首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitrosyl complex [Cr(dmso)5(NO)](PF6)2 (1) (dmso = dimethyl sulfoxide) has been prepared by the solvolysis of [Cr(NCCH3)5(NO)](PF6)2 in neat dmso. The optical absorption spectrum of 1 in dmso shows maxima at 734, 567, 450, 413, and 337 nm. Continuous photolysis of 1 with λ = 365-580 nm light in dmso solution results in a release of NO with quantum yield, Φ, in the range 0.034-0.108 mol Einstein−1. Irradiation of a deoxygenated CH3CN solution of [Cr(NCCH3)5(NO)](PF6)2 in the presence of excess of [Fe(S2CNEt2)2] results in a transfer of NO to the iron centre as shown from the characteristic EPR spectrum of [Fe(S2CNEt2)2(NO)] with Aiso(14N) = 12.2 × 10−4 cm−1. The EPR parameters of 1 were determined: giso, g and g : 1.96725, 1.91881(4) and 1.992763(2); Aiso(53Cr), A (53Cr) and A(53Cr): 22.8 × 10−4, 39 × 10−4 and 15.8 × 10−4 cm−1; Aiso(14N), A (14N) and A(14N): 5.9 × 10−4, 2 × 10−4 and 7.540(4) × 10−4 cm−1.  相似文献   

2.
A new complex of composition [Cu(2-NO2bz)2(nia)2(H2O)2] (1) (nia = nicotinamide, 2-NO2bz = 2-nitrobenzoate) has been prepared and its composition and stereochemistry as well as coordination mode have been determined by elemental analysis, electronic, infrared and EPR spectroscopy, magnetization measurements over the temperature range 1.8-300 K, and its structure has been solved, as well. The complex structure consists of the centrosymmetric molecules with Cu(II) atom monodentately coordinated by the pair of 2-nitrobenzoato anions and by the pair of nicotinamide molecules, forming nearly tetragonal basal plane, and by a pair of water molecules that complete tetragonal-bipyramidal coordination polyhedron about the copper atom. The complex 1 exhibits magnetic moment μeff = 1.86 B.M. at 300 K which decreases to μeff = 1.83 B.M. at 1.8 K. The magnetic susceptibility temperature dependence obeys Curie-Weiss law with Curie constant of 0.442 cm3 K mol−1 and with Weiss constant of −1.0 K. EPR spectra at room temperature as well as at 77 K are of axial type with g = 2.065 and g = 2.280 and exhibit clearly, but partially resolved parallel hyperfine splitting with AII = 160 G, that is consistent with the determined molecular structure of 1. In order to analyze the factors influencing the degree of tetragonal distortion of coordination polyhedron, the dataset of 72 structures similar to that of 1 was extracted from CCD and analyzed. A significant correlation between the average Cu-Oax bond length and tetragonality parameter τ which was found as a consequence of the Jahn-Teller effect.  相似文献   

3.
The in-situ formed hydrazone Schiff base ligand (E)-N′-(2-oxy-3-methoxybenzylidene)benzohydrazide (L2−) reacts with copper(II) acetate to a tetranuclear open cubane [Cu(L)]4 complex which crystallizes as two symmetry-independent (Z′ = 2) S4-symmetrical molecules in different twofold special positions with a homodromic water tetramer. The two independent (A and B) open- or pseudo-cubanes with Cu4O4 cores of 4 + 2 class (Ruiz classification) each have three different magnetic exchange pathways leading to an overall antiferromagnetic coupling with J1B = J2B = −17.2 cm−1, J1A = −36.7 cm−1, J2A = −159 cm−1, J3A = J3B = 33.5 cm−1, g = 2.40 and ρ = 0.0687. The magnetic properties have been analysed using the H = −Σi,jJij(SiSj) spin Hamiltonian.  相似文献   

