首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of cell wall polysaccharide composition of embryogenic and non-embryogenic calli obtained from hypocotyl and petiole explants from Medicago arborea L. revealed significant differences. For calli induced from both hypocotyls and petioles, levels of total sugars, pectins, and hemicelluloses were higher in embryogenic than in non-embryogenic calli. Whereas in the residual cellulose fraction, the highest levels of sugar were detected in non-embryogenic calli. When comparing the two donor sources of callus explants, the highest total sugar levels were detected in embryogenic calli induced from petioles, mainly in the pectin fraction and to a lesser extent in the hemicellulose fraction. Moreover, analysis of uronic acids revealed higher levels in embryogenic calli, primarily in the pectin fraction. Analysis of those sugars associated with cell walls of calli suggested that these polysaccharides consisted of pectic polysaccharides and glucans, and that their levels were higher in embryogenic than non-embryogenic calli.  相似文献   

2.
以尾巨桉优良无性系无菌苗茎段为外植体,通过对多种不同浓度生长调节剂组合的优化,进行胚状体诱导研究;并对胚性与非胚性愈伤组织进行形态解剖学观察、相关生理指标检测以及相关基因荧光定量PCR分析,以揭示尾巨桉胚性愈伤组织非胚性化发生的机理,为建立尾巨桉体细胞胚胎再生体系提供参考。结果表明:(1)胚性愈伤组织在MS+0.1mg/L NAA+0.01mg/L TDZ培养基中诱导得到胚状体,外植体经过0.5mol/L蔗糖处理12h有助于胚性愈伤组织产生胚状体,胚状体最高发生率为16.7%。(2)尾巨桉胚性与非胚性愈伤组织石蜡切片观察发现,两者的细胞形态特征存在明显的差异,胚性愈伤组织细胞体积小,排列紧密,表现出典型的胚性细胞特征,而非胚性细胞比较大,排列疏松,细胞呈不规则形状。(3)生理生化指标检测结果表明,非胚性愈伤组织中蛋白质含量、SOD、PPO及CAT活性均显著低于胚性愈伤组织,非胚性愈伤组织中木质素、可溶性糖含量以及PAL和POD活性要高于胚性愈伤组织,二者的反肉桂酸4-单加氧酶基因、淀粉磷酸化酶基因、谷胱甘肽硫转移酶基因、葡萄糖-1-磷酸腺苷酸转移酶基因、葡萄糖六磷酸异构酶基因、分支酸合酶基因以及苯丙氨酸解氨酶基因表达差异也达到显著水平。  相似文献   

3.
The different invertase activities in embryogenic and non-embryogenic calli induced from explants (cotyledons, petioles, hypocotyls and leaves) obtained from Medicago arborea L. subsp. arborea seedlings were evaluated. Total invertase activity was lower in the calli with the greatest embryogenic capacity. The greatest fraction of this activity corresponded to soluble invertase. Wall-bound invertase showed maximum activity during the first two months of culture and the highest activities of this type were found in non-embryogenic calli. Extracellular invertase formed the smallest fraction of the total invertase activity evaluated. Acid and alkaline invertase activities were found in all calli but differences were detected between the embryogenic and non-embryogenic calli. In the former, the activity of both types of invertase exhibited a similar type of behaviour but different from that observed in the non-embryogenic calli. The calli with the greatest embryogenic capacity had very low levels of acid invertase and very high levels of the alkaline form. Soluble invertase – both acid and alkaline – accounted for the highest fraction after the first two months of culture and was present in lower amounts in the embryogenic than in the non-embryogenic calli. Regarding bound invertase, the highest production was seen to correspond to acid invertase. The extracellular invertase evaluated corresponded to the acid form since the alkaline extracellular invertase did not show any physiologically significant activity.  相似文献   

4.

Background

The threatened plant Centella asiatica L. is traditionallyused for a number of remedies. In vitro plant propagation and enhanced metabolite production of active metabolites through biotechnological approaches has gained attention in recent years.

