首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We describe the structure (3840 bp) of a novel Euglena gracilis chloroplast ribosomal protein operon that encodes the five genes rpl16-rpl14-rpl5-rps8-rpl36. The gene organization resembles the spc and the 3'-end of the S10 ribosomal protein operons of E. coli. The rpl5 is a new chloroplast gene not previously reported for any chloroplast genome to date and also not described as a nuclear-encoded, chloroplast protein gene. The operon contains at least 7 introns. We present evidence from primer extension analysis of chloroplast RNA for the correct in vivo splicing of five of the introns. Two of the introns within the rps8 gene flank an 8 bp exon, the smallest exon yet characterized in a chloroplast gene. Three introns resemble the classical group II introns of organelle genomes. The remaining 4 introns appear to be unique to the Euglena chloroplast DNA. They are uniform in size (95-109 nt), share common features with each other and are distinct from both group I and group II introns. We designate this new intron category as 'group III'.  相似文献   

3.
4.
5.
6.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

7.
The chloroplast genes of Euglena gracilis contain more than 60 group II and 47 group III introns. Some Euglena chloroplast genes also contain twintrons, introns-within-introns. Two types of twintrons have previously been described, a group II twintron and a mixed group II/group III twintron. We report that four introns, three within the RNA polymerase subunit gene rpoC1 and one within ribosomal protein gene rpl16, with mean lengths twice typical group III introns, are a new type of twintron. The group III twintrons are composed of group III introns within other group III introns. The splicing of the twintrons was analyzed by PCR amplification, cloning and sequencing of cDNAs, and Northern hybridization. Excision of each group III twintron occurs by a two-step, sequential splicing pathway. Removal of the internal introns precedes excision of the external introns. Splicing of internal introns in three of the four group III twintrons involves multiple 5'- and/or 3'-splice sites. With two of the twintrons the proximal 5'-splice site can be spliced to an internal 3'-splice site, yielding alternative 'pseudo' fully spliced mRNAs. Excised group III introns of the rpl16 twintron are not linear RNA molecules but either lariat or circular RNAs, probably a lariat. The origins of alternative splicing and a possible evolutionary relationship between group II, group III and nuclear pre-mRNA introns are discussed.  相似文献   

8.
The genes encoding the beta- and beta'-subunits of RNA polymerase (rpoB and rpoC respectively) are fused as one continuous open reading frame in Helicobacter pylori and in other members of this genus, but are separate in other bacterial taxonomic groups, including the closely related genus Campylobacter. To test whether this beta-beta' tethering is essential, we used polymerase chain reaction-based cloning to separate the rpoB and rpoC moieties of the H. pylori rpoB-rpoC fusion gene with a non-polar chloramphenicol resistance cassette containing a new translational start, and introduced this construct into H. pylori by electro-transformation. H. pylori containing these separated rpoB and rpoC genes in place of the native fusion gene produced non-tethered beta and beta' RNAP subunits, grew well in culture and colonized and proliferated well in conventional C57BL/6 mice. Thus, the extraordinary beta-beta' tethering is not essential for H. pylori viability and gastric colonization.  相似文献   

9.
10.
Complete sequence of Euglena gracilis chloroplast DNA.   总被引:20,自引:4,他引:16       下载免费PDF全文
We report the complete DNA sequence of the Euglena gracilis, Pringsheim strain Z chloroplast genome. This circular DNA is 143,170 bp, counting only one copy of a 54 bp tandem repeat sequence that is present in variable copy number within a single culture. The overall organization of the genome involves a tandem array of three complete and one partial ribosomal RNA operons, and a large single copy region. There are genes for the 16S, 5S, and 23S rRNAs of the 70S chloroplast ribosomes, 27 different tRNA species, 21 ribosomal proteins plus the gene for elongation factor EF-Tu, three RNA polymerase subunits, and 27 known photosynthesis-related polypeptides. Several putative genes of unknown function have also been identified, including five within large introns, and five with amino acid sequence similarity to genes in other organisms. This genome contains at least 149 introns. There are 72 individual group II introns, 46 individual group III introns, 10 group II introns and 18 group III introns that are components of twintrons (introns-within-introns), and three additional introns suspected to be twintrons composed of multiple group II and/or group III introns, but not yet characterized. At least 54,804 bp, or 38.3% of the total DNA content is represented by introns.  相似文献   

