首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
River microbial communities play an important role in global nutrient cycles, and aggregated bacteria such as those in epilithic biofilms may be major contributors. In this study the bacterial diversity of River Taff epilithon in South Wales was investigated. A 16S ribosomal DNA (rDNA) clone library was constructed and analyzed by partial sequencing of 76 of 347 clones and hybridization with taxon-specific probes. The epilithon was found to be very diverse, with an estimated 59.6% of the bacterial populations not accounted for by these clones. Members of the Cytophaga-Flexibacter-Bacteroides division (CFBs) were most abundant in the library, representing 25% of clones, followed by members of the alpha subdivision of the division Proteobacteria (alpha-Proteobacteria), gamma-Proteobacteria, gram-positive bacteria, Cyanobacteria, beta-Proteobacteria, delta-Proteobacteria, and the Prosthecobacter group. This study concentrated on the epilithic CFB populations, and a new set of degenerate 16S rDNA probes was developed to enhance their detection, namely, CFB560, CFB562, and CFB376. The commonly used probe CF319a/b may frequently lead to the underestimation of CFB populations in environmental studies, because it does not fully detect members of the division. CFB560 had exact matches to 95.6% of CFBs listed in the Ribosomal Database Project (release 8.0) small-subunit phylogenetic trees, compared to 60% for CF319a/b. The CFB probes detected 66 of 347 epilithon TAF clones, and 60 of these were partially sequenced. They affiliated with the RDP-designated groups Cytophaga, Sphingobacterium, Lewinella, and Cytophaga aurantiaca. CFB560 and CF319a/b detected 94% (62 of 66) and 48.5% (32 of 66) of clones, respectively, and therefore CFB560 is recommended for future use. Probe design in this study illustrated that multiple degenerate positions can greatly increase target range without adversely effecting specificity or experimental performance.  相似文献   

2.
We analyzed the composition of aggregate (lake snow)-associated bacterial communities in Lake Constance from 1994 until 1996 between a depth of 25 m and the sediment surface at 110 m by fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes of various specificity. In addition, we experimentally examined the turnover of dissolved amino acids and carbohydrates together with the microbial colonization of aggregates formed in rolling tanks in the lab. Generally, between 40 and more than 80% of the microbes enumerated by DAPI staining (4′,6′-diamidino-2-phenylindole) were detected as Bacteria by the probe EUB338. At a depth of 25 m, 10.5% ± 7.9% and 14.2% ± 10.2% of the DAPI cell counts were detected by probes specific for α- and β-Proteobacteria. These proportions increased to 12.0% ± 3.3% and 54.0% ± 5.9% at a depth of 50 m but decreased again at the sediment surface at 110 m to 2.7% ± 1.4% and 41.1% ± 8.4%, indicating a clear dominance of β-Proteobacteria at depths of 50 and 110 m, where aggregates have an age of 3 to 5 and 8 to 11 days, respectively. From 50 m to the sediment surface, cells detected by a Cytophaga/Flavobacteria-specific probe (CF319a) comprised increasing proportions up to 18% of the DAPI cell counts. γ-Proteobacteria always comprised minor proportions of the aggregate-associated bacterial community. Using only two probes highly specific for clusters of bacteria closely related to Sphingomonas species and Brevundimonas diminuta, we identified between 16 and 60% of the α-Proteobacteria. In addition, with three probes highly specific for close relatives of the β-Proteobacteria Duganella zoogloeoides (formerly Zoogloea ramigera), Acidovorax facilis, and Hydrogenophaga palleroni, bacteria common in activated sludge, 42 to 70% of the β-Proteobacteria were identified. In the early phase (<20 h) of 11 of the 15 experimental incubations of aggregates, dissolved amino acids were consumed by the aggregate-associated bacteria from the surrounding water. This stage was followed by a period of 1 to 3 days during which dissolved amino acids were released into the surrounding water, paralleled by an increasing dominance of β-Proteobacteria. Hence, our results show that lake snow aggregates are inhabited by a community dominated by a limited number of α- and β-Proteobacteria, which undergo a distinct succession. They successively decompose the amino acids bound in the aggregates and release substantial amounts into the surrounding water during aging and sinking.  相似文献   

