM at high frequencies, including the CF. We conclude that prestin influences the cochlear partition's dynamic properties that permit transmission of its vibrations into neural excitation. Prestin is crucial for defining sharp and sensitive cochlear frequency tuning by reducing the sensitivity of the low-frequency tail of the tuning curve, although this necessitates a cochlear amplifier to determine the narrowly tuned tip.  相似文献   

14.
Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.  相似文献   

15.
Outer hair cells (OHC) possess voltage-dependent membrane bound molecular motors, identified as the solute carrier protein SLC26a5, that drive somatic motility at acoustic frequencies. The electromotility (eM) of OHCs provides for cochlear amplification, a process that enhances auditory sensitivity by up to three orders of magnitude. In this study, using whole cell voltage clamp and mechanical measurement techniques, we identify disparities between voltage sensing and eM that result from stretched exponential electromechanical behavior of SLC26a5, also known as prestin, for its fast responsiveness. This stretched exponential behavior, which we accurately recapitulate with a new kinetic model, the meno presto model of prestin, influences the protein’s responsiveness to chloride binding and provides for delays in eM relative to membrane voltage driving force. The model predicts that in the frequency domain, these delays would result in eM phase lags that we confirm by measuring OHC eM at acoustic frequencies. These lags may contribute to canceling viscous drag, a requirement for many models of cochlear amplification.The outer hair cell (OHC) is one of two receptor cell types in the organ of Corti, but unlike the inner hair cell it displays electromotile behavior distinct from any other form of cellular motility (1–4). OHC electromotility (eM) arises from the concerted action of millions of molecular motors embedded in the lateral membrane of the cell. They respond directly to membrane voltage and evidence reciprocal activity; namely, they are piezoelectric-like (5–7). Indeed, there is clear evidence that surface area changes accompany state transitions in the motor [see (8)]. The identification of these motors as members of the anion transporter family SLC26 (9), of which prestin is the 5th member (a5), underscores an interesting molecular evolution designed to boost the performance of auditory sensitivity and selectivity. This enhancement is known as cochlear amplification (10).A class of cochlear models requires an electromechanical phase disparity for effective cochlear amplification (11–13), OHC eM lagging receptor potentials. Traditionally, these models assign the mechanism to processes other than the OHC itself. The phase lag provides for the properly timed injection of mechanical force into the cochlear partition to counter viscous detriment. Most molecular models of prestin behavior envision tightly coupled interactions between membrane voltage and eM, arising from sensor charge movements obeying Boltzmann statistics (14–20). Thus, Boltzmann characteristics of sensor charge and eM, namely Qmax /eMmax and Q Vh / eM Vh, are commonly believed to tightly correspond. However, we recently showed significant uncoupling of these characteristics depending on rate and polarity of voltage stimulation and on intracellular chloride level (21). We showed that a slow intermediate transition placed between prestin’s chloride binding transition and the voltage dependent transition responsible for eM could qualitatively account for the data, and we surmised that a molecularly based phase lag should arise. In this study we test this hypothesis by measuring eM at acoustic frequencies and find that indeed substantial frequency dependent phase lags are produced between membrane voltage and eM, showing chloride dependence. An enhanced stretched-exponential kinetic model, termed the meno presto model of prestin, nicely fits the data, whereas a model lacking the intermediate transitions fails.  相似文献   

16.
The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.  相似文献   

17.
Prestin is the motor protein responsible for the somatic electromotility of cochlear outer hair cells and is essential for normal hearing sensitivity and frequency selectivity of mammals. Prestin is a member of mammalian solute-linked carrier 26 (SLC26) anion exchangers, a family of membrane proteins capable of transporting a wide variety of monovalent and divalent anions. SLC26 transporters play important roles in normal human physiology in different tissues, and many of them are involved in genetic diseases. SLC26 and related SulP transporters carry a hydrophobic membrane core and a C-terminal cytosolic portion that is essential in plasma membrane targeting and protein function. This C-terminal portion is mainly composed of a STAS (sulfate transporters and anti-sigma factor antagonist) domain, whose name is due to a remote but significant sequence similarity with bacterial ASA (anti-sigma factor antagonist) proteins. Here we present the crystal structure at 1.57 Å resolution of the cytosolic portion of prestin, the first structure of a SulP transporter STAS domain, and its characterization in solution by heteronuclear multidimensional NMR spectroscopy. Prestin STAS significantly deviates from the related bacterial ASA proteins, especially in the N-terminal region, which—although previously considered merely as a generic linker between the domain and the last transmembrane helix—is indeed fully part of the domain. Hence, unexpectedly, our data reveal that the STAS domain starts immediately after the last transmembrane segment and lies beneath the lipid bilayer. A structure-function analysis suggests that this model can be a general template for most SLC26 and SulP anion transporters and supports the notion that STAS domains are involved in functionally important intramolecular and intermolecular interactions. Mapping of disease-associated or functionally harmful mutations on STAS structure indicates that they can be divided into two categories: those causing significant misfolding of the domain and those altering its interaction properties.  相似文献   

18.
The motor protein prestin in cochlear outer hair cells is a member of the solute carrier 26 family, but among the proteins of that family, only prestin can confer the cells with nonlinear capacitance (NLC) and motility. In the present study, to clarify contributions of unique amino acids of prestin, namely, Met-122, Met-225 and Thr-428, to the characteristics of prestin, mutations were introduced into those amino acids. As a result, NLC remained unchanged by both replacement of Met-122 by isoleucine and that of Thr-428 by leucine, suggesting that those amino acids were not important for the generation of NLC. Surprisingly, the replacement of Met-225 by glutamine statistically increased NLC as well as the motility of prestin-expressing cells without an increase in the amount of prestin expression in the plasma membrane. This indicates that Met-225 in prestin somehow adjusts NLC and the motility of prestin-expressing cells.  相似文献   

19.
《Biophysical journal》2022,121(12):2371-2379
Outer hair cell (OHC) nonlinear membrane capacitance derives from voltage-dependent sensor charge movements within the membrane protein prestin (SLC26a5) that drive OHC electromotility. The ability of the protein to influence hearing depends on its reaction to membrane receptor potentials across auditory frequency. Estimates of prestin’s frequency response have been evaluated by several groups out to tens of kHz in voltage-clamped macro-patches of OHC membrane. The response is a power function of frequency that is down 40 dB at 77 kHz. Despite these observations, concerns remain that the macro-patch approach is flawed due to mechanical constraints of pipette solution column load or patch size itself. In the absence of these influences, prestin’s frequency response is posited by some to be ultrasonic in nature. Here we evaluate the influence of these putative confounding factors on prestin’s frequency response. We show that neither pipette column height nor negative or positive pipette pressure substantially influence total sensor charge frequency response. Additionally, patch surface area has negligible influence. We conclude that the speed of voltage-driven conformational changes in prestin within the plasma membrane is accurately assessed with the macro-patch technique, permitting investigations of membrane characteristics that can substantially alter prestin’s performance bandwidth. We illustrate significant alterations in bandwidth by perturbation of membrane fluidity and chloride anion concentration. Finally, we speculate that OHC membrane characteristics may differ along the tonotopic axis of the cochlea to tune nonlinear membrane capacitance frequency cutoffs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号