首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The phosphohydrolysis properties of the following phosphoprotein intermediates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) were investigated: enzyme I, HPr, and the IIAGlc domain of the glucose enzyme II of Bacillus subtilis; and IIAGlc (fast and slow forms) of Escherichia coli. The phosphohydrolysis properties were also studied for the site-directed mutant H68A of B. subtilis IIA Glc. Several conclusions were reached. (i) The phosphohydrolysis properties of the homologous phosphoprotein intermediates of B. subtilis and E. coli are similar. (ii) These properties deviate from those of isolated N delta 1- and N epsilon 2-phosphohistidine indicating the participation of neighbouring residues at the active sites of these proteins. (iii) The rates of phosphohydrolysis of the H68A mutant of B. subtilis IIAGlc were reduced compared with the wild-type protein, suggesting that both His-83 and His-68 are present at the active site of wild-type IIAGlc. (iv) The removal of seven N-terminal residues of E. coli IIAGlc reduced the rates of phosphohydrolysis between pH 5 and 8.  相似文献   

2.
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) includes a collection of proteins that accomplish phosphoryl transfer from phosphoenolpyruvate (PEP) to a sugar in the course of transport. The soluble proteins of the glucose transport pathway also function as regulators of diverse systems. The mechanism of interaction of the phosphoryl carrier proteins with each other as well as with their regulation targets has been amenable to study by nuclear magnetic resonance (NMR) spectroscopy. The three-dimensional solution structures of the complexes between the N-terminal domain of enzyme I and HPr and between HPr and enzyme IIA(Glc) have been elucidated. An analysis of the binding interfaces of HPr with enzyme I, IIA(Glc) and glycogen phosphorylase revealed that a common surface on HPr is involved in all these interactions. Similarly, a common surface on IIA(Glc) interacts with HPr, IIB(Glc) and glycerol kinase. Thus, there is a common motif for the protein-protein interactions characteristic of the PTS.  相似文献   

3.
The ptsH gene from Bacillus thuringiensis israelensis (Bti), coding for the phosphocarrier protein HPr of the phosphotransferase system has been cloned and overexpressed in Escherichia coli. Comparison of its primary sequence with other HPr sequences revealed that the conserved His15 and Ser46 residues were shifted by one amino acid and located at positions 14 and 45, respectively. The biological activity of the protein was not affected by this change. When expressed in a Bacillus subtilis ptsH deletion strain, Bti HPr was able to complement the functions of HPr in sugar uptake and glucose catabolite repression of the gnt and iol operons. A modified form of HPr was detected in Bti cells, and also when Bti ptsH was expressed in E. coli or B. subtilis. This modification was identified as phosphorylation, because alkaline phosphatase treatment converted the modified form to unmodified HPr. The phosphoryl bond in the new form of in vivo phosphorylated HPr was resistant to alkali treatment but sensitive to acid treatment, suggesting phosphorylation at a histidine residue. Replacement of His14 with alanine in Bti HPr prevented formation of the new form of phosphorylated HPr. The phosphorylated HPr was stable at 60 degrees C, in contrast with HPr phosphorylated at the N delta 1 position of His14 with phosphoenolpyruvate and enzyme I. (31)P-NMR spectroscopy was used to show that the new form of P-HPr carried the phosphoryl group bound to the N epsilon 2 position of His14 of Bti HPr. Phosphorylation of HPr at the novel site did not occur when Bti HPr was expressed in an enzyme I-deficient B. subtilis strain. In addition, P-(N epsilon 2)His-HPr did not transfer its phosphoryl group to the purified glucose-specific enzyme IIA domain of B. subtilis.  相似文献   

4.
The bacterial phosphoenolpyruvate:sugar phosphotransferase system accomplishes both the transport and phosphorylation of sugars as well as the regulation of some cellular processes. An important component of this system is the histidine-containing phosphocarrier protein, HPr, which accepts a phosphoryl group from enzyme I, transfers a phosphoryl group to IIA proteins, and is an allosteric regulator of glycogen phosphorylase. Because the nature of the surface on HPr that interacts with this multiplicity of proteins from Escherichia coli was previously undefined, we investigated these interactions by nuclear magnetic resonance spectroscopy. The chemical shift changes of the backbone and side-chain amide (1)H and (15)N nuclei of uniformly (15)N-labeled HPr in the absence and presence of natural abundance glycogen phosphorylase, glucose-specific enzyme IIA, or the N-terminal domain of enzyme I have been determined. Mapping these chemical shift perturbations onto the three-dimensional structure of HPr permitted us to identify the binding surface(s) of HPr for interaction with these proteins. Here we show that the mapped interfaces on HPr are remarkably similar, indicating that HPr employs a similar surface in binding to its partners.  相似文献   