3.
Small subunit 16S rRNA sequences, growth temperatures, and phylogenetic relationships have been established for 129 bacterial isolates recovered under aerobic growth conditions from different regions of a 22-m ice core from the Muztag Ata Mountain glacier on the Pamirs Plateau (China). Only 11% were psychrophiles (grew at 2°C or −2°C up to ~20°C), although the majority (82%) were psychrotolerant (grew at 2°C or −2°C up to 37°C). The majority of the isolates had 16S rRNA sequences similar to previously determined sequences, ranging from 85% to 100% identical to database sequences. Based on their 16S rRNA sequences, 42.6% of the isolates were high-G+C (HGC) gram-positive bacteria, 23.3% were γ-Proteobacteria, 14.7% were α-Proteobacteria, 14.7% were Flavobacteria, and 4.7% were low-G+C (LGC) gram-positive bacteria. There were clear differences in the depth distribution, with Proteobacteria, HGC/Cytophaga-Flavobacterium-Bacteroides (CFB), Proteobacteria, LGC/CFB/HGC, Cryobacterium psychrophilum, HGC/CFB, Proteobacteria/HGC/CFB, and HGC/CFB being the predominant isolates from ice that originated from 2.7 to 3.8, 6.2, 7.5, 8.3, 9.0, 9.7, 12.5, and 15.3 m below the surface, respectively. This layered distribution of bacterial isolates presumably reflects both differences in bacteria inhabiting the glacier's surface, differences in bacteria deposited serendipitously on the glacier's surface by wind and snowfall, and nutrient availability within the ice.  相似文献   

4.
Prokaryotic Diversity in Zostera noltii-Colonized Marine Sediments   总被引:2,自引:0,他引:2       下载免费PDF全文
The diversity of microorganisms present in a sediment colonized by the phanerogam Zostera noltii has been analyzed. Microbial DNA was extracted and used for constructing two 16S rDNA clone libraries for Bacteria and Archaea. Bacterial diversity was very high in these samples, since 57 different sequences were found among the 60 clones analyzed. Eight major lineages of the Domain Bacteria were represented in the library. The most frequently retrieved bacterial group (36% of the clones) was δ-Proteobacteria related to sulfate-reducing bacteria. The second most abundant group (27%) was γ-Proteobacteria, including five clones closely related to S-oxidizing endosymbionts. The archaeal clone library included members of Crenarchaeota and Euryarchaeota, with nine different sequences among the 15 analyzed clones, indicating less diversity when compared to the Bacteria organisms. None of these sequences was closely related to cultured Archaea organisms.  相似文献   

5.
We characterized the intracellular symbiotic microbiota of the bamboo pseudococcid Antonina crawii by performing a molecular phylogenetic analysis in combination with in situ hybridization. Almost the entire length of the bacterial 16S rRNA gene was amplified and cloned from A. crawii whole DNA. Restriction fragment length polymorphism analysis revealed that the clones obtained included three distinct types of sequences. Nucleotide sequences of the three types were determined and subjected to a molecular phylogenetic analysis. The first sequence was a member of the γ subdivision of the division Proteobacteria (γ-Proteobacteria) to which no sequences in the database were closely related, although the sequences of endosymbionts of other homopterans, such as psyllids and aphids, were distantly related. The second sequence was a β-Proteobacteria sequence and formed a monophyletic group with the sequences of endosymbionts from other pseudococcids. The third sequence exhibited a high level of similarity to sequences of Spiroplasma spp. from ladybird beetles and a tick. Localization of the endosymbionts was determined by using tissue sections of A. crawii and in situ hybridization with specific oligonucleotide probes. The γ- and β-Proteobacteria symbionts were packed in the cytoplasm of the same mycetocytes (or bacteriocytes) and formed a large mycetome (or bacteriome) in the abdomen. The spiroplasma symbionts were also present intracellularly in various tissues at a low density. We observed that the anterior poles of developing eggs in the ovaries were infected by the γ- and β-Proteobacteria symbionts in a systematic way, which ensured vertical transmission. Five representative pseudococcids were examined by performing diagnostic PCR experiments with specific primers; the β-Proteobacteria symbiont was detected in all five pseudococcids, the γ-Proteobacteria symbiont was found in three, and the spiroplasma symbiont was detected only in A. crawii.  相似文献   

