首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Four new coordination complexes [Cd(DPBA-3)2(H2O)2](ClO4)2·2H2O (1), [Cd(DPBA-3)(DMF)(NO3)2]·DMF (2), [Cd3(DPBA-3)2(SCN)6]·2DMF·4H2O (3) and [Zn(DPBA-3)(SCN)2] (4) [DPBA-3 = N,N′-di(pyridin-3-yl)pyridine-3,5-dicarboxamide] have been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. Complexes 1, 3 and 4 exhibit three different types of one-dimensional (1D) chain structures constructed by the metal ions and DPBA-3 ligands, and the Cd(II)-DPBA-3 1D chains in 3 are further linked by bridging SCN ligands to afford a three-dimensional (3D) framework. Complex 2 possesses a (6,3) two-dimensional (2D) layer structure. In 1-4, the hydrogen bonds involving the amide groups play important role to stabilize the resultant frameworks. The photoluminescence properties of the DPBA-3 and the complexes were studied in the solid state at room temperature.  相似文献   

2.
Four new fluconazole-bridged zinc(II) and cadmium(II) complexes with dicarboxylate co-ligands, namely [Zn(HFlu)(TPA)]n (1), {[Cd(HFlu)2(TPA)]·2CH3OH}n (2), [Zn(HFlu)2(Suc)(H2O)2]·H2O (3), and [Cd(HFlu)2(Suc)(H2O)2]·H2O (4), have been synthesized and characterized by elemental analysis, IR, TG, and single-crystal X-ray diffraction (HFlu = 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)-propan-2-ol, H2TPA = terephthalic acid, and H2Suc = succinic acid). Complex 1 displays a 2-D corrugated network with common (4,4) topology, in which two types of grids constructed by two bridging TPA dianions and two HFlu ligands are found. Complex 2 shows an unusual (3,6) coordination layer consisting of alternative PMPM Cd-HFlu helical chains in which the Cd(II) nodes are also fixed by terephthalate dianions in a cis fashion. The isostructural complexes 3 and 4 have 20-membered dimeric macrocyclic motifs with the Zn···Zn and Cd···Cd distances of 11.258(2) and 11.528(2) Å, respectively. The fluorescence and thermal stability of complexes 1-4 have also been investigated.  相似文献   

3.
A novel cadmium-substituted tungstoantimonate [Sb2W21Cd(OH)2O73]14− (1), has been synthesized in aqueous solution and characterized by IR, elemental analysis, TGA and cyclic voltammetry (CV). Single-crystal X-ray analysis was carried out on K4.5Na9.5[Sb2W21Cd(OH)2O73] · 31H2O (1a). Polyanion 1 consists of two Cd(W) ions linked to a [Sb2W20O70]14− fragment via Cd-O(W) bonds leading to a sandwich-type structure. Interestingly, the polyanion [Sb2W21Cd(OH)2O73]14− (1) as basic building unit is assembled into a one-dimensional (1D) chain-like structure by Cd and W atoms sharing the same site with the 50% occupations, respectively. The electrochemical behavior of 1 was investigated in buffer solution (pH 3.0) by CV. In the potential range between −0.75 and 0.2 V, the compound 1 exhibits the successive redox processes of the addenda atoms (W). The electrocatalytic experiments of the compound show that this compound has good electrocatalytic activity towards the reduction of H2O2.  相似文献   

4.
Two complexes of the formula [MH3L](ClO4)2 [M = Cu(II) (1), Ni(II) (2)] have been prepared by the reaction of M(ClO4)2 · 6H2O with the ligand (H3L) formed by the Schiff base condensation of tris(2-aminoethyl)amine (tren) with three molar equivalents of 4-methyl-5-imidazolecarboxaldehyde and structurally and magnetically characterized. The structures of 1 and 2 are isomorphous with each other and with the iron(II) complex of H3L which has been reported previously. The ligand, while potentially heptadentate, forms six coordinate complexes with both metal centers forming three M-Nimine and three M-Nimidazole bonds. The tren central N atom is at a nonbonded distance from M of 3.261 Å for 1 and 3.329 Å for 2. The neutral complex CuHL 3 was prepared by reaction of H3L with Cu(OCH3)2 and the ionic complex Na[NiL] 4 was prepared by deprotonation of 2 with aqueous sodium hydroxide. Magnetic measurements of 1-3 are consistent with the spin-only values expected for S = 1/2 (d9, Cu(II)) and S = 1 (d8, Ni (II)) systems.  相似文献   

