首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Micro-and minisatellites constitute an essential part of DNA with low sequence complexity and perform a number of important functions. The TandemSWAN program was used to search the human genome for tandem repeats with a length of a repeated unit to 70 bp, including repeats with a large number of nucleotide substitutions. It was shown that, for a significant fraction of the program-found minisatellites with a repeat unit length less than 25 bp, a shorter repeated motif can be discerned in this sequence, which is often similar to the sequence of microsatellites occurring widely in the human genome. A model of hierarchical origin of minisatellites in the human genome was proposed.  相似文献   

2.
Polymorphic minisatellites, also known as variable number of tandem repeats (VNTRs), are tandem repeat regions that show variation in the number of repeat units among chromosomes in a population. Currently, there are no general methods for predicting which minisatellites have a high probability of being polymorphic, given their sequence characteristics. An earlier approach has focused on potentially highly polymorphic and hypervariable minisatellites, which make up only a small fraction of all minisatellites in the human genome. We have developed a model, based on available minisatellite and VNTR sequence data, that predicts the probability that a minisatellite (unit size > or = 6 bp) identified by the computer program Tandem Repeats Finder is polymorphic (VNTR). According to the model, minisatellites with high copy number and high degree of sequence similarity are most likely to be VNTRs. This approach was used to scan the draft sequence of the human genome for VNTRs. A total of 157,549 minisatellite repeats were found, of which 29,224 are predicted to be VNTRs. Contrary to previous results, VNTRs appear to be widespread and abundant throughout the human genome, with an estimated density of 9.1 VNTRs/Mb.  相似文献   

3.
Huan Gao  Jie Kong 《DNA sequence》2005,16(6):426-436
Through two-time sequencing randomly in Fenneropenaeus chinensis, 2,597,000 bp cumulative length random genomic sequences about occupying 1.23 per thousand of the entire genome are obtained, in which the length of the first time sequencing is 884,000 bp, by cutting the genome DNA with Sau3AI enzyme, and the second is 1,713,000 bp by breaking the genome DNA with the physical method, ultrasonic. Using tandem repeat finder (TRF) soft to analyze the sequences, 4,588 tandem repeats are found, in which the number of microsatellites (1-6 bp) is 3,888, and 700 for minisatellites ( >or= 7 bp). The cumulative length of repeats is 305,555 bp, accounting for 11.72% of total cumulative sequence length, in which the cumulative length of microsatellites is 232,979 bp, accounting for 8.97% of total sequence length, and greater than those of other organisms, such as human and mosquito, etc. The dinucleotide repeat type is dominant in which the dominant repeat class is AT. The second abundant repeat type is trinucleotide, of which the dominant repeat class is AAT. Interestingly, of all of repeat types, the repeat numbers and repeat classes of primer number repeat types, such as pentanucleotide, heptanucleotide, elevennucleotide, etc. are less than those of repeat types beside them. The phenomena may involve the genesis and the evolution of microsatellites and minisatellites.  相似文献   

4.
Certain minisatellites exhibit hypervariability with respect to the number of repeat units and, thus, allele length. Such polymorphism is generated by germline-specific recombinational events that occur at high frequencies and lead to the gain or loss of repeat units. In order to elucidate the molecular details of mutagenesis in minisatellites, we have integrated human minisatellites into the yeast genome in the vicinity of a hotspot for meiotic double-strand breaks (DSBs). Here, we describe the results of tetrad analyses of mutations in the human MS205 minisatellite in yeast strains heterozygous for alleles composed of 51 and 31 repeat units, as well as in a strain homozygous for the same 51 repeat unit allele. The length-mutation rate was twice as high in the heterozygous strain as in the homozygous strain, suggesting that sequence divergence between alleles enhances the generation of length mutations. In the case of heterozygotes, the frequency of length mutants resulting from inter-allelic exchange was significantly higher in tetrads with three viable spores than in tetrads with four viable spores, indicating that there is a higher probability for spore mortality in tetrads originating from meioses during which inter-allelic exchange of repeat units occurs. In an attempt to explain these findings, we propose a model for minisatellite mutation involving recombination, in which sequence divergence between alleles results in a heteroduplex containing numerous mismatches. We suggest that convergent mismatch-repair tracts in this heteroduplex give rise to a DSB that may be repaired by an additional round of recombination resulting in mutation of a third allele, or be lethal if such recombination fails. It appears probable that the formation of such additional mutants is the major explanation for the difference in meiotic length-mutation rates between the heterozygous and homozygous yeast strains, and that this phenomenon contributes to high germline length-mutation frequencies at minisatellites in humans.  相似文献   

5.
6.
P J O'Hara  F J Grant 《Gene》1988,66(1):147-158
The gene coding for human factor VII, a vitamin K-dependent coagulation factor, contains five minisatellite imperfect tandem repeats with monomer element lengths ranging from 14 to 37 bp, and copy numbers ranging from 6 to 52. Three of these repeats are entirely within introns, one is entirely in an untranslated portion of an exon, and one spans an exon-intron border and contains coding sequence. A consensus sequence derived from a comparison of the monomers is similar to a core sequence found in other minisatellites. All of the minisatellites display higher-order periodicities. At least one of these minisatellites is polymorphic. A variation in repeat copy number has been observed in a tandem-repeat region in the seventh factor-VII intron.  相似文献   

7.