6.
Microbial community samples were collected from the anoxic zone of the Cariaco Basin at depths of 320, 500, and 1,310 m on a November 1996 cruise and were used to construct 16S ribosomal DNA libraries. Of 60 nonchimeric sequences in the 320-m library, 56 belonged to the subdivision of the Proteobacteria (-Proteobacteria) and 53 were closely related to ectosymbionts of Rimicaris exoculata and Alvinella pompejana, which are referred to here as epsilon symbiont relatives (ESR). The 500-m library contained sequences affiliated with the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the division Verrucomicrobia, the division Proteobacteria, and the OP3 candidate division. The Proteobacteria included members of the γ, δ, and new candidate subdivisions, and γ-proteobacterial sequences were dominant (25.6%) among the proteobacterial sequences. As in the 320-m library, the majority of the -proteobacteria belonged to the ESR group. The genus Fibrobacter and its relatives were the second largest group in the library (23.6%), followed by the δ-proteobacteria and the -proteobacteria. The 1,310-m library had the greatest diversity; 59 nonchimeric clones in the library contained 30 unique sequences belonging to the planctomycetes, the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the Proteobacteria, and the OP3 and OP8 candidate divisions. The proteobacteria included members of new candidate subdivisions and the β, γ, δ, and -subdivisions. ESR sequences were still present in the 1,310-m library but in a much lower proportion (8.5%). One archaeal sequence was present in the 500-m library (2% of all microorganisms in the library), and eight archaeal sequences were present in the 1,310-m library (13.6%). All archaeal sequences fell into two groups; two clones in the 1,310-m library belonged to the kingdom Crenarchaeota and the remaining sequences in both libraries belonged to the kingdom Euryarchaeota. The latter group appears to be related to the Eel-TA1f2 sequence, which belongs to an archaeon suggested to be able to oxidize methane anaerobically. Based on phylogenetic inferences and measurements of dark CO2 fixation, we hypothesized that (i) the ESR are autotrophic anaerobic sulfide oxidizers, (ii) sulfate reduction and fermentative metabolism may be carried out by a large number of bacteria in the 500- and 1,310-m libraries, and (iii) members of the Euryarchaeota found in relatively large numbers in the 1,310-m library may be involved in anaerobic methane oxidation. Overall, the composition of microbial communities from the Cariaco Basin resembles the compositions of communities from several anaerobic sediments, supporting the hypothesis that the Cariaco Basin water column is similar to anaerobic sediments.  相似文献   

7.
Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities.  相似文献   

8.
Laboratory-scale sequencing batch reactors (SBRs) as models for activated sludge processes were used to study enhanced biological phosphorus removal (EBPR) from wastewater. Enrichment for polyphosphate-accumulating organisms (PAOs) was achieved essentially by increasing the phosphorus concentration in the influent to the SBRs. Fluorescence in situ hybridization (FISH) using domain-, division-, and subdivision-level probes was used to assess the proportions of microorganisms in the sludges. The A sludge, a high-performance P-removing sludge containing 15.1% P in the biomass, was comprised of large clusters of polyphosphate-containing coccobacilli. By FISH, >80% of the A sludge bacteria were β-2 Proteobacteria arranged in clusters of coccobacilli, strongly suggesting that this group contains a PAO responsible for EBPR. The second dominant group in the A sludge was the Actinobacteria. Clone libraries of PCR-amplified bacterial 16S rRNA genes from three high-performance P-removing sludges were prepared, and clones belonging to the β-2 Proteobacteria were fully sequenced. A distinctive group of clones (sharing ≥98% sequence identity) related to Rhodocyclus spp. (94 to 97% identity) and Propionibacter pelophilus (95 to 96% identity) was identified as the most likely candidate PAOs. Three probes specific for the highly related candidate PAO group were designed from the sequence data. All three probes specifically bound to the morphologically distinctive clusters of PAOs in the A sludge, exactly coinciding with the β-2 Proteobacteria probe. Sequential FISH and polyphosphate staining of EBPR sludges clearly demonstrated that PAO probe-binding cells contained polyphosphate. Subsequent PAO probe analyses of a number of sludges with various P removal capacities indicated a strong positive correlation between P removal from the wastewater as determined by sludge P content and number of PAO probe-binding cells. We conclude therefore that an important group of PAOs in EBPR sludges are bacteria closely related to Rhodocyclus and Propionibacter.  相似文献   