4.
Crystal structure of [ReO2(4-MeOpy)4][PF6] (4-MeOpy = 4-methoxypyridine) complex has been examined by the single crystal X-ray analytical method. This complex shows a trans-dioxo geometry (average Re-O bond length = 1.766(2) Å) and its equatorial plane is occupied by four 4-MeOpy molecules (average Re-N bond length = 2.156(4) Å). Electrochemical reaction of [ReO2(4-MeOpy)4]+ in CH3CN solution containing tetra-n-butylammonium perchlorate as a supporting electrolyte has been studied using cyclic voltammetry at 24 °C. Cyclic voltammograms show one redox couple around 0.65 V (Epa) and 0.58 V (Epc) [versus ferrocene/ferrocenium ion redox couple, (Fc/Fc+)]. Potential differences between two peaks (ΔEp) at scan rates in the range from 0.01 to 0.10 V s−1 are 65 mV, which is almost consistent with the theoretical ΔEp value (59 mV) for the reversible one electron transfer reaction at 24 °C. The ratio of anodic peak currents to cathodic ones is 1.04 ± 0.03 and the (Epa + Epc)/2 value is constant, 0.613 ± 0.001 V versus Fc/Fc+, regardless of the scan rate. Spectroelectrochemical experiments have also been carried out by applying potentials from 0.40 to 0.77 V versus Fc/Fc+ with an optically transparent thin layer electrode. It was found that the UV-visible absorption spectra show clear isosbestic points at 228, 276, and 384 nm, and that the electron stoichiometry is evaluated as 1.03 from the Nernstian plot. These results indicate that the [ReO2(4-MeOpy)4]+ complex is oxidized reversibly to the [ReO2(4-MeOpy)4]2+ complex. Furthermore, it was clarified that the [ReO2(4-MeOpy)4]2+ in CH3CN has the characteristic absorption bands at 236, 278, 330, 478, and 543 nm and their molar absorption coefficients are 4.3 × 104, 4.5 × 103, 1.0 × 104, and 6.1 × 103 M−1 cm−1 (M = mol dm−3), respectively.  相似文献   

5.
A double mutant of CuA azurin was prepared in which both bridging cysteine thiolate ligands of the binuclear CuA center were replaced by serine. The copper binding properties of this protein were investigated, and shown to be pH dependent. At lower pH (5.2 ± 0.1), the protein binds one copper per protein molecule as demonstrated by electrospray ionization mass spectrometry. Copper titrations resulted in electronic absorptions at 730 nm (peak) and ca. 330 nm (shoulder) in the UV-Vis spectrum. EPR data show a four line pattern with hyperfine A = 150 G and g and g values 2.32 and 2.03, characteristic of a type II (T2) copper. Superhyperfines to two nitrogen atoms were also observed. At higher pH (8.5 ± 0.1), the protein binds upto two copper atoms per protein molecule, and copper titrations exhibit a blue transition at 595 nm in the UV-Vis spectrum. The EPR data are consistent with two monomeric sites very similar to one another having hyperfines A = 182 and 150 G, g = 2.24 and 2.22 and a similar g value of 2.01. These results indicate that both bridging cysteines play a critical role in the CuA center, and replacing them with serines is not enough to maintain the symmetrical diamond core structure or the characteristic electronic and functional properties of the CuA center.  相似文献   

6.
Flash photolysis with time-resolved infrared (TRIR) spectroscopy was used to elucidate the photochemical reactivity of the hydroformylation catalyst precursor Co2(CO)6(PMePh2)2. Depending on reaction conditions, the net products of photolysis varied significantly. A model is presented that accounts for the net reactivity with two initial photoproducts, the 17-electron species Co(CO)3(PMePh2) and the coordinatively unsaturated dimer Co2(CO)5(PMePh2)2. No evidence was found for photochemical formation of Co2(CO)6(PMePh2). Time-resolved spectroscopic studies allowed for the direct observation of transient species and for kinetics studies of certain reactions; for example, the reactions of Co(CO)3PMePh2 with CO and with PMePh2 gave the respective rate constants 1.5 × 105 and 1.2 × 107 M−1 s−1, while the analogous reactions with Co2(CO)5(PMePh2)2 gave the rate constants of 2.6 × 106 M−1 s−1 and 3.9 × 107 M−1 s−1.  相似文献   