5.
Four Cd(II) metal-organic complexes, namely, [Cd(Cl)2(bbdmbm)] (1), [Cd(NO3)(N3)(bbdmbm)1.5] (2), [Cd(BBA)2(bbdmbm)(H2O)] (3), [Cd(DNBA)2(bbdmbm)] (4), (bbdmbm = 1,1-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), HBBA = 4-bromobenzoic acid, and HDNBA = 3,5-dinitrobenzoic acid) have been obtained from hydrothermal reactions of different Cd(II) salts with the mixed ligands of bbdmbm and five anions (Cl, NO3, N3, BBA and DNBA). Single crystal X-ray diffraction analyses reveal that the four complexes exhibit different structures. Complex 1 possesses a one-dimensional (1D) helical chain, which is finally extended into a two-dimensional (2D) supramolecular structure through π-π stacking interactions. Complex 2 shows a 1D ladderlike chain bridged by bbdmbm ligands with two kinds of coordination conformations. Complex 3 is a 1D coordination polymer and is ultimately extended into a 2D supramolecular network through H-bonding interactions. Complex 4 displays a dinuclear cluster, which is finally packed into a three-dimensional (3D) supramolecular framework through three kinds of π-π stacking interactions. The Cd(II) exhibits four different coordination modes in complexes 1-4, respectively. The results indicate that the anion ligands with different steric hindrance and size play important roles in the coordination modes of Cd(II) and construction of the title complexes, leading to the structural diversity. In addition, the conformations of bbdmbm ligand also show some effect on the final structures. Fluorescence properties of complexes 1-4 are reported in this paper.  相似文献   

6.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

7.
The First examples of (Te, N, S) type ligands, 2-CH3SC6H4CHNCH2CH2TeC6H4-4-OCH3 (L1) and 2- CH3SC6H4CHNHCH2CH2TeC6H4-4-OCH3 (L2), and their metal complexes, [PdCl(L1)]PF6 · CHCl3 · 0.5H2O (4), [PtCl(L1)]PF6 (5), [PdCl(L2)]ClO4.CHCl3 (6), [PtCl(L2)]ClO4 (7), and [Ru(p-cymene)(L2)](PF6)2 · CHCl3 (8), have been synthesized and characterized. The single crystal structures of 4, 6 and 8 have revealed that both the ligands coordinate in them in a tridentate (Te, N, S) mode. The geometry around Pd in both the complexes has been found to be square planar, whereas for Ru in a half sandwich complex 8, it is found to be octahedral. Between two molecules of 4 there are intra and inter molecular weak Te?Cl [3.334(3) and 3.500(3) Å, respectively] interactions along with weak intermolecular Pd?Te [3.621(2) Å] interactions. The Pd-Te bond lengths are between 2.517(6) and 2.541(25) Å and the Ru-Te bond length is 2.630(6) Å. The crystal structure of [PdCl2(4-MeO-C6H4- TeCH2CH2NH2)] (9) is also determined. It is formed when KPF6 is not added in the synthesis of 4 and Pd-complex of L1 is recrystallized. Apart from Te?Cl secondary interactions, C-H?π interactions also exist in the crystal of 9.  相似文献   

8.
Three novel cadmium(II) complexes [Cd2(tbpo)(O2CC6H4-p-NO2)2]ClO4·3CH3OH (1) [Cd2(bbap)(O2CC6H4-p-NO2)2]ClO4·4.5CH3OH·0.75H2O (2) and [Cd(ntb)(O2CC6H4-p-NO2)]ClO4·4CH3OH (3) have been synthesized and characterized by IR, elemental analysis, 1H NMR and X-ray crystallography, where tbpo and bbap are anions of N,N,N′,N′-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane and 2,6-bis[bis(2-benzimidazolylmethyl)aminomethyl]-4-methylphenol, respectively; ntb is tris(2-benzimidazolymethyl)amine. Complexes 1 and 2 contain μ-phenolate-bridged and μ-alkoxo-bridged dicadmium(II) cores with the Cd1?Cd2 separation of 3.671 Å for complex 1 and 3.718 Å for 2. One of the 4-nitrobenzoate anions bridged the two cadmium(II) ions in syn-anti mode through its carboxylate group, the other 4-nitrobenzoate is only coordinated with Cd2 in bidentate chelating mode. The two central cadmium(II) atoms are in trigonal bipyramidal and pentagonal bipyramidal geometry. In complex 3, the cadmium(II) atom is coordinated with four nitrogen atoms of ntb and one carboxylate oxygen atom of 4-nitrobenzoate in distorted trigonal bipyramidal geometry. Experiment shows that there is a higher affinity of 4-nitrobenzoate anion as coligand with the dinuclear [Cd2(tbpo)]3+ and [Cd2(bbap)]3+ cores than that with the mononuclear [Cd(ntb)]2+ core.  相似文献   