Background

Birds have smaller average genome sizes than other tetrapod classes, and it has been proposed that a relatively low frequency of repeating DNA is one factor in reduction of avian genome sizes.

Results

DNA repeat arrays in the sequenced portion of the chicken (Gallus gallus) autosomes were quantified and compared with those in human autosomes. In the chicken 10.3% of the genome was occupied by DNA repeats, in contrast to 44.9% in human. In the chicken, the percentage of a chromosome occupied by repeats was positively correlated with chromosome length, but even the largest chicken chromosomes had repeat densities much lower than those in human, indicating that avoidance of repeats in the chicken is not confined to minichromosomes. When 294 simple sequence repeat types shared between chicken and human genomes were compared, mean repeat array length and maximum repeat array length were significantly lower in the chicken than in human.

Conclusions

The fact that the chicken simple sequence repeat arrays were consistently smaller than arrays of the same type in human is evidence that the reduction in repeat array length in the chicken has involved numerous independent evolutionary events. This implies that reduction of DNA repeats in birds is the result of adaptive evolution. Reduction of DNA repeats on minichromosomes may be an adaptation to permit chiasma formation and alignment of small chromosomes. However, the fact that repeat array lengths are consistently reduced on the largest chicken chromosomes supports the hypothesis that other selective factors are at work, presumably related to the reduction of cell size and consequent advantages for the energetic demands of flight.  相似文献   

8.
9.

Background

Polymorphic tandem repeat typing is a new generic technology which has been proved to be very efficient for bacterial pathogens such as B. anthracis, M. tuberculosis, P. aeruginosa, L. pneumophila, Y. pestis. The previously developed tandem repeats database takes advantage of the release of genome sequence data for a growing number of bacteria to facilitate the identification of tandem repeats. The development of an assay then requires the evaluation of tandem repeat polymorphism on well-selected sets of isolates. In the case of major human pathogens, such as S. aureus, more than one strain is being sequenced, so that tandem repeats most likely to be polymorphic can now be selected in silico based on genome sequence comparison.

Results

In addition to the previously described general Tandem Repeats Database, we have developed a tool to automatically identify tandem repeats of a different length in the genome sequence of two (or more) closely related bacterial strains. Genome comparisons are pre-computed. The results of the comparisons are parsed in a database, which can be conveniently queried over the internet according to criteria of practical value, including repeat unit length, predicted size difference, etc. Comparisons are available for 16 bacterial species, and the orthopox viruses, including the variola virus and three of its close neighbors.

Conclusions

We are presenting an internet-based resource to help develop and perform tandem repeats based bacterial strain typing. The tools accessible at http://minisatellites.u-psud.fr now comprise four parts. The Tandem Repeats Database enables the identification of tandem repeats across entire genomes. The Strain Comparison Page identifies tandem repeats differing between different genome sequences from the same species. The "Blast in the Tandem Repeats Database" facilitates the search for a known tandem repeat and the prediction of amplification product sizes. The "Bacterial Genotyping Page" is a service for strain identification at the subspecies level.
  相似文献   

10.
Genome plasticity is considered as a means for bacteria to adapt to their environment. Plasticity in tandem repeat sequences on bacterial genomes has been recently exploited to trace the epidemiology of pathogens. Here, we examine the utility of minisatellite (i.e., a repeat unit of six nucleotides or more) typing in non-pathogenic food bacteria of the species Lactococcus lactis. Thirty-four minisatellites identified on the sequenced L. lactis ssp. lactis strain IL1403 genome were first analyzed in 10 closely related ssp. lactis strains, as determined by randomly amplified polymorphic DNA (RAPD). The selected tandem repeats varied in length, percent identity between repeats, and locations. We showed that: (i) the greatest polymorphism was in orfs encoding exported proteins or in intergenic regions; (ii) two thirds of minisatellites were little- or non-variable, despite as much as 90% identity between tandem repeats; and (iii) dendrograms based on either RAPD or minisatellite analyses were similar. Seven minisatellites identified in this study are potentially useful for lactococcal typing. We then asked whether tandem repeats in L. lactis were stable upon very long-term (up to two years) storage. Despite large rearrangements previously reported in derivative strains, just one of 10 minisatellites tested underwent an alteration, suggesting that tandem repeat rearrangements probably occur during active DNA replication. We conclude that multiple locus minisatellite analysis can be a valuable tool to follow lactococcal strain diversity.  相似文献   