5.
The solution structure of the complex between the cytoplasmic A domain (IIA(Mtl)) of the mannitol transporter II(Mannitol) and the histidine-containing phosphocarrier protein (HPr) of the Escherichia coli phosphotransferase system has been solved by NMR, including the use of conjoined rigid body/torsion angle dynamics, and residual dipolar couplings, coupled with cross-validation, to permit accurate orientation of the two proteins. A convex surface on HPr, formed by helices 1 and 2, interacts with a complementary concave depression on the surface of IIA(Mtl) formed by helix 3, portions of helices 2 and 4, and beta-strands 2 and 3. The majority of intermolecular contacts are hydrophobic, with a small number of electrostatic interactions at the periphery of the interface. The active site histidines, His-15 of HPr and His-65 of IIA(Mtl), are in close spatial proximity, and a pentacoordinate phosphoryl transition state can be readily accommodated with no change in protein-protein orientation and only minimal perturbations of the backbone immediately adjacent to the histidines. Comparison with two previously solved structures of complexes of HPr with partner proteins of the phosphotransferase system, the N-terminal domain of enzyme I (EIN) and enzyme IIA(Glucose) (IIA(Glc)), reveals a number of common features despite the fact that EIN, IIA(Glc), and IIA(Mtl) bear no structural resemblance to one another. Thus, entirely different underlying structural elements can form binding surfaces for HPr that are similar in terms of both shape and residue composition. These structural comparisons illustrate the roles of surface and residue complementarity, redundancy, incremental build-up of specificity and conformational side chain plasticity in the formation of transient specific protein-protein complexes in signal transduction pathways.  相似文献   

6.
The solution structure of the second protein-protein complex of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system, that between histidine-containing phosphocarrier protein (HPr) and glucose-specific enzyme IIA(Glucose) (IIA(Glc)), has been determined by NMR spectroscopy, including the use of dipolar couplings to provide long-range orientational information and newly developed rigid body minimization and constrained/restrained simulated annealing methods. A protruding convex surface on HPr interacts with a complementary concave depression on IIA(Glc). Both binding surfaces comprise a central hydrophobic core region surrounded by a ring of polar and charged residues, positive for HPr and negative for IIA(Glc). Formation of the unphosphorylated complex, as well as the phosphorylated transition state, involves little or no change in the protein backbones, but there are conformational rearrangements of the interfacial side chains. Both HPr and IIA(Glc) recognize a variety of structurally diverse proteins. Comparisons with the structures of the enzyme I-HPr and IIA(Glc)-glycerol kinase complexes reveal how similar binding surfaces can be formed with underlying backbone scaffolds that are structurally dissimilar and highlight the role of redundancy and side chain conformational plasticity.  相似文献   

7.
The lactose transport protein (LacS) of Streptococcus thermophilus has a C-terminal hydrophilic domain that is homologous to IIA protein and protein domains of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The IIA domain of LacS is phosphorylated on His-552 by the general energy coupling proteins of the PTS, which are Enzyme I and HPr. To study the effect of phosphorylation on transport, the LacS protein was purified and incorporated into liposomes with the IIA domain facing outwards. This allowed the phosphorylation of the membrane-reconstituted protein by purified HPr(His approximately P) of S. thermophilus. Phosphorylation of LacS increased the V(max) of counterflow transport, whereas the V(max) of the proton motive force (delta p)-driven lactose uptake was not affected. In line with a range of kinetic studies, we propose that phosphorylation affects the rate constants for the reorientation of the ternary complex (LacS with bound lactose plus proton), which is rate-determining for counterflow but not for delta p-driven transport.  相似文献   