9.
The period when the snowpack melts in late spring is a dynamic time for alpine ecosystems. The large winter microbial community begins to turn over rapidly, releasing nutrients to plants. Past studies have shown that the soil microbial community in alpine dry meadows of the Colorado Rocky Mountains changes in biomass, function, broad-level structure, and fungal diversity between winter and early summer. However, little specific information exists on the diversity of the alpine bacterial community or how it changes during this ecologically important period. We constructed clone libraries of 16S ribosomal DNA from alpine soil collected in winter, spring, and summer. We also cultivated bacteria from the alpine soil and measured the seasonal abundance of selected cultured isolates in hybridization experiments. The uncultured bacterial communities changed between seasons in diversity and abundance within taxa. The Acidobacterium division was most abundant in the spring. The winter community had the highest proportion of Actinobacteria and members of the Cytophaga/Flexibacter/Bacteroides (CFB) division. The summer community had the highest proportion of the Verrucomicrobium division and of β-Proteobacteria. As a whole, α-Proteobacteria were equally abundant in all seasons, although seasonal changes may have occurred within this group. A number of sequences from currently uncultivated divisions were found, including two novel candidate divisions. The cultured isolates belonged to the α-, β-, and γ-Proteobacteria, the Actinobacteria, and the CFB groups. The only uncultured sequences that were closely related to the isolates were from winter and spring libraries. Hybridization experiments showed that actinobacterial and β-proteobacterial isolates were most abundant during winter, while the α- and γ-proteobacterial isolates tested did not vary significantly. While the cultures and clone libraries produced generally distinct groups of organisms, the two approaches gave consistent accounts of seasonal changes in microbial diversity.  相似文献   

10.
The microbial capacity to degrade simple organic compounds with quaternary carbon atoms was demonstrated by enrichment and isolation of five denitrifying strains on dimethylmalonate as the sole electron donor and carbon source. Quantitative growth experiments showed a complete mineralization of dimethylmalonate. According to phylogenetic analysis of the complete 16S rRNA genes, two strains isolated from activated sewage sludge were related to the genus Paracoccus within the α-Proteobacteria (98.0 and 98.2% 16S rRNA gene similarity to Paracoccus denitrificansT), and three strains isolated from freshwater ditches were affiliated with the β-Proteobacteria (97.4 and 98.3% 16S rRNA gene similarity to Herbaspirillum seropedicaeT and Acidovorax facilisT, respectively). Most-probable-number determinations for denitrifying populations in sewage sludge yielded 4.6 × 104 dimethylmalonate-utilizing cells ml−1, representing up to 0.4% of the total culturable nitrate-reducing population.  相似文献   

11.
Biomass samples from the Black Sea collected in 1988 were analyzed for SSU genes from Bacteria and Archaea after 10 years of storage at −80°C. Both clonal libraries and direct fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analyses were used to assess the microbial community. Uniform and discrete depth distributions of different SSU phylotypes were observed. However, most recombinant clones were not restricted to a specific depth in the water column, and many of the major T-RFLP peaks remain uncharacterized. Of the clones obtained, an -Proteobacteria and a Pseudoalteromonas-like clone accounted for major peaks in the fingerprint, while deeply branching lineages of α- and γ-Proteobacteria were associated with smaller peaks. Additionally, members were found among both the δ-Proteobacteria related to sulfate reducers and the Archaea related to phylotypes from the ANME groups that anaerobically oxidize methane.  相似文献   

12.
DNA was extracted from dry standing dead Spartina alterniflora stalks as well as dry Spartina wrack from the North Inlet (South Carolina) and Sapelo Island (Georgia) salt marshes. Partial nifH sequences were PCR amplified, the products were separated by denaturing gradient gel electrophoresis (DGGE), and the prominent DGGE bands were sequenced. Most sequences (109 of 121) clustered with those from α-Proteobacteria, and 4 were very similar (>99%) to that of Azospirillum brasilense. Seven sequences clustered with those from known γ-Proteobacteria and five with those from known anaerobic diazotrophs. The diazotroph assemblages associated with dead Spartina biomass in these two salt marshes were very similar, and relatively few major lineages were represented.  相似文献   

13.
We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the β-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of β-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the β-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats.  相似文献   

14.
The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured α-proteobacterial clones was consistently associated with the highly suppressive treatments. A quantitative PCR analysis confirmed the association of this Rhizobium-like rDNA group with the H. schachtii suppressiveness.  相似文献   