11.
A substantial portion of the human genome has been found to consist of simple sequence repeats, including microsatellites and minisatellites. Microsatellites, tandem repeats of 1-6 nucleotides, form the template for dynamic mutations, which involve heritable changes in the lengths of repeat sequences. In recent years, a large number of human disorders have been found to be caused by dynamic mutations, the most common of which are trinucleotide repeat expansion diseases. Dynamic mutations are common to numerous nervous system disorders, including Huntington's disease, various spinocerebellar ataxias, fragile X syndrome, fragile X tremor/ataxia syndrome, Friedreich ataxia and other neurodegenerative disorders. The involvement of dynamic mutations in brain disorders will be reviewed, with a focus on the large group caused by CAG/glutamine repeat expansions. We will also outline a proposed role of tandem repeat polymorphisms (TRPs), with unique 'digital' genetic distributions, in modulating brain development and normal function, so as to generate additional mutational diversity upon which natural selection may act.  相似文献   

12.
In the human genome, short tandem repetitive (STR) DNA sequences often show restriction fragment length polymorphisms (RFLPs) due to variation in the number of copies of the repeat unit. For a subset of these sequences known as minisatellites or variable number tandem repeat loci (VNTR), it has been proposed that a homologous "core" sequence of 10-12 nucleotides is involved in the mechanism(s) generating the polymorphism. In our present study we have prepared oligonucleotide probes complementary to one or two repeat units of several VNTR loci. Under stringent hybridization and wash conditions these probes hybridize locus specifically thus allowing the evaluation of the intrinsic polymorphism of individual loci. Our results indicate that not all of the loci having STR DNA sequences are polymorphic despite the fact that they share the "core" sequence. This suggests that more than the DNA sequence of the locus is involved in the mechanism(s) generating the polymorphism.  相似文献   

13.
The human genome contains approximately 50,000 copies of an interspersed repeat with the sequence (dT-dG)n, where n = approximately 10-60. In humans, (TG)n repeats have been found in several sequenced regions. Since minisatellite regions with larger repeat elements often display extensive length polymorphisms, we suspected that (TG)n repeats ("microsatellites") might also be polymorphic. Using the polymerase chain reaction to amplify a (TG)n microsatellite in the human cardiac actin gene, we detected 12 different allelic fragments in 37 unrelated individuals, 32 of whom were heterozygous. Codominant Mendelian inheritance of fragments was observed in three families with a total of 24 children. Because of the widespread distribution of (TG)n microsatellites, polymorphisms of this type may be generally abundant and present in regions where minisatellites are rare, making such microsatellite loci very useful for linkage studies in humans.  相似文献   

14.
Minisatellites are DNA tandem repeats that are found in all sequenced genomes. In the yeast Saccharomyces cerevisiae, they are frequently encountered in genes encoding cell wall proteins. Minisatellites present in the completely sequenced genome of the pathogenic yeast Candida glabrata were similarly analyzed, and two new types of minisatellites were discovered: minisatellites that are composed of two different intermingled repeats (called compound minisatellites), and minisatellites containing unusually long repeated motifs (126-429 bp). These long repeat minisatellites may reach unusual length for such elements (up to 10 kb). Due to these peculiar properties, they have been named 'megasatellites'. They are found essentially in genes involved in cell-cell adhesion, and could therefore be involved in the ability of this opportunistic pathogen to colonize the human host. In addition to megasatellites, found in large paralogous gene families, there are 93 minisatellites with simple shorter motifs, comparable to those found in S. cerevisiae. Most of the time, these minisatellites are not conserved between C. glabrata and S. cerevisiae, although their host genes are well conserved, raising the question of an active mechanism creating minisatellites de novo in hemiascomycetes.  相似文献   

15.
G C Overton  E S Weinberg 《Cell》1978,14(2):247-257
Histone gene repeats in S. purpuratus are shown to be of variable length and sequence. Two recombinant plasmids containing the full-length 6.3 kb histone repeat unit are found to differer in length at two sites in the repeating structure and in the occurrence of two restriction enzyme recognition sites. Variation in repeat length is also demonstrated in the unfractionated DNA of five sea urchins and in a sample of DNA enriched for histone gene sequences by density gradient methods. The repeats in each individual are of a very limited number of major classes, which may differ from one another in overall length or in distribution and presence of particular restriction enzyme sites. Variations are found to occur at many regions of the repeat; some have been mapped specifically to spacer regions. Repeats may differ dramatically from individual to individual since there is no one type of repeat class common to all, although the absolute length differences of the repeats that are found are small.  相似文献   