8.
The solution structure of the 48-kDa IIA(Man)-HPr complex of the mannose branch of the Escherichia coli phosphotransferase system has been solved by NMR using conjoined rigid body/torsion angle-simulated annealing on the basis of intermolecular nuclear Overhauser enhancement data and residual dipolar couplings. IIA(Man) is dimeric and has two symmetrically related binding sites per dimer for HPr. A convex surface on HPr, formed primarily by helices 1 and 2, interacts with a deep groove at the interface of the two subunits of IIA(Man). The interaction surface on IIA(Man) is predominantly helical, comprising helix 3 from the subunit that bears the active site His-10 and helices 1, 4, and 5 from the other subunit. The total buried accessible surface area at the protein-protein interface is 1450 A(2). The binding sites on the two proteins are complementary in terms of shape and distribution of hydrophobic, hydrophilic, and charged residues. The active site histidines, His-10 of IIA(Man) and His-15 (italics indicate HPr residues) of HPr, are in close proximity. An associative transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the N-epsilon2 atom of His-10 and the N-delta1 atom of His-15 can be readily formed with negligible displacement in the backbone coordinates of the residues immediately adjacent to the active site histidines. Comparing the structures of complexes of HPr with three other structurally unrelated phosphotransferase system proteins, enzymes I, IIA(glucose), and IIA(mannitol), reveals a number of common features that provide a molecular basis for understanding how HPr specifically recognizes a wide range of diverse proteins.  相似文献   

9.
Enzyme IIImtl is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, we report the isolation of IIImtl from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of IIImtl with [32P]PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase Glu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp- Asp. The corresponding peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which we assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the IIImtl proteins was found to be 15,000. We have also determined the N-terminal sequence of both proteins. Comparison of the IIImtl peptide sequences and the C-terminal part of the enzyme IImtl of Escherichia coli reveals considerable sequence homology, which supports the suggestion that IImtl of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II. In particular, the homology of the active-center peptide of IIImtl of S. aureus and S. carnosus with the enzyme IImtl of E. coli allows one to predict the N-3 histidine phosphorylation site within the E. coli enzyme.  相似文献   

10.
Listeria monocytogenes is a gram-positive bacterium whose carbohydrate metabolic pathways are poorly understood. We provide evidence for an inducible phosphoenolpyruvate (PEP):fructose phosphotransferase system (PTS) in this pathogen. The system consists of enzyme I, HPr, and a fructose-specific enzyme II complex which generates fructose-1-phosphate as the cytoplasmic product of the PTS-catalyzed vectorial phosphorylation reaction. Fructose-1-phosphate kinase then converts the product of the PTS reaction to fructose-1,6-bisphosphate. HPr was shown to be phosphorylated by [32P]PEP and enzyme I as well as by [32P]ATP and a fructose-1,6-bisphosphate-activated HPr kinase like those found in other gram-positive bacteria. Enzyme I, HPr, and the enzyme II complex of the Listeria PTS exhibit enzymatic cross-reactivity with PTS enzyme constituents from Bacillus subtilis and Staphylococcus aureus.  相似文献   

11.
The LevR protein is the activator of expression of the levanase operon of Bacillus subtilis. The promoter of this operon is recognized by RNA polymerase containing the sigma 54-like factor sigma L. One domain of the LevR protein is homologous to activators of the NtrC family, and another resembles antiterminator proteins of the BglG family. It has been proposed that the domain which is similar to antiterminators is a target of phosphoenolpyruvate:sugar phosphotransferase system (PTS)-dependent regulation of LevR activity. We show that the LevR protein is not only negatively regulated by the fructose-specific enzyme IIA/B of the phosphotransferase system encoded by the levanase operon (lev-PTS) but also positively controlled by the histidine-containing phosphocarrier protein (HPr) of the PTS. This second type of control of LevR activity depends on phosphoenolpyruvate-dependent phosphorylation of HPr histidine 15, as demonstrated with point mutations in the ptsH gene encoding HPr. In vitro phosphorylation of partially purified LevR was obtained in the presence of phosphoenolpyruvate, enzyme I, and HPr. The dependence of truncated LevR polypeptides on stimulation by HPr indicated that the domain homologous to antiterminators is the target of HPr-dependent regulation of LevR activity. This domain appears to be duplicated in the LevR protein. The first antiterminator-like domain seems to be the target of enzyme I and HPr-dependent phosphorylation and the site of LevR activation, whereas the carboxy-terminal antiterminator-like domain could be the target for negative regulation by the lev-PTS.  相似文献   