7.
The crystal structures of [Cr(NO)(NH3)5](PF6)2 (red) and [Cr(NO)(NH3)5]Cl(PF6) (brown) have been determined. The [Cr(NO)(NH3)5]2+(A) complex cations in these compounds have a slightly distorted octahedral geometry with a strictly linear Cr-N-O arrangement (from symmetry). The short interatomic distances (2.399 Å × 4) between the O (nitrosyl) and H (ammonia in adjacent complex cations) atoms in A(PF6)2 indicate the existence of hydrogen bonds, while the interatomic distances (3.258 Å × 8) between those in ACl(PF6) are much longer, and the hydrogen bonds should be weak in spite of the presence of the smaller counter anion of chloride ion in ACl(PF6). Comparisons of the five crystal structures of A(PF6)2, ACl2, ACl(ClO4), ACl(PF6), and A(ClO4)2 have led to the conclusion that the existence of the strong hydrogen bonds gives red crystals of A(PF6)2, while the absence of hydrogen bonds results in the formation of green crystals of A(ClO4)2 (O ? H, 3.595 Å × 2). The color change of the crystals (from red to green) with the change of outer sphere anions is attributed to the change of the strength of the hydrogen bonding between the complex cations.  相似文献   

8.
The synthesis and characterisation of cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 are described. Solvolysis rates have been measured by both 1H NMR spectroscopy and UV-Vis spectrophotometry in dimethyl sulfoxide at 298.2 K. The cis isomer undergoes solvolysis by consecutive first-order reactions, k1=5.61 × 10−4 and k2=5.35 × 10−4 s−1, each with steric retention. The measured solvolysis rate (single step reaction) for the trans isomer is k=1.54 × 10−5 s−1. The solvent exchange rates have been measured by 1H NMR spectroscopy in CD3CN at 298.2 K: kex(cis)=kct + kcc=2.0 × 10−5 and kex(trans)=ktc + ktt=4.56 × 10−6 s−1. From these data, the measured cis-trans isomerisation rate (1.71 × 10−6 s−1) and equilibrium position in CH3CN (17% trans), the steric course for substitution in the exchange processes has been determined: trans reactant - 69% trans product; cis reactant - 99% cis product. Aquation rates for cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 have also been determined spectrophotometrically and by NMR; kcis=1.3 × 10−4 and ktrans=2.7 × 10−5 s−1. In both cases the steric course for the primary aquation step is indeterminate because the subsequent steps are faster. Where data are available, the [Co(tmen)2X2]n+ complexes are found to be consistently much more reactive than their [Co(en)2X2]n+ analogues.  相似文献   

9.
Structural changes between [OsIIL3]2+ and [OsIIIL3]3+ (L: 2,2′-bipyridine; 1,10-phenanthroline) and molecular and electronic structures of the OsIII complexes [OsIII(bpy)3]3+ and [OsIII(phen)3]3+ are discussed in this paper. Mid-infrared spectra in the ν(bpy) and ν(phen) ring stretching region for [OsII(bpy)3](PF6)2, [OsIII(bpy)3](PF6)3, [OsII(phen)3](PF6)2, and [OsIII(phen)3](PF6)3 are compared, as are X-ray crystal structures. Absorption spectra in the UV region for [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 are dominated by very intense absorptions (ε = 40 000-50 000 M−1 cm−1) due to bpy and phen intra-ligand π → π transitions. In the visible region, relatively narrow bands with vibronic progressions of ∼1500 cm−1 appear, and have been assigned to bpy or phen-based, spin-orbit coupling enhanced, 1π → 3π electronic transitions. Also present in the visible region are ligand-to-metal charge transfer bands (LMCT) arising from π(bpy) → t2g(OsIII) or π(phen) → t2g(OsIII) transitions. In the near infrared, two broad absorption features appear for oxidized forms [OsIII(bpy)3](PF6)3 and [OsIII(phen)3](PF6)3 arising from dπ-dπ interconfigurational bands characteristic of dπ5OsIII. They are observed at 4580 and 5090 cm−1 for [OsIII(bpy)3](PF6)3 and at 4400 and 4990 cm−1 for [OsIII(phen)3](PF6)3. The bpy and phen infrared vibrational bands shift to higher energy upon oxidation of Os(II) to Os(III). In the cation structure in [OsIII(bpy)3](PF6)3, the OsIII atom resides at a distorted octahedral site, as judged by ∠N-Os-N, which varies from 78.78(22)° to 96.61(22)°. Os-N bond lengths are also in general longer for [OsIII(bpy)3](PF6)3 compared to [OsII(bpy)3](PF6)2 (0.010 Å), and for [OsIII(phen)3](PF6)3 compared to [OsII(phen)3](PF6)2 (0.014 Å). Structural changes in the ligands between oxidation states are discussed as originating from a combination of dπ(OsII) → π (bpy or phen) backbonding and charge redistribution on the ligands as calculated by natural population analysis.  相似文献   