Results

Present study reveals that 6-benzyladenine (BA) either alone or in combination with 1-naphthalene acetic acid (NAA) supplemented in Murashige and Skoog (MS) medium at different concentrations produced good quality callus from leaf explants of C. asiatica. The calli produced on different plant growth regulators at different concentrations were mostly embryogenic and green. Highest shoot regeneration efficiency; 10 shoots per callus explant, from non-embryogenic callus was observed on 4.42 μM BA with 5.37 μM NAA. Best rooting response was observed at 5.37 and 10.74 μM NAA with 20 average number of roots per explant. Calli and regenerated plants extracts inhibited bacterial growth with mean zone of inhibition 9-13 mm diameter when tested against six bacterial strains using agar well diffusion method. Agar tube dilution method for antifungal assay showed 3.2-76% growth inhibition of Mucor species, Aspergillus fumigatus and Fusarium moliniformes.

Conclusions

The present investigation reveals that non-embryogenic callus can be turned into embryos and plantlets if cultured on appropriate medium. Furthermore, callus from leaf explant of C. asiatica can be a good source for production of antimicrobial compounds through bioreactor.  相似文献   

5.
Callus cultures were initiated from mature excised caryopses of bahiagrass (Paspalum notatum Flugge) on Murashige & Skoog medium supplemented with 20 gl–1 sucrose and 2 mg l–1 2,4-D. Excised mature caryopses readily germinated and callus developed at the base of coleoptiles. There was considerable variation in the amount of non-embryogenic callus among the cultures. Most of the explants produced non-embryogenic translucent callus consisting of thin-walled cells and unorganized tissue. Some of these calli gave rise only to roots. Other explants formed embryogenic calli which were distinguished morphologically as white, globular and friable. Somatic embryos developed and germinated precociously when embryogenic calli were transferred to a 2,4-D-free medium. Somatic embryogenesis was confirmed by histological sections and scanning electron microscopy. Of the 300 cultures, 35 were embryogenic but only 10 produced plants that were successfully grown to maturity.  相似文献   

6.
Slowly activating vacuolar channels (SV), were examined in embryogenic and non-embryogenic cultures of winter wheat using a patch-clamp technique. Four different types of cultures were examined: embryogenic and non-embryogenic calli from embryos, embryogenic and non-embryogenic calli from inflorescences. In a cell-attached mode single SV channel events were recorded. Unitary conductance of single SV channels was between 37 pS and 48 pS and did not significantly depend on the kind of the culture, although it was a tendency that SV channels of embryogenic calli possessed lower unitary conductance than those of non-embryogenic. 2,4-D caused significant lowering of unitary conductance from 48±6 pS in the control culture of embryogenic embryos to 28±6 pS in vacuoles treated. The SV channel density was estimated as 0.34 μm−2.  相似文献   

7.
The influence of polyamines, polyamine inhibitors and ethylene inhibitors were tested in Coffea canephora for in vitro morphogenetic response and caffeine biosynthesis. Coffea canephora produced non-embryogenic and embryogenic calli. Somatic embryos were produced only from the embryogenic callus. Endogenous polyamine pools were estimated in these tissues. Somatic embryos were subjected to secondary embryogenesis under the influence of putrescine, silver nitrate and specific inhibitors of polyamine biosynthesis. Estimation of endogenous total polyamines revealed that embryogenic callus contained 11-fold more spermine and 3.3-fold higher spermidine when compared to non-embryogenic callus. Incorporation of polyamines resulted in 58% explant response for embryogenesis when compared to control with 42% response. Incorporation of silver nitrate resulted in 65% response for embryogenesis. Incorporation of polyamine biosynthetic pathway inhibitors DFMO and DFMA resulted in 83% reduction in embryogenic response with concomitant increase in caffeine levels by two-fold as compared to control. These results have clearly demonstrated that polyamines play a crucial role in embryogenesis and caffeine biosynthesis.  相似文献   

