首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We theoretically study mode hybridization and interaction among surface plasmon polariton Bloch wave mode, Fabry–Perot cavity mode, and waveguide mode within a plasmonic cavity composed by two parallel planar bimetallic gratings. Four hybridized modes result from mode hybridization between surface plasmon polariton Bloch wave modes on the two gratings are observed. By changing the dielectric environment, mode hybridization behavior can be manipulated. Importantly, waveguide-plasmon polariton mode due to hybridization between grating supported surface plasmon polariton Bloch wave mode and cavity supported waveguide mode is observed. We demonstrate that surface plasmon polariton Bloch wave mode and Fabry–Perot cavity mode with the same mode symmetry can interact by presenting an anticrossing behavior, which can be controlled by laterally shifting one grating with respect to the other that causes a phase difference shift of the two involving modes. The proposed plasmonic cavity offers potentials for subwavelength lithography, tunable plasmonic filter, and controllable light-matter interaction.  相似文献   

2.
We propose an internal asymmetric plasmonic slot waveguide (IAPSW) containing two different materials in the slot region for third harmonic generation (THG) from 2.25 μm. In the IAPSW, the required phase matching condition is satisfied between the 0th-order mode at the fundamental frequency and 1st-order mode at the third harmonic frequency. By choosing an appropriate slot geometry and materials, the third harmonic electric field distribution can be engineered to significantly enhance the nonlinear overlap coefficient for THG. According to our simulation, a conversion efficiency up to 0.67 % with 1 W pump power is predicted within a ~10 μm IAPSW. Additionally, the waveguide shows large fabrication tolerance in terms of geometry parameters. The proposed waveguide can find potential applications for high-speed all-optical signal processing.  相似文献   

3.
Luo  Xin  Zhai  Xiang  Wang  Lingling  Lin  Qi  Liu  Jianping 《Plasmonics (Norwell, Mass.)》2017,12(2):509-514
Plasmonics - A novel narrow-band plasmonic filter in terahertz (THz) region based on optical Tamm plasmon (OTP) in dual-section InSb slot waveguide is proposed, and the corresponding transmission...  相似文献   

4.
A ferroelectric hybrid plasmonic waveguide, made of a polycrystal lithium niobate waveguide separated from a gold film by a silicon dioxide isolation layer, is fabricated by use of laser molecular beam epitaxy growth, electron beam evaporation, and focused ion beam etching. Strong subwavelength mode confinement and excellent long-range propagation are achieved simultaneously for the hybrid plasmonic mode. An all-optical logic OR gate is also realized based on the ferroelectric hybrid plasmonic waveguide. This may provide a way for the study of all-optical logic gates and integrated photonic circuits.  相似文献   

5.
The extraordinary transmission of the subwavelength gold grating has been investigated by the rigorous coupled-wave analysis and verified by the metal–insulator–metal plasmonic waveguide method. The physical mechanisms of the extraordinary transmission are characterized as the excitation of the surface plasmon polariton modes. The subwavelength grating integrated with the distributed Bragg reflector is proposed to modulate the phase to realize spatial mode selection, which is prospected to be applied for transverse mode selection in the vertical cavity surface-emitting laser.  相似文献   

6.
We report the remote excited Raman optical activity (ROA) of adenine along Ag plasmonic waveguide. First, the surface plasmons that propagate along Ag nanowire is demonstrated experimentally. Second, the Raman spectra of adenine are measured experimentally. Third, the remote exited ROA by plasmonic waveguide are measured and compared. It is found that the plasmon chirality strongly influenced the molecular ORA by the local surface plasmon and remote plasmon waveguide. The plasmon chirality of nanostructures and the chirality plasmon waveguide should be considered in the experiments for the local and remote measurement.  相似文献   

7.
A novel plasmonic structure based on an anticrossing bandgap prism coupling technique is proposed. The study has been carried out using photonic crystals based on diffraction gratings (bounded by dielectrics with identical dielectric functions) together with a high refractive index prism to couple the long-range surface plasmon polaritons to photons. We analyse the structure and demonstrate the ability for tuning the propagation constants of plasmon modes by changing the thickness of the gold grating. The comparison to non-bandgap techniques is studied, and the influence of the plasmonic configuration on the plasmon propagation constant is discussed as well. Experimental measurements were also carried out to confirm the validity of our model.  相似文献   