12.
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.  相似文献   

13.
The permeases of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS), the sugar-specific enzymes II, are energized by sequential phosphoryl transfer from phosphoenolpyruvate to (i) enzyme I, (ii) the phosphocarrier protein HPr, (iii) the enzyme IIA domains of the permeases, and (iv) the enzyme IIBC domains of the permeases which transport and phosphorylate their sugar substrates. A number of site-specific mutants of HPr were examined by using kinetic approaches. Most of the mutations exerted minimal effects on the kinetic parameters characterizing reactions involving phosphoryl transfer from phospho-HPr to various sugars. However, when the well-conserved aspartyl 69 residue in HPr was changed to a glutamyl residue, the affinities for phospho-HPr of the enzymes II specific for mannitol, N-acetylglucosamine, and beta-glucosides decreased markedly without changing the maximal reaction rates. The same mutation reduced the spontaneous rate of phosphohistidyl HPr hydrolysis but did not appear to alter the rate of phosphoryl transfer from phospho-enzyme I to HPr. When the adjacent glutamyl residue 70 in HPr was changed to a lysyl residue, the Vmax values of the reactions catalyzed by the enzymes II were reduced, but the Km values remained unaltered. Changing this residue to alanine exerted little effect. Site-specific alterations in the C terminus of the beta-glucoside enzyme II which reduced the maximal reaction rate of phosphoryl transfer about 20-fold did not alter the relative kinetic parameters because of the aforementioned mutations in HPr. Published three-dimensional structural analyses of HPr and the complex of HPr with the glucose-specific enzyme IIA (IIAGlc) (homologous to the beta-glucoside and N-acetylglucosamine enzyme IIA domains) have revealed that residues 69 and 70 in HPr are distant from the active phosphorylation site and the IIAGlc binding interface in HPr. The results reported therefore suggest that residues D-69 and E-70 in HPr play important roles in controlling conformational aspects of HPr that influence (i) autophosphohydrolysis, (ii) the interaction of this protein with the sugar permeases of the bacterial phosphotransferase system, and (iii) catalysis of phosphoryl transfer to the IIA domains in these permeases.  相似文献   

14.
Enzyme I of the bacterial phosphotransferase system catalyzes transfer of the phosphoryl moiety from phosphoenolpyruvate to both of the heat-stable phosphoryl carrier proteins of the phosphotransferase system, HPr and FPr. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-pressure liquid chromatography, we demonstrated the existence of covalently cross-linked enzyme I dimers and trimers. Enzyme I exchange assays and phosphorylation experiments with [32P]phosphoenolpyruvate showed that covalent dimers and trimers are catalytically active. Inhibitors of the enzyme I-catalyzed phosphoenolpyruvate-pyruvate exchange block the phosphorylation of enzyme I dimers and trimers. Inhibition of the activity of enzyme I by N-ethylmaleimide, but not that by p-chloromercuriphenylsulfonate, could be overcome by high concentrations of enzyme, suggesting that N-ethylmaleimide modification changes the associative properties of enzyme I. We present evidence for two distinct classes of sulfhydryl groups in enzyme I.  相似文献   

15.
In Streptococcus thermophilus, lactose is taken up by LacS, a transporter that comprises a membrane translocator domain and a hydrophilic regulatory domain homologous to the IIA proteins and protein domains of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The IIA domain of LacS (IIALacS) possesses a histidine residue that can be phosphorylated by HPr(His~P), a protein component of the PTS. However, determination of the cellular levels of the different forms of HPr, namely, HPr, HPr(His~P), HPr(Ser-P), and HPr(Ser-P)(His~P), in exponentially lactose-growing cells revealed that the doubly phosphorylated form of HPr represented 75% and 25% of the total HPr in S. thermophilus ATCC 19258 and S. thermophilus SMQ-301, respectively. Experiments conducted with [32P]PEP and purified recombinant S. thermophilus ATCC 19258 proteins (EI, HPr, and IIALacS) showed that IIALacS was reversibly phosphorylated by HPr(Ser-P)(His~P) at a rate similar to that measured with HPr(His~P). Sequence analysis of the IIALacS protein domains from several S. thermophilus strains indicated that they can be divided into two groups on the basis of their amino acid sequences. The amino acid sequence of IIALacS from group I, to which strain 19258 belongs, differed from that of group II at 11 to 12 positions. To ascertain whether IIALacS from group II could also be phosphorylated by HPr(His~P) and HPr(Ser-P)(His~P), in vitro phosphorylation experiments were conducted with purified proteins from Streptococcus salivarius ATCC 25975, which possesses a IIALacS very similar to group II S. thermophilus IIALacS. The results indicated that S. salivarius IIALacS was phosphorylated by HPr(Ser-P)(His~P) at a higher rate than that observed with HPr(His~P). Our results suggest that the reversible phosphorylation of IIALacS in S. thermophilus is accomplished by HPr(Ser-P)(His~P) as well as by HPr(His~P).  相似文献   

