首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two unique bimetalic Pt(II) coordination polymers of composition [Ni(hydeten)2Pt(CN)4] (Ni-Pt) and [Cu(hydeten)2Pt(CN)4] (Cu-Pt) [hydeten = N-(2-hydroxyethyl-ethylenediamine) or 2-(2-aminoethylamino)ethanol] have been synthesized and structurally characterized by various methods in this study. The crystal structure of Cu-Pt was determined by single-crystal X-ray diffraction analysis. The structure of Cu-Pt forms of infinite 2,2-TT type [-Cu(hydeten)2-NC-Pt(CN)2-CN-] chains containing paramagnetic copper atoms bridged by tetracyanoplatinate species. In this complex, Cu(II) centers display an axially elongated octahedron with two chelating hydeten molecules in the equatorial positions and N-bonded bridging cyano groups in the axial positions, whereas Pt(II) centers are four coordinate with four cyanide-carbon atoms in a square-planar arrangement. The decrease of the moments of these complexes in temperature range of 50 305 K can assigned to the antiferromagnetic interactions in the structures. The thermal decomposition of Cu-Pt comprise of five distinguished stages, while the thermal decomposition of Ni-Pt take place four different stages.  相似文献   

2.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

3.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

4.
A series of new binuclear copper (II) and nickel (II) complexes of the macrocyclic ligands bis(1,4,7-triazacyclononan-1-yl)butane (Lbut) and bis(1,4,7-triazacyclononan-1-yl)-m-xylene (Lmx) have been synthesized: [Cu2LbutBr4] (1), [Cu2Lbut(imidazole)2Br2](ClO4)2 (2), [Cu2Lmx(μ-OH)(imidazole)2](ClO4)3 (3), [Cu2Lbut(imidazole)4](ClO4)4 · H2O (4), [Cu2Lmx(imidazole)4](ClO4)4 (5), [Ni2 Lbut(H2O)6](ClO4)4 · 2H2O (6), [Ni2Lbut(imidazole)6](ClO4)4 · 2H2O (7) and [Ni2Lmx (imidazole)4(H2O)2](ClO4)4 · 3H2O (8). Complexes 1, 2, 7 and 8 have been characterized by single crystal X-ray studies. In each of the complexes, the two tridentate 1,4,7-triazacyclononane rings of the ligand facially coordinate to separate metal centres. The distorted square-pyramidal coordination sphere of the copper (II) centres is completed by bromide anions in the case of 1 and/or monodentate imidazole ligands in complexes 2, 4 and 5. Complex 3 has been formulated as a monohydroxo-bridged complex featuring two terminal imidazole ligands. Complexes 6-8 feature distorted octahedral nickel (II) centres with water and/or monodentate imidazole ligands occupying the remaining coordination sites. Within the crystal structures, the ligands adopt trans conformations, with the two metal binding compartments widely separated, perhaps as a consequence of electrostatic repulsion between the cationic metal centres. The imidazole-bearing complexes may be viewed as simple models for the coordinative interaction of the binuclear complexes of bis (tacn) ligands with protein molecules bearing multiple surface-exposed histidine residues.  相似文献   