9.
A series of nickel(II) salen complexes containing 4-substituted alkoxy chains of aromatic rings, [Ni((4-CnH2n + 1O)2salen)] (n = 3 (1), 4 (2), 6 (3), 8 (4), 10 (5), 12 (6), 14 (7), 16 (8), 18 (9), and 20 (10)), and their parent complex, [Ni((4-HO)2salen)] (11) (salen = N,N′-ethylenebis(salicylideneiminato)), have been prepared and mesomorphic properties have been investigated. An X-ray crystallographic analysis revealed that complex 11 · 2DMF has one-dimensional stacking structure supported by the π-π interaction between the six-membered chelate and aromatic rings with the NiNi distances of alternatively 3.3957 and 3.7224 Å and that complex 3 is formed by one-dimensional stacking by weak CH?O type hydrogen bonded interaction between the five-membered chelate ring and phenoxo atoms of the dramatically distorted salen moieties with the NiNi distance of 5.994 Å. Complexes 1-6 did not exhibit any mesophases. On the other hand, complexes 7-10 with longer alkoxy chains of n = 14-20 showed an unusual metallomesogen of a lamello-columnar mesophase within the smectic layers with an interlamellar distance of 31.1 Å (7), 33.6 Å (8), 37.1 Å (9), and 39.5 Å (10) and nearly constant stacking distance of 6.19-6.24 Å between the inter-dimers, irrespective of the variation of the alkoxy chain lengths by the X-ray diffraction measurements of the liquid crystal. The relationship between molecular assemblies and mesomorphic properties is discussed.  相似文献   

10.
Two luminescent Cd(II) complexes [RBzPy][Cd(SCN)3] for R = Cl (1) and Br (2) have been synthesized and structurally characterized. The Cd atoms are all N3S3 hexa-coordinated with six bridging SCN and form infinite [Cd(SCN)3] polymeric chains. The layer arrangement of the anionic chains was obtained using the larger halogenated benzylpyridyl cations. The luminescent properties of 1 and 2 in the solid state were investigated.  相似文献   

11.
Two new inorganic-organic hybrid polymers [ClBzQl]2[Cd(SCN)3.5Br0.5]·0.25H2O (1) and [ClBzMePy][Cd(SCN)3] (2) (ClBzQl = 1-(4′-Cl-benzyl)quinolinium cation and ClBzMePy = 1-(4′-Cl-benzyl)-2-methylpyridinium cation) have been synthesized and characterized by IR, UV, elemental analysis and X-ray crystallography. Crystal structure analyses show that two polymers belong to the monoclinic space group P2/n (1) and P21/c (2) with a = 18.548(2) Å, b = 9.526(1) Å, c = 20.689(2) Å, β = 94.008(1)°, V = 3646.6(5) Å3 for 1, and a = 11.195(2) Å, b = 16.415(3) Å, c = 10.751(2) Å, β = 102.930(3)°, V = 1925.7(7) Å3 for 2. The Cd atom exhibits a distorted octahedral coordination geometry for 1 and 2. For 1, a pair of 1,1-μ-SCN anions and a pair of 1,3-μ-SCN anions are alternately bridge adjacent Cd centers to form infinite polymeric chains. For 2, adjacent Cd atoms are linked by three 1,3-μ-SCN anions to form infinite [Cd(SCN)3] polymeric chains. The luminescent properties of the two polymers in the solid state at room temperature were investigated.  相似文献   