10.
A hexarhenium cyanohydroxo anionic cluster complex [Re6Se8(CN)4(OH)2]4− was synthesized for the first time starting from [Re6Se8(OH)6]4−, which was crystallized as a salt of the composition Cs2.75K1.25[Re6Se8(CN)4(OH)2]·H2O (1). The reaction of the complex with Cu2+ in an aqueous ammonia or methylamine solutions afforded [Cu(NH3)5]2[Re6Se8(CN)4(OH)2]·8H2O (2) or [{Cu(CH3NH2)4}2Re6Se8(CN)4(OH)2] (3), respectively. All of these three compounds were characterized by a single-crystal X-ray diffraction method. Compound 1 is crystallized in the tetragonal space group I4/m with eight formula units per cell (a = b = 17.4823(14) Å, c = 19.430(2) Å, V = 5938.3(10) Å3); compound 2 is crystallized in the monoclinic space group P21/n with two formula units per cell (a = 12.1845(13) Å, b = 8.6554(9) Å, c = 19.2568(19) Å, β = 91.081(2)°, V = 2030.5(4) Å3); compound 3 is crystallized in the orthorhombic space group Cmcm with four formula units per cell (a = 19.816(4) Å, b = 14.611(3) Å, c = 13.751(3) Å, V = 3981.2(13) Å3). The luminescence properties of 1 were studied in both aqueous solution and solid state. In addition, the electronic structure of [Re6Se8(CN)4(OH)2]4− was elucidated by DFT calculations.  相似文献   

11.
Reaction of Cu(ClO4)2 · 6H2O and pyrazine 2,3-dicarboxylate (pzdc) in aqueous ammonia medium results [Cu(pyrazine 2,3-dicarboxylate)(H2O)2] · H2O (1). The X-ray single crystal structure reveals that the compound is a 1D polymeric sinusoidal infinite chain which through intra- and inter-molecular hydrogen bonding interactions, involving lattice and coordinated water molecules with dicarboxylate oxygens and pyrazine nitrogens, gives rise to a 3D architecture. The variable temperature magnetic measurements show weak antiferromagnetic interactions between the Cu(II) centers. The best fit parameters through the typical equation for a uniform copper (II) chain are: J=−0.25 cm−1, g=2.17, R=1.3×10−6. The EPR spectrum does not alter with temperature (from r.t. to 4 K). The spectra are typical for square-pyramidal geometry of copper(II) ions, g=2.24 and g=2.10 (average g=2.15, in good agreement to the value obtained by susceptibility fit).  相似文献   

12.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

13.
Two series of A-frame complexes, [Pd2(dppm)2(R)2(μ-X)]+ (R = Me and X = Cl, Br, I, H; R = Mes and X = Br, I), were investigated by cyclic voltammetry (CV). The 2-electron reduction potentials for the first series increase from I (−1.10), Br (−1.17), Cl (−1.25) to H (−1.65 V versus SCE, in CHCl3), as well as in the second series; Br (−1.35) and I (−1.38 V versus SCE, in THF). The nature of the LUMO where the electron reduction takes place is qualitatively addressed by DFT on the corresponding model complexes [Pd2(H2PCH2PH2)2(R)2(μ-X)]+. The LUMO and (LUMO + 1) of the halide derivatives exhibit the presence of Pd dx2-y2 atomic orbitals interacting in an anti-bonding fashion with the n-donor orbitals of X, P, and Me, explaining in part the observed reactivity upon reduction. The X-ray structure of [Pd2(dppm)2(Me)2(μ-Br)]+ compound exhibits the typical A-frame structure with a Pd?Pd non-bonding distance of 3.036(1) Å, and long Pd-Br bonds of 2.5623(5) and 2.5793(5) Å.  相似文献   