5.
The dinuclear terephthalato-bridged nickel(II) complexes [Ni2(cyclen)2(μ-tp)](ClO4)2 (1) [Ni2(trpn)2(μ-tp)(H2O)2](ClO4)2 (2) and [Ni2(3,3,3-tet)2(μ-tp)(H2O)2](ClO4)2 · 2H2O (3), where tp = terephthalate dianion, cyclen = 1,4,7,10-tetraazacyclododecane, trpn = tris(3-aminopropyl)amine and 3,3,3-tet = 1,5,9,13-tetraazatridecane, were synthesized and structurally characterized by X-ray crystallography. Their magnetic susceptibilities were also determined at variable temperatures over the range 2-300 K. The structures of these complexes consist of μ-tp bridging two Ni(II) centers in a bis(bidentate) bonding fashion in 1 and in bis(monodentate) bonding fashion in 2 and 3. The coordination geometry around the Ni(II) ions in these compounds has a distorted octahedral geometry with four nitrogen atoms from the amine ligand (cyclen, trpn or 3,3,3-tet) and two coordinated oxygen atoms supplied by the chelated carboxylate group of the bridged terephthalate ligand in 1, and by one tp-carboxylate-oxygen in 2 and 3. The sixth coordination site in the last two complexes 2 and 3 is achieved via an oxygen atom from a coordinated water molecule. The intradimer Ni…Ni distances in these complexes are 10.740, 11.428 and 11.537 Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Ni(II) centers. Also, the analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(bidentate) and bis(monodentate) coordination modes for the bridged terephthalate ligand in 1, 2 and 3, respectively. Despite the different coordination modes of the tp bridging ligand in these complexes, they all exhibit very weak antiferromagnetic coupling. The coupling constants J were found to be −2.2, −0.6 and −1.5 cm3 K mol−1 for the complexes 1, 2 and 3, respectively. The structural and magnetic results of 1-3 are discussed in relation to the other related published μ-terephthalato dinuclear Ni(II) compounds.  相似文献   

6.
A series of Ni(II) and Cu(II) complexes of the hexaaza macrocycles, 3,6,9,17,20,23-hexaazatricyclo[23.3.1.111,15]triaconta-1(29),11(30),12,14,25,27-hexaene (L1) and 3,6,9,16,19,22-hexaazatricyclo[22.2.2.211,14]triaconta-1(26),11(29),12,14(30),24(28),25-hexaene (L2), have been prepared and the crystal structures determined for [Ni2L1(O2CCH3)2(H2O)2](ClO4)2 (1), [Ni2L2(DMF)6](ClO4)4 · 2H2O (2), {[Cu2L2Br(O2CCH3)](ClO4)2}n (3), [Cu2L2(μ-CO3)(H2O)2]2(ClO4)4 · 8H2O (4), [Cu2L2(O2CCH3)2](BF4)2 (5), and [Cu2L1(μ-imidazolate)Br]2Br4 · 6H2O (6). In these complexes, two metal centers are bound per ligand; in 1 and 3-6, the N3 subunits of L1 or L2 coordinate meridionally to the metal centers, whilst in 2, each N3 subunit in L2 adopts a facial mode of coordination. The binuclear cations in 1 and 2 have chair-like conformations, with the distorted octahedral Ni(II) coordination spheres completed by terminal water and a bidentate acetate ligand in 1 and three DMF ligands in 2. The Cu(II) centers in 3-6 generally reside in square planar environments, although a weakly binding ligand enters the coordination sphere in some cases, generating a distorted square pyramidal geometry. The binuclear [Cu2L2]4+ units in 3, 4 and 5 adopt similar bowl-shaped conformations, stabilized by H-bonding interactions between pairs of amine groups from L2 and a perchlorate or tetrafluoroborate anion. In 3, the binuclear units are linked through acetate groups, bridging in a syn-anti fashion, to produce a zig-zag polymeric chain structure, whilst 4 incorporates a tetrameric cation consisting of two binuclear units linked via a pair of carbonate bridges. Compound 6 features an imidazolate bridge between the two Cu(II) centers bound by L1. Pairs of [Cu2L1(μ-imidazolate)]3+ units are then weakly linked through a pair of bromide anions.  相似文献   

7.
Two novel dinuclear nickel(II) complexes [Ni2(ntb)2(μ-tp)(H2O)1.61(CH3OH)0.39](NO3)2·5.13CH3OH·2.25H2O (1) and [Ni2(ntb)2(μ-fum)(H2O)(CH3OH)](NO3)2·6CH3OH·H2O (2) (tp = terephthalate dianion, fum = fumarate dianion, ntb = tris(2-benzimidazolylmethyl)amine) containing tetradentate poly-benzimidazole ligand were synthesized and structurally characterized by IR spectra, UV-Vis, elemental analysis and X-ray crystallography. The Ni(II) ions in 1 and 2 have distorted octahedral geometry with four nitrogen atoms of ntb, one oxygen atom of water and one oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complexes 1 and 2 consist of terephthalato- and fumarato-bridged dinickel(II) centers in bis(monodentate) bonding fashion. The Ni?Ni distances are 11.333 Å for 1 and 8.966 Å for 2. The magnetic susceptibility measurements at variable temperature show that two complexes exhibit weak antiferromagnetic interactions between nickel(II) ions with J values of −0.25 cm−1 and −0.36 cm−1, respectively.  相似文献   