11.
Sequence analysis of a 12,400 base-pair region of the spinach chloroplast genome indicates the presence of three genes encoding subunits of the chloroplast RNA polymerase. These genes are analogous to the rpoBC operon of Escherichia coli, with some significant differences. The first gene, termed rpoB, encodes a 121,000 Mr homologue of the bacterial beta subunit. The second and third genes, termed rpoC1 and rpoC2, encode 78,000 and 154,000 Mr proteins homologous to the N and C-terminal portions, respectively, of the bacterial beta' subunit. RNA mapping analysis indicates that the three genes are cotranscribed, and that a single intron occurs in the rpoC1 gene. No splicing occurs within the rpoC2 gene or between rpoC1 and rpoC2. Furthermore, the data indicate the possibility of an alternative splice acceptor site for the rpoC1 intron that would give rise to a 71,000 Mr gene product. Thus, with the inclusion of the alpha subunit encoded by rpoA at a separate locus, the chloroplast genome is predicted to encode four subunits (respectively called alpha, beta, beta', beta") equivalent to the three subunits of the core enzyme of the E. coli RNA polymerase.  相似文献   

12.
Y Ohnishi  H Tajiri  Y Matsuoka  K Tsunewaki 《Génome》1999,42(6):1042-1049
The entire nucleotide sequence of a 21.1-kb fragment of wheat chloroplast (ct) DNA was determined. This fragment carries 18 intact genes and parts of two additional genes, including the three RNA polymerase genes rpoB, rpoC1, and rpoC2. The gene arrangement of this region is conserved in wheat, rice, and maize, but not in non-grass species. Comparison of these 20 genes in wheat, rice, and maize showed that tRNA genes evolved more slowly than protein-coding genes in the chloroplast genome. Intergenic regions evolved much faster than both types of genes. Although the 19 genes of wheat, except for orf42, showed high identity to those of other plants, there were three novel structural features in the wheat rpoC2 gene; a deletion of 81 bp in the middle region, a variable insertion (408 bp), and a nonsense mutation in the 3' terminal region, resulting in truncation of a sequence of ca. 10 amino acids. An intermolecular recombination between the stretches of CTTAT and CTTTT was suggested as the mechanism of the 81-bp deletion in the wheat rpoC2 gene. Evolutionary distance between the chloroplast genomes of wheat and maize was larger than those between wheat and rice and between rice and maize.  相似文献   

13.
RNA polymerases of cyanobacteria contain a novel core subunit, gamma, which is absent from the RNA polymerases of other eubacteria. The genes encoding the three largest subunits of RNA polymerase, including gamma, have been isolated from the cyanobacterium Anabaena sp. strain PCC 7120. The genes are linked in the order rpoB, rpoC1, rpoC2 and encode the beta, gamma, and beta' subunits, respectively. These genes are analogous to the rpoBC operon of Escherichia coli, but the functions of rpoC have been split in Anabaena between two genes, rpoC1 and rpoC2. The DNA sequence of the rpoC1 gene was determined and shows that the gamma subunit corresponds to the amino-terminal half of the E. coli beta' subunit. The gamma protein contains several conserved domains found in the largest subunits of all bacterial and eukaryotic RNA polymerases, including a potential zinc finger motif. The spliced rpoC1 gene from spinach chloroplast DNA was expressed in E. coli and shown to encode a protein immunologically related to Anabaena gamma. The similarities in the RNA polymerase gene products and gene organizations between cyanobacteria and chloroplasts support the cyanobacterial origin of chloroplasts and a divergent evolutionary pathway among eubacteria.  相似文献   