8.
Plasmonics - In this paper, a novel technique for realization of all-optical plasmonic switches is presented. The proposed structure is based on an asymmetric metal-insulator-metal plasmonic...  相似文献   

9.
Surface plasmon resonances on bilayer aluminum nanowire gratings are studied in both theory and experiment. It is found that there are two kinds of surface plasmon on the bilayer metallic gating: longitudinal aluminum/dielectric/aluminum slit and lateral aluminum/dielectric interface waveguide mode. The surface plasmon waveguide mode resonance in the slits makes the grating act as a transverse magnetic (TM)-passing polarizer. With the lateral waveguide mode resonance, certain wavelengths of the incident TM light are translated to aluminum/air or aluminum/substrate waveguide light, and the grating acts as a color filter. With both resonances, the bilayer nanowire grating can be a compact-integrated polarizer and color filter.  相似文献   

10.
Lu  Deng-Yun  Li  Wei  Zhou  Hu  Cao  Xia  Zhu  Yanhua  Wang  Kai-Jun  Luo  Hao-Jie  Li  Jian-Bo  Zhang  Xin-Min  He  Meng-Dong  Xu  Liang  Liu  Jian-Qiang 《Plasmonics (Norwell, Mass.)》2020,15(4):1123-1131
Plasmonics - In this paper, we propose a novel surface plasmon resonance sensor for both liquid and gas detections, which is based on the two dielectric planar waveguide (PWG)-coupled plasmonic...  相似文献   

11.
We designed and fabricated a millimeter plasmonic chip consisted of coplanar waveguide (CPW) and plasmonic waveguide with one corrugated disk resonator (CDR). The spoof localized surface plasmon (LSP) resonance modes can be excited by the interaction between plasmonic waveguide and CDR. Fundamental and higher order sharp spoof LSP resonances (from dipole to dodecapole) were observed in the transmission coefficient spectrum. The Q-value as high as 268.3 (octupole) was experimentally obtained. Experimental results show good agreement with theoretical and simulated ones. All the results may have potential applications in microchip based sensing and filtering.  相似文献   

12.
Plasmonics - The present work investigates the effect of geometrical parameters of 1D nanograting on surface plasmon resonance (SPR) and plasmonic bandgap (PBG). The use of plasmonic grating device...  相似文献   

13.
In this paper, a novel plasmonic filter with very high extinction ratio and low insertion loss is proposed based on the coherent coupled nano-cavity array in a metal–insulator–metal (MIM) waveguide. The coherent coupling interactions among nano-cavities are investigated with an analytical model which is derived based on the temporal coupled-mode theory and transfer-matrix method. The destructive interference of the surface plasmon polaritons coupled from the nano-cavities at the resonant wavelength is achieved by suitably designing the period of the cavity array, which may be used for increasing the extinction ratio of the filter based on the nano-cavity array in the MIM waveguide. A plasmonic filter with an extinction ratio higher than 60 dB and an insertion loss less than 1.0 dB is obtained by applying the destructive interference in the design of a six-rectangular-cavity array in an Ag–air–Ag waveguide. And the correctness of the design for the filter is verified by the results obtained with the finite-difference time-domain simulation technique. This work may provide useful schemes and approaches for realization of various wavelength-sensitive devices in plasmonic integrated circuits.  相似文献   

14.
In this study, we theoretically investigate the sensing potential of 2D nano- and micro-ribbon grating structuration on the surface of Kretschmann-based surface plasmon resonance (SPR) biosensors when they are employed for detection of biomolecular binding events. Numerical simulations were carried out by employing a model based on the hybridization of two classical methods, the Fourier modal method and the finite element method. Our calculations confirm the importance of light manipulation by means of structuration of the plasmonic thin film surfaces on the nano- and micro-scales. Not only does it highlight the geometric parameters that allow the sensitivity enhancement compared with the response of the conventional SPR biosensor based on a flat surface but also describes the transition from the regime where the propagating surface plasmon mode dominates to the regime where the localized surface plasmon mode dominates. An exhaustive mapping of the biosensing potential of the 2D nano- and micro-structured biosensors surface is presented, varying the structural parameters related to the ribbon grating dimensions, i.e., the widths and thicknesses. The nano- and micro-structuration also leads to the creation of regions on biosensor chips that are characterized by strongly enhanced electromagnetic (EM) fields. New opportunities for further improving the sensitivity are offered if localization of biomolecules can be carried out in these regions of high EM fields. The continuum of nano- and micro-ribbon structured biosensors described in this study should prove a valuable tool for developing sensitive and reliable 2D-structured plasmonic biosensors.  相似文献   