8.
The variations in the coordination environment of Co(II), Cu(II) and Zn(II) complexes with the neutral, tridentate ligand bis[1-(cyclohexylimino)ethyl]pyridine (BCIP) are reported. Analogous syntheses were carried out utilizing either the M(BF4)2 · xH2O or MCl2 · xH2O metal salts (where M = Co(II), Cu(II) or Zn(II)) with one equivalent of BCIP. When the hydrated metal starting material was used, cationic, octahedral complexes of the type [M(BCIP)2]2+ were isolated as the tetrafluoroborate salt (4, 5). Conversely, when the hydrated chloride metal salt was used as the starting material, only neutral, pentacoordinate [M(BCIP)Cl2] complexes (1-3) formed. All complexes were characterized by X-ray diffraction studies. The three complexes that are five coordinate have distortions due mainly to the pyridine di-imine bite angle. The [Cu(BCIP)Cl2] (2) also exhibits deviations in the Cu(II)-Cl bond distances with values of 2.4242(9) and 2.2505(9) Å, which are not seen in the analogous Zn(II) and Co(II) structures. Similarly, the two six coordinate complexes (5, 6) are also altered by the ligand frame bite angle giving rise to distorted octahedral geometries in each complex. The [Cu(BCIP)2](BF4)2 (6) also exhibits Cu(II)-Nimine bond lengths that are on average 0.14 Å longer than those found in the analogous 5 coordinate complex, [Cu(BCIP)Cl2]. In addition to X-ray analysis, all complexes were also characterized by UV/Vis and IR spectroscopy with 1H NMR spectroscopy being used for the analysis of the Zn(II) analogue (3).  相似文献   

9.
Bidentate ligands 2,2′-biquinoline (biq) and 6,6′-dimethyl-2,2′-bipyridine (dmbpy) with steric hindrance substituents cis to the nitrogen atoms have been used in the synthesis of transition metal complexes. Six new doubly end-on azido-bridged binuclear complexes [M2(biq)21,1-N3)2(N3)2] (M = Ni (1), M = Co (2)), [M2(biq)21,1-N3)2Cl2] (M = Ni (3), M = Co (4)), [M2(dmbpy)21,1-N3)2(N3)2] (M = Ni (5), M = Co (6)) and one end-to-end thiocyanato-bridged polymeric [Ni(dmbpy)(μ1,3-SCN)(NCS)]n (7) have been synthesized and characterized by single crystal X-ray diffraction analysis and magnetic studies. Complexes 1-6 comprise five-coordinate M(II) ions bridged by two end-on azide ligands. The bridging M-N-M bond angles are in the small range 104.1-105.2°. Complex 7 consists of a singly thiocyanate-bridged Ni(II) chain in which Ni(II) ions are five-coordinate. This research suggests that the bulky ligands play a key role in the formation of five-coordinate coordination structure. All complexes display intramolecular intermetallic ferromagnetic coupling with JNiNi and JCoCo of ca. 23 or 13 cm−1 based on the Hamiltonian (S1 = S2 = 1 for Ni2, or 3/2 for Co2). The singly SCN-bridged chainlike complex 7 shows intrachain ferromagnetic interaction with J = 3.96(2) cm−1 and D = −4.55(8) cm−1 (. Magneto-structural correlationship has been investigated.  相似文献   