8.
The objective of the present work was to induce somatic embryogenesis from zygotic embryos of Passiflora cincinnata Masters. Zygotic embryos formed calli on media with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 μM benzyladenine (BA) after 30 days of in vitro culture. A concentration of 18.1 μM 2,4-D resulted in the largest number of somatic embryos. Embryogenic calli were yellowish and friable, forming whitish proembryogenic masses. Morphologically, embryogenic cells were small and had large nuclei and dense cytoplasm, whereas non-embryogenic cells were elongated, with small nuclei and less dense cytoplasm. Calli cultured under white light on basal Murashige and Skoog’s medium with activated charcoal produced embryos in all developmental stages. There were differences among the treatments, with some leading to the production of calli with embryos and some only to callus formation. Some abnormalities were associated with somatic embryos, including fused axes, fused cotyledons and polycotyledonary embryos. Production of secondary somatic embryos occurred in the first cycle of primary embryo development. Secondary embryos differentiated from the surface of the protodermal layer of primary embryos with intense cell proliferation, successive mitotic divisions in the initial phase of embryoid development, and a vascular system formed with no connection to the parental tissue. This secondary embryogenic system of P. cincinnata is characterized by intense proliferation and maintenance of embryogenic competence after successive subcultures. This reproducible protocol opens new prospects for massive propagation and is an alternative to the current organogenesis-based transformation protocol.  相似文献   

9.
ABSTRACT

Peroxidase activity was monitored during somatic embryogenesis of white fir (Abies concolor Gord. et Glend) starting from a non-embryogenic callus. Results revealed profound differences between non-embryogenic and embryogenic calli with an elevated level of enzyme activity in non-embryogenic ones. Precotyledonary, early cotyledonary and late cotyledonary stages of somatic embryogenesis were characterized by a substantially reduced peroxidase activity compared to callus tissues and regenerated plantlets. Changes in peroxidase activity are as a rule paralleled by variation in isoenzyme composition. The utility of the enzyme in the induction stage of somatic embryogenesis in white fir is proposed.  相似文献   

10.
The Brassica napus secondary embryogenesis system requires no exogenous growth regulator to stimulate embryo development. It is stable embryogenically over a long period of culture and has a distinct pre-embryogenic stage. This system was used to investigate the morphological and cellular changes occurring in the embryogenic tissue compared to non-embryogenic tissue using various microscopy techniques. A unique ultrastructural feature designated the extracellular matrix (ECM) was observed on the surface of pre-embryogenic embryoids but not on the non-embryogenic individuals. The ECM layer was found to be dominant in the pre-embryogenic stage and reduced to fragments during embryo growth and development in mature embryogenic tissue. This is a novel aspect of the phenotype previously unreported in the Brassica system. This structure might be linked to acquisition of embryogenic competence.  相似文献   

11.
In order to optimize tissue culture conditions for bermudagrass, an important warm-season turfgrass species, tissue culture responses of young inflorescences of a hybrid bermudagrass cultivar `Tifgreen' (Cynodon dactylon×Cynodon transvaalensis) and a common bermudagrass cultivar `Savannah' (Cynodon dactylon) were investigated. When cultured on Murashige and Skoog medium with 4.52 to 13.57 μM (1–3 mg l-1) 2,4-D, young inflorescence segments yielded non-embryogenic calli which were unorganized and had loosely associated, long tubular cells on the surface. However, inclusion of 6-benzyladenine (BA) in callus induction medium at a level of 0.044 μM (0.01 mg l-1) induced formation of a compact, nodular embryogenic structure on approximately 20% of the calli. Calli with such a compact embryogenic structure were highly regenerable. When young inflorescences smaller than 0.75 cm were cultured, the embryogenic structure yielded green plantlets with regeneration rates of 79.5% and 83.3%, respectively for the two cultivars. All 96 plants regenerated from calli induced in the BA-containing medium were green and morphologically normal. The embryogenic nature of the compact structure was confirmed by scanning electron microscopy. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Embryogenic suspension cultures of Ipomoea batatas Poir. contain heterogeneous populations of discrete cellular units. In order to optimize embryo production, a study was conducted to identify the embryogenic fraction of such cultures. Suspension cultures were fractionated with sieves of 1000, 710, 500, 355, 250, 180, 125, 90 and 63m mesh openings and the composition of each fraction was determined. Cellular units larger than 355 m were primarily calli and made up 75% of the total mass of cultures in the stationary phase of growth. These calli were composed of embryogenic and non-embryogenic subunits, and 98% of the embryogenic subunits measured 355–1000 m. Calli and embryogenic calli subunits produced clusters of embryos at various stages of development upon transfer to liquid or solidified media without 2,4-D. The 125–355 m fraction of suspension cultures was composed of cell aggregates of which 20% were embryogenic. The embryogenic cell aggregates produced single globular embryos upon transfer to liquid media containing 0 or 1 M 2,4-D. The 63–125 m fraction of suspension cultures contained only 2% of embryogenic cell aggregates. It can be inferred from our results that the embryogenic fraction of cultures was essentially represented in calli, and that proliferation of the embryogenic fraction occurred through the separation of embryogenic cell aggregates from larger calli when cultures approached their stationary growth phase.Abbreviations and definitions cellular units single cells, cell aggregates, and calli - cell aggregates discrete associations of cells - calli association of cell aggregates - embryogenic cell aggregates yellow aggregates of cytoplasmic cells which have the potential to produce embryogenic calli or embryos [3] - non-embryogenic cell aggregates white aggregates of vacuolated cells [3] - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid  相似文献   