14.
The reaction of with Co(dmgBF2)2(H2O)2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 9.23 ± 0.14 × 102 s−1. The [H+] dependence at lower temperatures shows some saturation effect that allowed an estimate of the hydrolysis constant for as Ka = 9.5 × 10−3 M at 10 and 15 °C. Marcus theory and the known self-exchange rate constant for Co(OH2)5OH2+/+ were used to estimate an electron self-exchange rate constant of k22 = 1.7 × 10−4 M−1 s−1 for .  相似文献   

15.
Synthesis, physical properties and X-ray structure of a hydrated tetranuclear copper(II) complex [Cu4(μ-diph)2(μ-H2O)2(O2CCH3)4(H2O)2]·4H2O with N,N′-bis(picolinoyl)hydrazine (H2diph) are reported. The centrosymmetric complex has two types of copper(II) centres with distorted square-pyramidal N2O3 coordination spheres. The dinucleating trans planar diph2− ligands are parallel to each other and act as N2O-donor to one metal centre and N2-donor to the other metal centre. The complex has a rectangular {Cu4(μ-N-N)2(μ-OH2)2} core with Cu···Cu distances as 4.834(1) and 3.762(1) Å. Solid state as well as solution electronic spectra show several transitions in the wavelength range 700-280 nm. The room temperature (298 K) solid state magnetic moment is 3.55 μB. The powder EPR spectra at 298 and 130 K are very similar and axial (g = 2.25 and g = 2.08) in character.  相似文献   

16.
Substitution reaction of fac-[FeII(CN)2(CO)3I] with triphenylphosphine (PPh3) produced mono phosphine substituted complex cis-cis-[FeII(CN)2(CO)2(PPh3)I]. Crystal structure of the product showed that carbonyl positioned trans- to iodide was replaced by PPh3. The substitution reaction was monitored by quantitative infrared spectroscopic method, and the rate law for the substitution reaction was determined to be rate = k[[FeII(CN)2(CO)2(PPh3)I]][PPh3]. Transition state enthalpy and entropy changes were obtained from Eyring equation k = (kBT/h)exp(−ΔH/RT + ΔS/R) with ΔH = 119(4) kJ mol−1 and ΔS = 102(10) J mol−1 K−1. Positive transition state entropy change suggests that the substitution reaction went through a dissociative pathway.  相似文献   

17.
A trinuclear copper(II) complex, [Cu3(2,5-pydc)2(Me5dien)2(BF4)2(H2O)2] · H2O 1, has been constructed from 2,5-pyridine-dicarboxylato bridges (2,5-pydc2−) and N,N,N′,N″,N″-pentamethyl-diethylenetriamine (Me5dien) acting as a blocking ligand. The copper ions, within the centrosymmetric trinuclear cations, are connected by two 2,5-pydc2− bridges, with an intramolecular Cu···Cu separation of 8.432 Å. The central copper ion exhibits an elongated octahedral geometry, with semicoordinated ions, while the terminal ones are pentacoordinated (distorted square-pyramidal geometry). The cryomagnetic investigation of 1 reveals an antiferromagnetic coupling of the copper(II) ions (J = −5.9 cm−1, H = −JSCu1SCu2 − JSCu2SCu1a).  相似文献   

18.
Reaction of [Ru2(O2CMe)4]Cl with K3[Cr(CN)5NO] in water forms Hx[RuII/III2(O2CMe)4]3−x-[Cr(CN)5NO]·zH2O (x = 0.2) that magnetically orders at 4.0 K and possesses an interpenetrating body centered cubic [a = 13.2509(2) Å] structure with random locations of the bridging nitrosyl ligands, and x/3 vacant cation sites. Similarly, the aqueous reaction of [Ru2(O2CMe)4]Cl with Na2[Fe(CN)5NO] forms paramagnetic [Ru2(O2CMe)4]2[Fe(CN)5NO]·H2O, which has a similar tetragonal interpenetrating structure [a = 13.0186(1) Å, c = 13.0699(2) Å] where the NO ligands are presumably nonbridging and 1/3 of the expected cation sites are unoccupied. The presence of uncoordinated NO sites in addition to missing neighboring [Ru2(O2CMe)4]+ units, results in significant vacancies (or holes) in the lattice.  相似文献   