10.
Preparations, XPS and electronic spectroscopy, and magnetism of seven new one-dimensional cyano-bridged coordination polymers, chiral [Cu(RR-chxn)2][Pd(CN)4] · 2H2O (1), [Cu(trans-chxn)2][M(CN)4] · 2H2O (2, 4, and 6 for M = Pd, Ni, and Pt), and [Cu(cis-chxn)2][M(CN)4] · 2H2O (3, 5, and 7 for M = Pd, Ni, and Pt) (RR-chxn = cyclohexane-(1R,2R)-diamine, trans-chxn = racemic trans-cyclohexane-(1,2)-diamine, and cis-chxn = racemic cis-cyclohexane-(1,2)-diamine) have been reported in view of tuning of their electronic properties by stereochemistry of chxn ligands and metal-substitution. Comparison of Cu 2p1/2 and 2p3/2 peaks of XPS and broad d-d bands around 18 000 cm−1 of electronic spectra are described systematically for 1-7. Variable-temperature magnetic measurement shows that complexes 1-7 indicate weak antiferromagnetic interactions via cyano-bridges. Because of semi-coordination coupled with pseudo Jahn-Teller elongation and electrostatic interaction for 1, the axial Cu-N coordination bond distances of 2.330(7) and 3.092(8) Å are considerably longer than those of equatorial ones in the range from 2.016(6) to 2.030(6) Å. The former bond distances of 1 are intermediate values among the related Ni (2.324(6) and 3.120(8) Å) and Pt (2.34(1) and 3.09(1) Å) complexes.  相似文献   

11.
A series of chiral Ag(I) and Cu(II) complexes have been prepared from the reaction between AgX (X = NO3, PF6, OTf) or CuX2 (X = Cl, ClO4) and chiral biaryl-based N-ligands. The rigidity of the ligand plays an important role in the Ag(I) complex formation. For example, treatment of chiral N3-ligands 1-3 with half equiv of AgX (X = NO3, PF6, OTf) gives the chiral bis-ligated four-coordinated Ag(I) complexes, while ligand 4 affords the two-coordinated Ag(I) complexes. Reaction of AgX with 1 equiv of chiral N4-ligands 5, 7, 8 and 10 gives the chiral, binuclear double helicate Ag(I) complexes, while chiral mono-nuclear single helicate Ag(I) complexes are obtained with N4-ligands 6 and 9. Treatment of either N3-ligand 1 or N4-ligand 9 or 10 with 1 equiv of CuX2 (X = Cl, ClO4) gives the mono-ligated Cu(II) complexes. All the complexes have been characterized by various spectroscopic techniques, and elemental analyses. Seventeen of them have further been confirmed by X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do exhibit catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

12.
Eight mononuclear Pd(II) complexes containing salicylaldiminato thiosemicarbazones (saltsc-R; where R = H (1), 3-OMe (2), 3-tBu (3) and 5-Cl (4)) as dinegative tridentate ligands were prepared by the reaction of the corresponding thiosemicarbazone with the precursor Pd(L)2Cl2 (L = phosphatriazaadamantane or 4-picoline) in the presence of a weak base. These complexes (9-16) were characterised by a range of spectroscopic and analytical techniques including NMR spectroscopy and X-ray diffraction. These complexes along with four other Pd(II) analogues (5-8) were screened for activity in vitro against the Trichomonas vaginalis parasite. Preliminary results show that the type of ancillary ligand as well as the substituents on the aromatic ring of the salicylaldiminato thiosemicarbazone ligand influences the antiparasitic activity of these complexes.  相似文献   

13.
Four new coordination complexes, NiII(L)2 (1), [CoIII(L)2]ClO4 (2), [Zn(HL)(L)]ClO4 · H2O (3) and [Zn(L)2][Zn(L)(HL)]ClO4 · 7H2O (4) (where L is a monoanion of a Schiff base ligand, N′-[(2-pyridyl)methylene]salicyloylhydrazone (HL) with NNO tridentate donor set), have been synthesised and systematically characterised by elemental analysis, spectroscopic studies and room temperature magnetic susceptibility measurements. Single crystal X-ray diffraction analysis reveals that 1 is a neutral complex, while 2-4 are cationic complexes. Among them, 4 is a rare type of cationic complex with two molecules in the asymmetric unit. The ligand chelates the metal centre with two nitrogen atoms from the pyridine and imino moieties and one oxygen atom coming from its enolic counterpart. All the reported complexes show distorted octahedral geometry around the metal centres, with the two metal-N (imino) bonds being significantly shorter than the two metal-N (Py) bonds.  相似文献   