16.
The oral bacterium Streptococcus salivarius takes up lactose via a transporter called LacS that shares 95% identity with the LacS from Streptococcus thermophilus, a phylogenetically closely related organism. S. thermophilus releases galactose into the medium during growth on lactose. Expulsion of galactose is mediated via LacS and stimulated by phosphorylation of the transporter by HPr(His approximately P), a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase transport system (PTS). Unlike S. thermophilus, S. salivarius grew on lactose without expelling galactose and took up galactose and lactose concomitantly when it is grown in a medium containing both sugars. Analysis of the C-terminal end of S. salivarius LacS revealed a IIA-like domain (IIA(LacS)) almost identical to the IIA domain of S. thermophilus LacS. Experiments performed with purified proteins showed that S. salivarius IIA(LacS) was reversibly phosphorylated on a histidine residue at position 552 not only by HPr(His approximately P) but also by HPr(Ser-P)(His approximately P), a doubly phosphorylated form of HPr present in large amounts in rapidly growing S. salivarius cells. Two other major S. salivarius PTS proteins, IIAB(L)(Man) and IIAB(H)(Man), were unable to phosphorylate IIA(LacS). The effect of LacS phosphorylation on growth was studied with strain G71, an S. salivarius enzyme I-negative mutant that cannot synthesize HPr(His approximately P) or HPr(Ser-P)(His approximately P). These results indicated that (i) the wild-type and mutant strains had identical generation times on lactose, (ii) neither strain expelled galactose during growth on lactose, (iii) both strains metabolized lactose and galactose concomitantly when grown in a medium containing both sugars, and (iv) the growth of the mutant was slightly reduced on galactose.  相似文献   

17.
Phosphoproteins produced by the incubation of crude extracts of Salmonella typhimurium and Escherichia coli with either [32P]phosphoenolpyruvate or [gamma 32P]ATP have been resolved and detected using sodium dodecyl sulphate polyacrylamide gel electrophoresis and autoradiography. Simple techniques were found such that distinctions could be made between phosphoproteins containing acid-labile or stable phosphoamino acids and between N1-P-histidine and N3-P-histidine. Phosphoproteins were found to be primarily formed from phosphoenolpyruvate, but because of an efficient phosphoexchange, ATP also led to the formation of the major phosphoenolpyruvate-dependent phosphoproteins. These proteins had the following apparent subunit molecular weights: 65,000, 65,000, 62,000, 48,000, 40,000, 33,000, 25,000, 20,000, 14,000, 13,000, 9,000, 8,000. Major ATP-dependent phosphoproteins were detected with apparent subunit molecular weights of 75,000, 46,000, 30,000, and 15,000. Other minor phosphoproteins were detected. The phosphorylation of the 48,000- and 25,000-MW proteins by phosphoenolpyruvate was independent of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS phosphoproteins were identified as enzyme I (soluble; MW = 65,000); enzyme IIN-acetylglucosamine (membrane bound; MW = 65,000); enzyme IImannitol (membrane bound; MW = 62,000); IIIfructose (soluble; MW = 40,000); IIImannose (partially membrane associated; MW = 33,000); IIIglucose (soluble; MW = 20,000); IIIglucitol (soluble; MW = 13-14,000); HPr (soluble; MW = 9,000); FPr (fructose induced HPr-like protein (soluble; MW = 8,000). HPr and FPr are phosphorylated on the N-1 position of a histidyl residue while all the others appear to be phosphorylated on an N-3 position of a histidyl residue. These studies identify some previously unknown proteins of the PTS and show the phosphorylation of others, which although previously known, had not been shown to be phosphoproteins.  相似文献   