19.
The character and dynamics of low-lying electronic excited states of the complexes fac-[Re(Cl)(CO)3(papy)2] and fac-[Re(papy)(CO)3(bpy)]+ (papy = trans-4-phenylazopyridine) were investigated using stationary (UV-Vis absorption, resonance Raman) and ultrafast time-resolved (visible, IR absorption) spectroscopic methods. Excitation of [Re(Cl)(CO)3(papy)2] at 400 nm is directed to 1ππ(papy) and Re → papy 1MLCT excited states. Ultrafast (?1.4 ps) intersystem crossing (ISC) to 3(papy) follows. Excitation of [Re(papy)(CO)3(bpy)]+ is directed to 1ππ(papy), 1MLCT(papy) and 1MLCT(bpy). The states 3(papy) and 3MLCT(bpy) are then populated simultaneously in less then 0.8 ps. The 3MLCT(bpy) state decays to 3(papy) with a 3 ps time constant. 3(papy) is the lowest excited state for both complexes. It undergoes vibrational cooling and partial rotation around the -NN- bond, to form an intermediate with a nonplanar papy ligand in less than 40 ps. This species then undergoes ISC to the ground state potential energy surface, on which the trans and cis isomers are formed by reverse and forward intraligand papy rotation, respectively. This process occurs with a time constant of 120 and 100 ps for [Re(Cl)(CO)3(papy)2] and [Re(papy)(CO)3(bpy)]+, respectively. It is concluded that coordination of papy to the Re center accelerates the ISC, switching the photochemistry from singlet to triplet excited states. Comparison with analogous 4-styrylpyridine complexes (M. Busby, P. Matousek, M. Towrie, A. Vl?ek Jr., J. Phys. Chem. A 109 (2005) 3000) reveals similarities of the decay mechanism of excited states of Re complexes with ligands containing -NN- and -CC- bonds. Both involve sub-picosecond ISC to triplets, partial rotation around the double bond and slower ISC to the trans or cis ground state. This process is about 200 times faster for the -NN- bonded papy ligand. The intramolecular energy transfer from the 3MLCT-excited Re(CO)3(bpy) chromophore to the intraligand state of the axial ligand occurs for both L = stpy and papy with a comparable rate of a few ps.  相似文献   

20.
Due to the key role of DNA in cell life and pathological processes, the design of specific chemical nucleases, DNA probes and alkylating agents is an important research area for the development of new therapeutic agents and tools in Biochemistry. Hence, the interaction of small molecules with DNA has attracted in particular a great deal of attention.The aim of this study was to investigate the ability of [Cr(phen)2(dppz)]3+ to associate with DNA and to characterize it as photocleavage reagent for Photodynamic Therapy (PDT).Chromium(III) complex [Cr(phen)2(dppz)]3+, (dppz = dipyridophenazine, phen = 1,10-phenanthroline), where dppz is a planar bidentate ligand with an extended π system, has been found to bind strongly to double strand oligonucleotides (ds-oligo) and plasmid DNA with intrinsic DNA binding constants, Kb, of (3.9 ± 0.3) × 105 M1 and (1.1 ± 0.1) × 105 M1, respectively. The binding properties to DNA were investigated by UV-visible (UV-Vis) absorption spectroscopy and electrophoretic studies. UV-Vis absorption data provide clearly that the chromium(III) complex interacts with DNA intercalatively. Competitive binding experiments show that the enhancement in the emission intensity of ethidium bromide (EthBr) in the presence of DNA was quenched by [Cr(phen)2(dppz)]3+, indicating that the Cr(III) complex displaces EthBr from its binding site in plasmid DNA. Moreover, [Cr(phen)2(dppz)]3+, non-covalently bound to DNA, promotes the photocleavage of plasmid DNA under 457 nm irradiation. We also found that the irradiated Cr(III)-plasmid DNA association is able to impair the transforming capacity of bacteria. These results provide evidence confirming the responsible and essential role of the excited state of [Cr(phen)2(dppz)]3+ for damaging the DNA structure. The combination of DNA, [Cr(phen)2(dppz)]3+ and light, is necessary to induce damage. In addition, assays of the photosensitization of transformed bacterial suspensions suggest that Escherichia coli may be photoinactivated by irradiation in the presence of [Cr(phen)2(dppz)]3+. In sum, our results allow us to postulate the [Cr(phen)2(dppz)]3+ complex as a very attractive candidate for DNA photocleavage with potential applications in Photodynamic Therapy (PDT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号