14.
[Pd(sac)(terpy)](sac)·4H2O (1), [Pt(sac)(terpy)](sac)·5H2O (2), [PdCl(terpy)](sac)·2H2O (3) and [PtCl(terpy)](sac)·2H2O (4) (sac = saccharinate, and terpy = 2,2′:6′,2″-terpyridine) have been synthesized and characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR. In 1 and 2, a tridentate terpy ligand together with an N-coordinated sac ligand form the square-planar geometry around the palladium(II) or platinum(II) ions, while one sac anion remains outside the coordination sphere as a counter-ion. X-ray single crystal studies show that the [M(sac)(terpy)]+ ions in 1 and 2 reside in the centers of a hydrogen bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules. Complexes 3 and 4 are isostructural and consist of a [M(Cl)(terpy)]+ cation, a sac anion and two lattice water molecules. The [M(Cl)(terpy)]+ ions interact with each other via M-M and π-π stacking interactions and these π interacted units are assembled to a 2D network by water bridges involving the sac ions and lattice water molecules. Convenient synthetic paths for 1-4 are also presented, and spectral, luminescence and thermal properties were discussed.  相似文献   

15.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

16.
Reactions of potassium bis(oxalato)palladate dihydrate, K2[Pd(ox)2]·2H2O, with two molar equivalents of N6-(benzyl)-9-isopropyladenine-based organic molecules (L1-7), i.e. 2-chloro-N6-(2-methoxybenzyl)-9-isopropyladenine (L1), 2-chloro-N6-(3-methoxybenzyl)-9-isopropyladenine (L2), 2-chloro-N6-(3,5-dimethoxybenzyl)-9-isopropyladenine (L3), 2-(1-ethyl-2-hydroxyethylamino)-N6-(benzyl)-9-isopropyladenine (L4), 2-(1-ethyl-2-hydroxyethylamino)-N6-(2-methoxybenzyl)-9-isopropyladenine (L5), 2-(1-ethyl-2-hydroxyethylamino)-N6-(3-methoxybenzyl)-9-isopropyladenine (L6) and 2-(1-ethyl-2-hydroxyethylamino)-N6-(4-methoxybenzyl)-9-isopropyladenine (L7), provided a series of seven palladium(II) oxalato (ox) complexes of the general formula [Pd(ox)(L1-7)2nH2O (1-7; n = 0 for 4, 5 and 7, ¾ for 1 and 2, 1 for 6, and 3 for 3). The compounds were characterized by elemental analysis, IR, Raman, 1H, 13C and 15N{1H} NMR spectroscopy, ESI+ mass spectrometry, molar conductivity and TG/DTA thermal analysis. The geometry of [Pd(ox)(L2)2] (2) was optimized on the B3LYP/6-311G∗/LANL2DZ level of theory. The complexes 4-7 represent the first palladium(II) oxalato complexes with a PdN2O2 donor set, which involve highly potent purine-based cyclin-dependent kinase (CDK) inhibitors (L4-7) as carrier N-donor ligands. The selected complexes 1, 3-5 and 7 were tested by an MTT assay for their in vitro cytotoxic activity against human osteosarcoma (HOS) cancer cell line. The highest activity was found for the complexes 5 (IC50 = 34.9 μM) and 7 (IC50 = 39.2 μM).  相似文献   