14.
E Roux  L Graf    E Stutz 《Nucleic acids research》1983,11(7):1957-1968
An extra 16S rRNA gene (s-16S rDNA) from the Euglena gracilis chloroplast genome and several hundred positions of its flanking regions have been sequenced. The structural part has 1486 positions and is to 98% homologous in its sequence with the 16S rRNA gene in functional chloroplast rRNA operons. Sequences of about 200 positions upstream and 15 positions downstream of the structural part of the s-16S rRNA gene region are highly homologous with corresponding parts in the functional operon. Neither tRNA genes (A1a, I1e) nor parts of the 23S and 5S rRNA genes are found within 557 positions after the 3' end of the s-16S rRNA gene, i.e., the 330 bp homology, observed in electron microscopic studies of heteroduplexes (4), between the s-16S rDNA downstream region and the 6.2 kb repeated segment containing the functional rRNA operon, must be due to a DNA stretch in the interoperon spacer. A structural model of the "truncated rRNA operon" is presented. Results from S-1 endonuclease analysis suggest that the s-16S rDNA region is probably not transcribed into stable s-16S rRNA.  相似文献   

15.
W H Yap  Y Wang 《Gene》1999,232(1):77-85
The genome of Streptomyces nodosus contains six ribosomal RNA (rRNA) operons. Four of the rRNA operons; rrnB, rrnD, rrnE and rrnF were cloned. We have completely sequenced all four operons, including a region 750 base pairs (bp) upstream of the 16S rRNA gene. The three rRNA genes present in each operon were closely linked in the order 16S-23S-5S. A sequence comparison of the four operons showed more than 99% sequence similarity between the corresponding 16S and 23S rRNA genes, and more than 97% similarity between 5S rRNA genes. The sequence differences observed between 23S rRNA genes appeared to be localized in two specific regions. Substantial sequence differences were found in the region upstream of the 16S rRNA gene as well as in the internal transcribed spacers. No tRNA gene was found in the 16S-23S spacer regions.  相似文献   

16.
17.
The genes coding for the beta (rpoB) and beta' (rpoC) subunits of RNA polymerase are fused in the gastric pathogen Helicobacter pylori but separate in other taxonomic groups. To better understand how the unique fused structure evolved, we determined DNA sequences at and around the rpoB-rpoC junction in 10 gastric and nongastric species of Helicobacter and in members of the related genera Wolinella, Arcobacter, Sulfurospirillum, and Campylobacter. We found the fusion to be specific to Helicobacter and Wolinella genera; rpoB and rpoC overlap in the other genera. The fusion may have arisen by a frameshift mutation at the site of rpoB and rpoC overlap. Loss of good Shine-Dalgarno sequences might then have fixed the fusion in the Helicobacteraceae, even if fusion itself did not confer a selective advantage.  相似文献   

18.
Dried parts of different plant species often look alike, especially in powdered form, making them very difficult to identify. Ruta graveolens, sold as a dried medicinal herb, can be adulterated with Euphorbia dracunculoides. The genomic DNA was isolated from the leaf powder (100 mg each) using the modified CTAB method. Internal transcribed spacer sequences of nuclear ribosomal DNA (nrDNA-ITS), and chloroplast spacer sequences (rpoB and rpoC1) are regarded as potential genes for plant DNA barcoding. We amplified and sequenced these spacer sequences and confirmed the sequences with a BLAST search. Sequence alignment was performed using ClustalX to look for differences in the sequences. A DNA marker was developed based on rpoB and rpoC1 of the nrDNA-ITS for the identification of the adulterant E. dracunculoides in samples of R. graveolens that are sold in local herbal markets. Sequence-characterized amplified region markers of 289 and 264 bp for R. graveolens and 424 bp for E. dracunculoides were developed from dissimilar sequences of this nrDNA-ITS to speed up the authentication process. This marker successfully distinguished these species in extracted samples with as little as 5 ng DNA/μL extract.  相似文献   

19.
The gene for the large subunit (LS) of ribulose-1,5,-bisphosphate carboxylase of Euglena gracilis Z chloroplast DNA has been mapped by heterologous hybridization with DNA restriction fragments containing internal sequences from the Zea mays and Chlamydomonas reinhardii LS genes. The Euglena LS gene which has the same polarity as the Euglena rRNA genes has been located with respect to Pst I, Pvu I, and HindIII sites within the Eco RI fragment Eco A. The region of Euglena chloroplast DNA complementary to an 887 bp internal fragment from the Chlamydomonas chloroplast LS gene is interrupted by a 0.5-1.1 kbp non-complementary sequence. This is the first chloroplast protein gene located on the Euglena genome, and the first evidence for an intervening sequence within any chloroplast protein gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号