15.
Rice straw is a major substrate for the production of methane, a greenhouse gas, in flooded rice fields. The bacterial community degrading rice straw under anoxic conditions was investigated with molecular methods. Rice straw was incubated in paddy soil anaerobically for 71 days. Denaturing gradient gel electrophoresis (DGGE) of the amplified bacterial 16S rRNA genes showed that the composition of the bacterial community changed during the first 15 days but then was stable until the end of incubation. Fifteen DGGE bands with different signal intensities were excised, cloned, and sequenced. In addition, DNA was extracted from straw incubated for 1 and 29 days and the bacterial 16S rRNA genes were amplified and cloned. From these clone libraries 16 clones with different electrophoretic mobilities on a DGGE gel were sequenced. From a total of 31 clones, 20 belonged to different phylogenetic clusters of the clostridia, i.e., clostridial clusters I (14 clones), III (1 clone), IV (1 clone), and XIVa (4 clones). One clone fell also within the clostridia but could not be affiliated to one of the clostridial clusters. Ten clones grouped closely with the genera Bacillus (3 clones), Nitrosospira (1 clone), Fluoribacter (1 clones), and Acidobacterium (2 clones) and with clone sequences previously obtained from rice field soil (3 clones). The relative abundances of various phylogenetic groups in the rice straw-colonizing community were determined by fluorescence in situ hybridization (FISH). Bacteria were detached from the incubated rice straw with an efficiency of about 80 to 90%, as determined by dot blot hybridization of 16S rRNA in extract and residue. The number of active (i.e., a sufficient number of ribosomes) Bacteria detected with a general eubacterial probe (Eub338) after 8 days of incubation was 61% of the total cell counts. This percentage decreased to 17% after 29 days of incubation. Most (55%) of the active cells on day 8 belonged to the genus Clostridium, mainly to clostridial clusters I (24%), III (6%), and XIVa (24%). An additional 5% belonged to the Cytophaga-Flavobacterium cluster of the Cytophaga-Flavobacterium-Bacteroides phylum, 4% belonged to the α, β, and γ Proteobacteria, and 1.3% belonged to the Bacillus subbranch of the gram-positive bacteria with a low G+C content. The results show that the bacterial community colonizing and decomposing rice straw developed during the first 15 days of incubation and was dominated by members of different clostridial clusters, especially clusters I, III, and XIVa.  相似文献   

16.
The distribution and phylogenetic affiliations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-degrading denitrifying bacteria in activated sludge were studied by a polyphasic approach including culture-independent biomarker and molecular analyses as well as cultivation methods. A total of 23 strains of PHBV-degrading denitrifiers were isolated from activated sludges from different sewage treatment plants. 16S ribosomal DNA (rDNA) sequence comparisons showed that 20 of the isolates were identified as members of the family Comamonadaceae, a major group of β-Proteobacteria. When the sludges from different plants were acclimated with PHBV under denitrifying conditions in laboratory scale reactors, the nitrate removal rate increased linearly during the first 4 weeks and reached 20 mg NO3-N h−1 g of dry sludge−1 at the steady state. The bacterial-community change in the laboratory scale sludges during the acclimation was monitored by rRNA-targeted fluorescence in situ hybridization and quinone profiling. Both approaches showed that the population of β-Proteobacteria in the laboratory sludges increased sharply during acclimation regardless of their origins. 16S rDNA clone libraries were constructed from two different acclimated sludges, and a total of 37 clones from the libraries were phylogenetically analyzed. Most of the 16S rDNA clones were grouped with members of the family Comamonadaceae. The results of our polyphasic approach indicate that β-Proteobacteria, especially members of the family Comamonadaceae, are primary PHBV-degrading denitrifiers in activated sludge. Our data provide useful information for the development of a new nitrogen removal system with solid biopolymer as an electron donor.  相似文献   