12.
The synthesis and characterization of novel coordination polymers [Co(HCCB)(H2O)2]n (1), [Zn(HCCB)(H2O)2]n (2), {[Cd(HCCB)2]·0.5[Cd(μ-H2O)(H2O)4]2}n (3) and [Cu(HCCB)(H2O)2]n (4) based on 3-(carboxymethylamino)-4-chlorobenzoic acid (H3CCB) and mononuclear complexes [Cu(HBCCB)(H2O)]·H2O (5), [Co(HBCCB)(H2O)]·H2O (6), [Zn(HBCCB)(H2O)] (7) and [Cd(HBCCB)(H2O)] (8) containing 3-bis(carboxymethylamino)-4-chlorobenzoic acid (H3BCCB) have been described. The compounds under investigation have been characterized by elemental analyses, spectral studies and structures of 1-3 and 5 determined crystallographically. Structural data of 1 and 2 revealed that the deprotonated HCCB2− bridges metal centers leading to a double stranded 1D chain. On the other hand, the HCCB2− coordinated thorough carboxylate oxygen and amino nitrogen in 3 to afford a 1D chain whose charge neutrality is maintained by inclusion of aqua-bridged dimer [{Cd(μ-H2O)(H2O)4}2]4+. Strong Cu?Cl interaction (2.754 Å) in 5 imposes a coordination geometry that is half-way between the square planar and square pyramidal. The H3CCB, H3BCCB and 1-3 and 5 are fluorescent at rt. Thermal studies (TG and DSC) on 1-3 suggested higher stability of 2 relative to 1 and 3 [ΔHf (kcal/mol), ΔSf = 152.17, 0.60, 1; 195.56: 0.86, 2; 69.33:0.36, 3].  相似文献   

13.
Three Cd(II) and Zn(II) coordination polymers, including {[Cd(3-bpo)(mip)(H2O)](H2O)2}n (1), {[Cd(4-bpo)(hip)(H2O)](H2O)4}n (2), and {[Zn(4-bpo)(tp)](CH3OH)}n (3) were synthesized from the reactions of CdII or ZnII nitrate with mixed organic ligands [3-bpo = 2,5-bis(3-pyridyl)-1,3,4-oxadiazole, H2mip = 5-methylisophthalic acid, 4-bpo = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, H2hip = 5-hydroxylisophthalic acid, H2tp = terephthalic acid] under the similar layered diffusion condition. The resulting crystalline materials 1-3 were characterized by IR, microanalysis, powder X-ray diffraction (PXRD) techniques. Single-crystal X-ray diffraction indicates a 1-D tubular motif for 1, a 1-D dual-track array for 2, and a 2-D grid-like pattern for 3, constructed via different metal-ligand coordination contacts. Higher-dimensional supramolecular architectures are further assembled in 1-3 via H-bonding and aromatic stacking interactions. In addition, thermal stability and fluorescence of these polymeric complexes were also investigated and discussed.  相似文献   

14.
Using the principle of crystal engineering, six metal-organic coordination polymers, [Cd(bdc)(3-pytpy)]n · 2nH2O (1), [Cd(bdc)0.5(3-pytpy)]n · n(ClO4) (2), Cd(ndc)0.5(3-pytpy)]n · n(ClO4) (3), [Zn(ndc)(3-pytpy)]n (4), [Cd(bqdc)(3-pytpy)]n (5), and [Zn(pam)(3-pytpy)]n · 2nH2O (6) (H2bdc = benzene-1,4-dicarboxylic acid, H2ndc = naphthalene-2,6-dicarboxylic acid, H2bqdc = 2,2′-biquinoline-4,4′-dicarboxylic acid, H2pam = pamoic acid), were synthesized and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Compounds 1-6 crystallize in the presence of organic-acid linkers as well as multi-functional N-donor ligand 4′-(3-pyridyl)-2,2′:6′,2′′-terpyridine (3-pytpy). In complexes 1, 4, 5, and 6, the dicarboxylate as bridging ligand connects metal atoms to form the main body of 1D zigzag chains for 1 and 4, nearly linear chain for 5 and helical chain for 6, while 3-pytpy as tridentate chelating ligand is just like lateral arm grafting on both sides of these chains. In complexes 2 and 3, both the dicarboxylate and 3-pytpy as bridging ligands connect metal atoms into 2D polymeric structure for 2 and 1D chain of alternating loops and rods for 3. The weak interactions such as hydrogen bonding and π···π stacking were investigated on the formation of superamolecular structures and the influence of organic acid on the formation of the final structures was discussed. In addition, the photoluminescent properties of 1-6 were also determined.  相似文献   