13.
Auxin induces in vitro somatic embryogenesis in coconut plumular explants through callus formation. Embryogenic calli and non-embryogenic calli can be formed from the initial calli. Analysis of endogenous cytokinins showed the occurrence of cytokinins with aromatic and aliphatic side chains. Fourteen aliphatic cytokinins and four aromatic cytokinins were analysed in the three types of calli and all the cytokinins were found in each type, although some in larger proportions than others. The most abundant cytokinins in each type of callus were isopentenyladenine-9-glucoside, zeatin-9-glucoside, zeatin riboside, isopentenyladenine riboside, dihydrozeatin and dihydrozeatin riboside in decreasing order. Total cytokinin content was compared between the three types of calli, and it was found to be lower in embryogenic calli compared to non-embryogenic calli or initial calli. The same pattern was observed for individual cytokinins. When explants were cultured in media containing exogenously added cytokinins, the formation of embryogenic calli in the explants was reduced. When 8-azaadenine (an anticytokinin) was added the formation of embryogenic calli and somatic embryos was increased. These results suggest that the difference in somatic embryo formation capacity observed between embryogenic calli and non-embryogenic calli is related to their endogenous cytokinin contents.  相似文献   

14.
In Prunus avium , the lipid and fatty acid composition of non-embryogenic calli and embryogenic tissues was studied. The embryogenic tissues were characterised by a higher content of triglycerides and total phospholipids than non-embryogenic calli. Neutral lipids (NL) from embryogenic tissues akppeared less saturated than NL from non-embryogenic calli. Somatic embryogenesis was associated with considerable proportions of linoleic acid in both NL and phosphatidylcholine (PC) (23% in NL and 60% in PC), together with high proportions of palmitic acid in phosphatidylethanolamine (PE) and phosphatidylinositol (PI) (92% in PE and 62% in PI). Conversely, non-embryogenic calli were characterised by a considerable proportion of palmitic acid in NL (74%) and high proportions of oleic acid in PE (100%) and PC (84%). These results suggest differences between the lipid biosynthetic pathway of embryogenic tissues when compared with that of non-embryogenic calli.  相似文献   

15.
We identified and isolated a monoclonal antibody (MAb 3G2) raised against extracellular proteins from microcluster cells of orchard grass (Dactylis glomerata L.) embryogenic suspension culture. MAb 3G2 recognized with high specificity an antigen ionically bound within the primary cell wall and in the culture medium of microcluster cells. Two-dimensional polyacrylamide gel analysis and blotting of proteins on PVDF membrane showed that MAb 3G2 detected a single polypeptide of apparent molecular mass of 48 kDa and an isoelectric point (pI) of 5.2, designated EP48. A transient expression during somatic embryogenesis was observed for EP48. Indirect immunofluorescence showed that this protein highly accumulated in the cell walls of some single cells, microclusters and partly in proembryogenic masses (PEMs), but not in globular embryos of the embryogenic cell line and microclusters from the non-embryogenic cell line. Signal intensity varied between individual cells of the same population and in successive stages of somatic embryo development. Screening of several D. glomerata L. embryogenic and non-embryogenic cell lines with MAb 3G2 indicated the presence of ECP48 in only embryogenic suspension cultures at early stages of embryo development long before morphological changes have taken place and thus it could serve as an early marker for embryogenic potential in D. glomerata L. suspension cultures.  相似文献   