15.
We have presented a strain-sensing device in microscale by using surface plasmon polaritons and multimode interference effects. The device is numerically investigated by the finite-difference time-domain method. Optimum depths and length of the structure are designed for sensing a strain. The size of the designed structure is several micrometers and is about a thousandth compared with a fiber Bragg grating strain sensor. The sensitivity of the designed structure is 11.34 pm/μ?? that is about ten times larger than that of a fiber Bragg grating strain sensor. The temperature sensitivity of the designed structure is 34.43 pm/ °C. This temperature sensitivity is three times larger than that of a fiber Bragg grating strain sensor. Therefore, temperature compensation techniques are needed for the structure. The presented structure has a simple design such as a plasmonic waveguide with a trench structure. The simple structural design device has a capability of being used in micro- and nano-electromechanical systems.  相似文献   

16.
Dynamically tunable multichannel filter based on plasmon-induced transparencies (PITs) is proposed in a plasmonic waveguide side-coupled to slot and rectangle resonators system at optical communication range. The slot and rectangle resonators in this system can be regarded as radiative or dark resonators as same as the radiative or dark elements in the metamaterial structure with the help of the evanescent coupling. The multiple PIT responses which can enable the realization of nanoscale filter with four channels are originated from the direct near-field coupling and indirect phase couple through a plasmonic waveguide simultaneously. Moreover, the magnitudes and bandwidths of the filter can be efficiently tuned by controlling of the geometric parameters such as the coupling distances and the pump light-induced refractive index change of the Kerr material which is embedded into the metal-dielectric-metal waveguide between the radiative resonators.  相似文献   

17.

Reconfigurable one-, two-, and three-bit plasmonic logic gate configurations have been proposed, which work by covering a straight slot waveguide with materials with tunable dielectric constants, such as graphene. By encoding the logic states in the values of dielectric constants as opposed to different waveguides, the plasmon excitation problems are minimized and the simplified logic gate configurations could be easily implemented.

  相似文献   

18.

This paper reports the excitation of surface plasmon polaritons (SPPs) and associated plasmonic band gap (PBG) while using TM plane wave interacting with 1D metallic grating on higher refractive index GaP substrate. A simple method is introduced to estimate the PBG which is crucial for many plasmonic devices. The PBG is estimated by measuring the transmission spectra obtained through the plasmonic grating structures when slit width is varied while periodicity and the thickness of the gold (Au) film remained fixed. The PBG is observed for the grating devices whose slit width is less than one third of the periodicity which is caused by the presence of a higher plasmonic mode. The PBG is absent for the grating device whose slit width is slightly less than half and greater than one third of the periodicity. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in turn couple more incident energy to the SPPs. Far-field modelling results also support the results obtained through experiment.

  相似文献   

19.
Kim  Nam-Chol  Ko  Myong-Chol  Choe  Song-Il  Jang  Chol-Jong  Kim  Gwang-Jin  Hao  Zhong-Hua  Li  Jian-Bo  Wang  Qu-Quan 《Plasmonics (Norwell, Mass.)》2018,13(3):1089-1095
Plasmonics - Transport properties of a single plasmon interacting with two quantum dots (QDs) system coupled to one-dimensional surface plasmonic waveguide are investigated theoretically via the...  相似文献   

20.
In this paper, a plasmonic-photonic nanostructure has been introduced for efficient unidirectional coupling of free-space radiation to surface plasmon polariton (SPP) waves under normal illumination on a subwavelength slit. The structure consists of a conventional metallic slit-groove nanostructure integrated with a plasmonic waveguide to support SPP waves along the desired direction with a remarkable lateral confinement. The unidirectional coupling is achieved by using an integrated plasmonic distributed reflector designed under Bragg condition. This reflector basically distributes part of the light coupled through the slit into the SPP modes of the waveguide. Numerical simulations show that up to 26 % of the normally incident light couples to the transversely localized field of the surface plasmon. In addition, the ratio of mode current density of the surface plasmon, launched in the desired direction, to that in the opposite direction can reach about 23 times. This structure shows a 2.5-fold improvement in coupling efficiency relative to a standard slit-groove structure. Also, the transmission distance for the new nanostructure is shown to be more than 8 times greater than that of the standard nanostructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号