15.
One monomeric neutral Cu(II) complex [(pmtpm)CuCl2] (1) is reported by Lindoy and Livingstone [8]. Two new complexes namely, μ-Cl bridged binuclear Cu(II) complex [{(pmtpm)Cu(Cl)}2 μ-Cl](ClO4) (2) and a bis μ-Cl bridged binuclear Cu(II) complex [{(pmtpm)Cu}2(μ-Cl)2](ClO4)2 (3) derived from a tridentate Schiff base ligand, 2-pyridyl-N-(2′-methylthiophenyl)methyleneimine (pmtpm) were synthesized and characterized by various spectroscopic methods and by X-ray crystallography. (N2S)CuCl2 chromophore(s) of distorted square pyramidal coordination geometries around Cu(II) ion(s) have been observed for all the complexes 1-3. The equatorial sites of the square plane comprise two N and a thioether S donor atoms of the pmtpm ligand as well as one Cl ion (terminal in 1 and 2, and bridging in 3) while the remaining axial site is occupied by a terminal Cl ion (for 1) or a bridging Cl ion (for 2 and 3). The equatorial Cu-Cl distances are much shorter [1: 2.2511(4) Å, 2: 2.2307(12) Å, 3: 2.2513(12) Å] than the axial Cu-Cl distances [1: 2.4394(4) Å, 2: 2.5597(9) Å, 3: 2.7037(12) Å]. The correlation of an axial Cu-Cl bond elongation with a lower g|| value in the solid state EPR spectrum and a blue shifted ligand field transition in the solid and solution phase absorption spectrum has been observed.  相似文献   

16.
A study of the complexation of heavy metal ions by the coronands 3,12,20,29-tetraoxa-35,36-diazapentacyclo[29.3.1.1.14,18.05,10.022,27]-hexatriaconta-1(35),5(10),6,8,14,16,18(36),22(27),23,25,31,33-dodecaene (1); 2,3,11,12-bis (4-methylbenzo)-1,4,10,13-tetrathia-7,16-dioxacyclo-octadeca-2,11-diene (2); 7,16-diaza-1,4,10,13-tetraoxa-2,3,11,12-dibenzocyclooctadeca-2,11-diene (3); 2-[19-(2-hydroxy-2-phenylethyl)-7,8,9,10, 18,19,20,21-octahydro-6H,17H-dibenzo[b,k][1,4,10,13,7,16]tetraoxadiazacyclooctadecin-8-yl]-1-phenyl-1-ethanol (4); 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane (5); and 2-[16-(2-hydroxy-2-phenylethyl)-1,4,10,13-tetraoxa-7,16-diazacyclo-octadecanyl]-1-phenyl-1-ethanol (6) is described. Coronands 1 and 3 were prepared by literature methods, improved methods were used to prepare 2, and 4 and 6 were prepared from 3 and 5 (obtained commercially), respectively. Potentiometric studies in N,N-dimethylformamide yielded (logK/dm3 mol−1)=5.50, 6.49, 9.42 and 7.52 for [Ag · 1]+, [Ag · 2]+, [Ag · 5]+ and [Ag · 6]+, respectively; <2, <2, 4.30 and <2 for [Zn · 1]2+, [Zn · 2]2+, [Zn · 5]2+ and [Zn · 6]2+, respectively, <2, <2, 5.92 and >7.52 for [Cd · 1]2+, [Cd · 2]2+, [Cd · 5]2+, and [Cd · 6]2+, respectively, and 2.62, 2.38, 6.71 and >7.52 for [Pb · 1]2+, [Pb · 2]2+, [Pb · 5]2+, and [Pb · 6]2+, respectively. ESI-MS studies of the interactions of 1-6 with Ag+, Zn2+, Cd2+ and Pb2+ are also reported.  相似文献   

17.
Three Cd (II)-M (II) hetero-nuclear coordination polymers, [FeCd2(Hcit)2(H2O)2]n (1), [CoCd2(BTC)2(H2O)4]n (2) and [Cd3(Hcit)2(H2O)2]n (3) (H4cit = citric acid, H3BTC = 1,3,5-benzenetricarboxyl acid), were synthesized through hydrothermal method. They were characterized through elemental analysis, IR spectra, UV-Vis absorption spectra, X-ray powder diffraction, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicates that 1 and 3 possess 2D structures, which are further connected to 3D structures by hydrogen bonds. 2 is a 3D Cd-Co coordination polymer bridged by BTC3− groups. The SPS show that 1 and 2 present positive photovoltage response in 300-550 nm, but the photovoltage response of 3 appears in 300-400 nm. It is indicated that the limits of SPS response bands of polymers 1 and 2 are wider than those of 3 because of introduction of the other transition metal ions. There is a good corresponding relationship between SPS and UV-Vis absorption spectra.  相似文献   