16.
Over the past few decades genetic engineering has been applied to improve cotton breeding. Agrobacterium medicated transformation is nowadays widely used as an efficient approach to introduce exogenous genes into cotton for genetically modified organisms. However, it still needs to be improved for better transformation efficiency and higher embryogenic callus induction ratios. To research further the difference of mechanisms for morphogenesis between embryogenic callus and non-embryogenic callus, we carried out a systematical study on the histological and cellular ultrastructure of Agrobacterium transformed calli. Results showed that the embryogenic callus developed nodule-like structures, which were formed by small, tightly packed, hemispherical cells. The surface of some embryogenic callus was covered with a flbrilar-like structure named extracellular matrix. The cells of embryogenic calli had similar morphological characteristics. Organelles of embryogenic callus cells were located near the nucleus, and chloroplasts degraded to proplastid-like structures with some starch grains, in contrast, the non-embryogenic calli were covered by oval or sphere cells or small clusters of cells. It was observed that cells had vacuolation of cytoplasm and plastids with a well organized endomembrane system. This study aims to understand the mechanisms of embryogenic callus morphogenesis and to improve the efficiency of cotton transformation in future.  相似文献   

17.
Summary Embryogenic tissues of sugi (Cryptomeria japonica) were induced on a modified Campbell and Durzan (CD) medium containing 1 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 600 mg l−1 glutamine, and subcultured in the medium of the same composition for over 1 yr. This resulted in a mixed culture of embryogenic and non-embryogenic cells. When embryogenic cells were isolated and cultured independently, their capacity to form embryogenic aggregates was lost. Thus, the non-embryogenic cells present within a mixed culture system were essential to the formation of embryogenic aggregates. When embryogenic tissues were isolated and cultured independently on a high glutamine-containing (2400 mg l−1) medium, dry weights and endogenous levels of glutamine increased, and the tissue could generate a large number of embryogenic aggregates. Amino acid analysis of embryogenic and non-embryogenic cells from the maintenance culture indicated a higher level of glutamine was present in the latter. The high endogenous level of glutamine in the non-embryogenic portion of mixed cell masses may be the supplier of glutamine for maintaining the embryogenic property of the tissues.  相似文献   

18.
The objective of this study was to morpho-anatomically characterize embryogenic rice calli during early induction of somatic embryogenesis of three Brazilian rice cultivars. Herein, we explored embryogenic units (EUs) from 2-week-old cut proliferated calli to verify whether they were suitable for Agrobacterium tumefasciens-mediated transformation. Histological analysis and scanning electron microscopy (SEM) were used to analyze these types of calli during early rice callogenesis in the cultivars BRS Primavera, BRS Bonança, and BRS Caiapó. The characteristics of the embryogenic cells were preserved in the EUs, which showed a globular, compact structure that contained tightly packed cells and thus rendered the cells suitable for transformation. The EUs of BRS Caiapó also maintained the characteristics of the non-embryogenic callus, such as an elongated morphology and a lack of cellular organization. In general, the observations of the histological sections corresponded with those of the SEM images. The histological analysis suggested that all cultivars used in these experiments have morphogenic potential. The EUs from proliferated 2-week-old cut calli maintained their embryogenic features. The EUs were subjected to Agrobacterium-mediated transformation, which exhibited a regeneration frequency of 58 % for transformed hygromycin-resistant cell lines. These results show that EUs from proliferated 2-week-old cut calli are suitable for plant transformation.  相似文献   

19.
High production of viable somatic embryos was obtained from cultured anthers in the second phase of meiosis, using microscopic level observations of tetrads. The medium with the greatest embryogenic efficiency was H6, composed of Murashige and Skoog (MS) medium with 2 mg l−1 of 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg l−1 of kinetin. All (100%) of the somatic embryos obtained germinated and produced 63% green and 37% albino seedlings. In general, embryogenic calli had a higher ion concentration than non-embryogenic calli, with the exception of calcium whose concentration was higher in non-embryogenic calli. The calli induced in the different media differed in their sucrose and starch compositions. The most embryogenic medium H6-induced calli with the highest sucrose concentration and the lowest starch concentration, before visible embryos were observed. In the leaves of the albino seedlings, sucrose concentrations were very high while those of starch were very low. Ion concentrations were also lower in albino plants than in the leaves of green seedlings, with the exception of calcium, whose concentration was higher. Most of the albino individuals were homozygous, even when their progenitors were heterozygous, thereby confirming their haploid nature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号