18.
The overall stereochemical course of the reactions leading to the phosphorylation of methyl alpha-D-glucopyranoside by the glucose-specific enzyme II (enzyme IIGlc) of the Escherichia coli phosphotransferase system has been investigated. With [(R)-16O,17O,18O]phosphoenolpyruvate as the phosphoryl donor and in the presence of enzyme I, HPr, and enzyme IIIGlc of the phosphotransferase system, membranes from E. coli containing enzyme IIGlc catalyzed the formation of methyl alpha-D-glucopyranoside 6-phosphate with overall inversion of the configuration at phosphorus (with respect to phosphoenolpyruvate). It has previously been shown that sequential covalent transfer of the phosphoryl group of phosphoenolpyruvate to enzyme I, to HPr, and to enzyme IIIGlc occurs before the final transfer from phospho-enzyme IIIGlc to the sugar, catalyzed by enzyme IIGlc. Because overall inversion of the configuration of the chiral phospho group of phosphoenolpyruvate implies an odd number of transfer steps, the phospho group has been transferred at least five times, and transfer from phospho-enzyme IIIGlc to the sugar must occur in two steps (or a multiple thereof). On the basis that no membrane protein other than enzyme IIGlc is directly involved in the final phospho transfer steps, our results imply that a covalent phospho-enzyme IIGlc is an intermediate during transport and phosphorylation of glucose by the E. coli phosphotransferase system.  相似文献   

19.
The high resolution crystal structures of two interacting proteins from the phosphoenolpyruvate:sugar phosphotransferase system, the histidine-containing phosphocarrier protein (HPr) and the IIA domain of glucose permease (IIA(Glc)) from Bacillus subtilis, provide the basis for modeling the transient binary complex formed during the phosphoryl group transfer. The complementarity of the interacting surfaces implies that no major conformational transition is required. The negatively charged phosphoryl group is buried in the interface, suggesting a key role for electrostatic interactions. It is proposed that the phosphoryl transfer is triggered by a switch between two salt bridges involving Arg-17 of the HPr. The first, prior to phosphoryl group transfer, is intramolecular, with the phosphorylated His-15. The second, during the transfer, is intermolecular, with 2 aspartate residues associated with the active site of IIA(Glc). Such alternating ion pairs may be mechanistically important in other protein-protein phosphotransfer reactions.  相似文献   

20.
During translocation across the cytoplasmic membrane of Escherichia coli, glucose is phosphorylated by phospho-IIA(Glc) and Enzyme IICB(Glc), the last two proteins in the phosphotransfer sequence of the phosphoenolpyruvate:glucose phosphotransferase system. Transient state (rapid quench) methods were used to determine the second order rate constants that describe the phosphotransfer reactions (phospho-IIA(Glc) to IICB(Glc) to Glc) and also the second order rate constants for the transfer from phospho-IIA(Glc) to molecularly cloned IIB(Glc), the soluble, cytoplasmic domain of IICB(Glc). The rate constants for the forward and reverse phosphotransfer reactions between IIA(Glc) and IICB(Glc) were 3.9 x 10(6) and 0.31 x 10(6) m(-1) s(-1), respectively, and the rate constant for the physiologically irreversible reaction between [P]IICB(Glc) and Glc was 3.2 x 10(6) m(-1) s(-1). From the rate constants, the equilibrium constants for the transfer of the phospho-group from His90 of [P]IIA(Glc) to the phosphorylation site Cys of IIB(Glc) or IICB(Glc) were found to be 3.5 and 12, respectively. These equilibrium constants signify that the thiophospho-group in these proteins has a high phosphotransfer potential, similar to that of the phosphohistidinyl phosphotransferase system proteins. In these studies, preparations of IICB(Glc) were invariably found to contain endogenous, firmly bound Glc (estimated K'(D) approximately 10(-7) m). The bound Glc was kinetically competent and was rapidly phosphorylated, indicating that IICB(Glc) has a random order, Bi Bi, substituted enzyme mechanism. The equilibrium constant for the binding of Glc was deduced from differences in the statistical goodness of fit of the phosphotransfer data to the kinetic model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号