17.
The phylogenetic diversity of the bacterial communities supported by a seven-stage, full-scale biological wastewater treatment plant was studied. These reactors were operated at both mesophilic (28 to 32°C) and thermophilic (50 to 58°C) temperatures. Community fingerprint analysis by denaturing gradient gel electrophoresis (DGGE) of the PCR-amplified V3 region of the 16S rRNA gene from the domain Bacteria revealed that these seven reactors supported three distinct microbial communities. A band-counting analysis of the PCR-DGGE results suggested that elevated reactor temperatures corresponded with reduced species richness. Cloning of nearly complete 16S rRNA genes also suggested a reduced species richness in the thermophilic reactors by comparing the number of clones with different nucleotide inserts versus the total number of clones screened. While these results imply that elevated temperature can reduce species richness, other factors also could have impacted the number of populations that were detected. Nearly complete 16S rDNA sequence analysis showed that the thermophilic reactors were dominated by members from the β subdivision of the division Proteobacteria (β-proteobacteria) in addition to anaerobic phylotypes from the low-G+C gram-positive and Synergistes divisions. The mesophilic reactors, however, included at least six bacterial divisions, including Cytophaga-Flavobacterium-Bacteroides, Synergistes, Planctomycetes, low-G+C gram-positives, Holophaga-Acidobacterium, and Proteobacteria (α-proteobacteria, β-proteobacteria, γ-proteobacteria and δ-proteobacteria subdivisions). The two PCR-based techniques detected the presence of similar bacterial populations but failed to coincide on the relative distribution of these phylotypes. This suggested that at least one of these methods is insufficiently quantitative to determine total community biodiversity—a function of both the total number of species present (richness) and their relative distribution (evenness).  相似文献   

18.
Early stages of surface colonization in coastal marine waters appear to be dominated by the marine Rhodobacter group of the α subdivision of the division Proteobacteria (α-Proteobacteria). However, the quantitative contribution of this group to primary surface colonization has not been determined. In this study, glass microscope slides were incubated in a salt marsh tidal creek for 3 or 6 days. Colonizing bacteria on the slides were examined by fluorescence in situ hybridization by employing DNA probes targeting 16S or 23S rRNA to identify specific phylogenetic groups. Confocal laser scanning microscopy was then used to quantify and track the dynamics of bacterial primary colonists during the early stages of surface colonization and growth. More than 60% of the surface-colonizing bacteria detectable by fluorescence staining (Yo-Pro-1) could also be detected with the Bacteria domain probe EUB338. Archaea were not detected on the surfaces and did not appear to participate in surface colonization. Of the three subdivisions of the Proteobacteria examined, the α-Proteobacteria were the most abundant surface-colonizing organisms. More than 28% of the total bacterial cells and more than 40% of the cells detected by EUB338 on the surfaces were affiliated with the marine Rhodobacter group. Bacterial abundance increased significantly on the surfaces during short-term incubation, mainly due to the growth of the marine Rhodobacter group organisms. These results demonstrated the quantitative importance of the marine Rhodobacter group in colonization of surfaces in salt marsh waters and confirmed that at least during the early stages of colonization, this group dominated the surface-colonizing bacterial assemblage.  相似文献   

19.
N2 fixation by diazotrophic bacteria associated with the roots of the smooth cordgrass, Spartina alterniflora, is an important source of new nitrogen in many salt marsh ecosystems. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are unknown. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified nifH sequence segments was used in previous studies to examine the stability and dynamics of the Spartina rhizosphere diazotroph assemblages in the North Inlet salt marsh, near Georgetown, S.C. In this study, plugs were taken from gel bands from representative DGGE gels, the nifH amplimers were recovered and cloned, and their sequences were determined. A total of 59 sequences were recovered, and the amino acid sequences predicted from them were aligned with sequences from known and unknown diazotrophs in order to determine the types of organisms present in the Spartina rhizosphere. We recovered numerous sequences from diazotrophs in the γ subdivision of the division Proteobacteria (γ-Proteobacteria) and from various anaerobic diazotrophs. Diazotrophs in the α-Proteobacteria were poorly represented. None of the Spartina rhizosphere DGGE band sequences were identical to any known or previously recovered environmental nifH sequences. The Spartina rhizosphere diazotroph assemblage is very diverse and apparently consists mainly of unknown organisms.  相似文献   

20.
Novel Division Level Bacterial Diversity in a Yellowstone Hot Spring   总被引:32,自引:1,他引:31       下载免费PDF全文
A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609–1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among >300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (≥98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing δ-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These results expand substantially our knowledge of the extent of bacterial diversity and call into question the commonly held notion that Archaea dominate hydrothermal environments. Finally, the currently known extent of division level bacterial phylogenetic diversity is collated and summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号