18.
The compounds [2-amino-4,6-dimethylpyridinium]2CuCl4 (1) and [2-amino-4,6-dimethylpyridinium]2CuBr4 (2) were prepared from acidic ethanolic media containing CuX2 and [2-amino-4,6-dimethylpyridine] in the molar ratio 1:1. The compounds were characterized by IR and single-crystal X-ray diffraction and found to be isomorphous in the space group with V = 991.2(10) Å3 for (1) and 1059.26(12) Å3 for (2) . There is no significant difference in the non-classical N-H?X hydrogen bonding between (1) and (2). The anions show essentially the same extent of distortion from tetrahedral geometry with max./min. values for the X-Cu-X bond angles of 139.72(6)°/96.78(6)° for (1) and 139.43(4)°/96.64(3)° for (2). Each [CuX4]2− anion is hydrogen bonded nonsymmetrically to four cations. In this manner, ladder chains are formed that run along the b-axis, with planar cations falling parallel to the (2, 0, 1) plane. Weaker π-π interactions exist between cations from different chains with centroid to centroid distance of 4.07 Å in (1) and a long 4.594 Å in (2). The X-π electrostatic interactions are surprisingly stronger in (2) than in (1) with a Br to centroid of pyridinic ring distance of 3.890 Å compared with 3.996 Å for the chloride analogue.  相似文献   

19.
The metal ion coordinating properties of the ligands N,N-bis(2-methylquinoline)-2-(2-aminoethyl)pyridine (DQPEA) and N,N-bis(2-methylquinoline)-2-(2-aminomethyl)pyridine (DQPMA) are presented. DQPEA and DQPMA differ only in that DQPEA forms six-membered chelate rings that involve the pyridyl group, whereas DQPMA forms analogous five-membered chelate rings.These two ligands illustrate the application of a ligand design principle, which states that increase of chelate ring size in a ligand will result in increase in selectivity for smaller relative to larger metal ions. The formation constants (log K1) of DQPEA and DQPMA with Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) are reported. As expected from the applied ligand design principle, small metal ions such as Ni(II) and Zn(II) show increases in log K1 with DQPEA (six-membered chelate ring) relative to DQPMA (five-membered chelate ring), while large metal ions such as Cd(II) and Pb(II) show decreases in log K1 when the chelate ring increases in size. In order to further understand the steric origin of the destabilization of complexes of metal ions of differing sizes by the six-membered chelate ring of DQPEA, the structures of [Zn(DQPEA)H2O](ClO4)2 (1) [triclinic, , a = 9.2906(10), b = 10.3943(10), c = 17.3880(18) Å, α = 82.748(7)°, β = 88.519(7)°, γ = 66.957(6)°, Z = 4, R = 0.073] and [Cd(DQPEA)(NO3)2] (2) [monoclinic, C2/c, a = 22.160(3), b = 15.9444(18), c = 16.6962(18) Å, β = 119.780(3)°, Z = 8, R = 0.0425] are reported. The Zn in (1) is five-coordinate, with a water molecule completing the coordination sphere. The Cd(II) in (2) is six-coordinate, with two unidentate nitrates coordinated to the Cd. It is found that the bonds to the quinaldine nitrogens in the DQPEA complexes are considerably stretched as compared to those of analogous TPyA (tri(pyridylmethyl)amine) complexes, which effect is attributed to the greater steric crowding in the DQPEA complexes. The structures are analyzed for indications of the origins of the destabilization of the complex of the large Cd(II) ion relative to the smaller Zn(II) ion. A possible cause is the greater distortion of the six-membered chelate ring in (2) than in (1), as evidenced by torsion angles that are further away from the ideal values in (2) than in (1). Fluorescence properties of the DQPMA and DQPEA complexes of Zn(II) and Cd(II) are reported. It is found that the DQPEA complex of Zn(II) has increased fluorescence intensity compared to the DQPMA complex, while for the Cd(II) complex the opposite is found. This is related to the greater strain in the six-membered chelate ring of the Cd(II) DQPEA complex as compared to the Zn(II) complex, with resulting poorer overlap in the Cd-N bond, and hence greater ability to quench the fluorescence in the Cd(II) complex.  相似文献   

20.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号