17.
A series of nickel(II) salen complexes containing 4-substituted alkoxy chains of aromatic rings, [Ni((4-CnH2n + 1O)2salen)] (n = 3 (1), 4 (2), 6 (3), 8 (4), 10 (5), 12 (6), 14 (7), 16 (8), 18 (9), and 20 (10)), and their parent complex, [Ni((4-HO)2salen)] (11) (salen = N,N′-ethylenebis(salicylideneiminato)), have been prepared and mesomorphic properties have been investigated. An X-ray crystallographic analysis revealed that complex 11 · 2DMF has one-dimensional stacking structure supported by the π-π interaction between the six-membered chelate and aromatic rings with the NiNi distances of alternatively 3.3957 and 3.7224 Å and that complex 3 is formed by one-dimensional stacking by weak CH?O type hydrogen bonded interaction between the five-membered chelate ring and phenoxo atoms of the dramatically distorted salen moieties with the NiNi distance of 5.994 Å. Complexes 1-6 did not exhibit any mesophases. On the other hand, complexes 7-10 with longer alkoxy chains of n = 14-20 showed an unusual metallomesogen of a lamello-columnar mesophase within the smectic layers with an interlamellar distance of 31.1 Å (7), 33.6 Å (8), 37.1 Å (9), and 39.5 Å (10) and nearly constant stacking distance of 6.19-6.24 Å between the inter-dimers, irrespective of the variation of the alkoxy chain lengths by the X-ray diffraction measurements of the liquid crystal. The relationship between molecular assemblies and mesomorphic properties is discussed.  相似文献   

18.
The template reaction between salicylaldehyde S-methyl-isothiosemicarbazone and 2-formylpyridine in presence of nickel(II) or copper(II) salts yields two new coordination compounds with general formula [NiL1]2(1) and [CuL2]2(2) (L1 = the dianionic (N1-salicylidene)(N4-(hydroxy(pyridin-2-yl)methyl) S-methyl-isothiosemicarbazide) ligand and L2 = the doubly deprotonated (N1-salicylidene)(N4-(picolinoyl) S-methyl-isothiosemicarbazide) ligand). In the complex 1, the formed L1 ligand appears as result of an addition reaction of the precursors, while for 2 a redox mechanism is implicated in the formation of L2. Despite the fact that the initial organic precursors are the same, the resulting ligands obtained in the template reaction are different. In 1, the Ni(II) metal ion adopts a square-planar geometry and the [NiL1] units are forming dimerized chains through weak Ni···Ni interactions (3.336 and 3.632 Å). In 2, the Cu(II) metal ions adopt a square-pyramidal geometry and form dinuclear species through weak Cu···O (phenoxo) interactions. The magnetic susceptibility measurements of the complexes reveal the diamagnetic nature of 1 as expected for a square planar Ni(II) complex and a paramagnetic behavior for 2 with weak intra-dimer antiferromagnetic interaction (J/kB = −2.1(1) K).  相似文献   

19.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

20.
A new series of dinuclear squarato-bridged nickel(II) and copper(II) complexes [Ni2(2,3,2-tet)21,3-C4O4)(H2O)2](ClO4)2 (1), [Ni2(aepn)21,3-C4O4)(H2O)2](ClO4)2 (2), [Cu2(pmedien)21,3-C4O4)(H2O)2](ClO4)2.4H2O (3) and [Cu2(DPA)21,2-C4O4)(H2O)2](ClO4)2 (4) where is the dianion of 3,4-dihydroxycyclobut-3-en-1,2-dione (squaric acid), 2,3,2-tet = 1,4,8,11-tetraazaundecane, aepn = N-(2-aminoethyl)-1,3-propanediamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine and DPA = di(2-pyridylmethyl)amine were synthesized and structurally characterized by X-ray crystallography. The spectral and structural characterization as well as the magnetic behaviour of these complexes is reported. In this series, structures consist of the groups as counter ions and the bridging the two M(II) centers in a μ-1,3- (1-3) and in a μ-1,2-bis(monodentate) (4) bonding fashions. The coordination geometry around the Ni(II) ions in 1 and 2 is six-coordinate with distorted octahedral environment achieved by N atoms of the amines and by one or two oxygen atoms from coordinated water molecules, respectively. In the Cu(II) complexes 3 and 4, a distorted square pyramidal geometry is achieved by the three N-atoms of the aepn or DPA and by an oxygen atom from a coordinated water molecule. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the M(II) centers. The complexes show weak antiferromagnetic coupling with ∣J∣ = 1.8-4.2 cm−1 in the μ-1,3- bridged squarato compounds 1-3, and J = −16.1 cm−1 in the corresponding μ-1,2- bridged squarato complex 4. The magnetic properties are discussed in relation to the structural data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号