16.
Cederberg H  Rannug U 《Mutation research》2006,598(1-2):132-143
Minisatellites are tandem repeat loci, with repeat units ranging in size from 5 bp to 100 bp. The total lengths of repeat arrays vary from about 0.5 kb to 30 kb, and excessive variability in allele length at human minisatellite loci is the result of germline-specific complex recombination events generating new length alleles. Minisatellite alleles also mutate to new lengths in somatic cells, but this occurs at a much lower rate than in the germline. Since recombination is involved in minisatellite mutation, the yeast Saccharomyces cerevisiae is a suitable model organism that has been employed to further dissect the molecular basis of mutation events at human minisatellites. These studies have shown that the mutational behaviour of a minisatellite in meiosis is not determined by the intrinsic properties of the repeat array, but are highly dependent on the position of the minisatellite in the genome. The processes for minisatellite mutation in yeast and humans are identical in the sense that mutation is indeed driven by meiotic recombination, but differ with regard to the types of structural changes that are generated by the recombination events. Tetrad analyses showed that inter-allelic transfers of repeats occur by conversion and not crossing over, and that several chromatids can be involved in successive recombination events in one meiosis, resulting in mutant alleles in several spores. It has been demonstrated that the genes SPO11 and RAD50, involved in the initiation of recombination events, are required for human minisatellite mutation in yeast meiosis. Intrinsic properties of the repeat array appear to determine the stability of human minisatellites in yeast mitosis, since mitotic mutation rates in yeast are highly variable between minisatellites. The repair genes RAD27 and DNA2 stabilise human minisatellites in yeast mitosis, while RAD5 has no effect on mitotic stability. MSH2 depresses human minisatellite frequency in meiotic cells of yeast.  相似文献   

17.
Taylor JS  Breden F 《Genetics》2000,155(3):1313-1320
The standard slipped-strand mispairing (SSM) model for the formation of variable number tandem repeats (VNTRs) proposes that a few tandem repeats, produced by chance mutations, provide the "raw material" for VNTR expansion. However, this model is unlikely to explain the formation of VNTRs with long motifs (e.g., minisatellites), because the likelihood of a tandem repeat forming by chance decreases rapidly as the length of the repeat motif increases. Phylogenetic reconstruction of the birth of a mitochondrial (mt) DNA minisatellite in guppies suggests that VNTRs with long motifs can form as a consequence of SSM at noncontiguous repeats. VNTRs formed in this manner have motifs longer than the noncontiguous repeat originally formed by chance and are flanked by one unit of the original, noncontiguous repeat. SSM at noncontiguous repeats can therefore explain the birth of VNTRs with long motifs and the "imperfect" or "short direct" repeats frequently observed adjacent to both mtDNA and nuclear VNTRs.  相似文献   

18.
Divergent microsatellite evolution in the human and chimpanzee lineages   总被引:1,自引:0,他引:1  
Gáspári Z  Ortutay C  Tóth G 《FEBS letters》2007,581(13):2523-2526
Comparison of the complete human genome sequence to one of its closest relatives, the chimpanzee genome, provides a unique opportunity for exploring recent evolutionary events affecting the microsatellites in these species. A simple assumption on microsatellite distribution is that the total length of perfect repeats is constant compared to that of imperfect ones regardless of the repeat sequence. In this paper, we show that this is valid for most of the chimpanzee genome but not for a number of human chromosomes. Our results suggest accelerated evolution of microsatellites in the human genome relative to the chimpanzee lineage.  相似文献   

19.
Minisatellite MS1 (locus D1S7) is one of the most unstable minisatellites identified in humans. It is unusual in having a short repeat unit of 9 bp and in showing somatic instability in colorectal carcinomas, suggesting that mitotic replication or repair errors may contribute to repeat-DNA mutation. We have therefore used single-molecule polymerase chain reaction to characterize mutation events in sperm and somatic DNA. As with other minisatellites, high levels of instability are seen only in the germline and generate two distinct classes of structural change. The first involves large and frequently complex rearrangements that most likely arise by recombinational processes, as is seen at other minisatellites. The second pathway generates primarily, if not exclusively, single-repeat changes restricted to sequence-homogeneous regions of alleles. Their frequency is dependent on the length of uninterrupted repeats, with evidence of a hyperinstability threshold similar in length to that observed at triplet-repeat loci showing expansions driven by dynamic mutation. In contrast to triplet loci, however, the single-repeat changes at MS1 exclusively involve repeat deletion, and can be so frequent--as many as 0.7-1.3 mutation events per sperm cell for the longest homogeneous arrays--that alleles harboring these long arrays must be extremely ephemeral in human populations. The apparently impossible existence of alleles with deletion-prone uninterrupted repeats therefore presents a paradox with no obvious explanation.  相似文献   

20.
The neuronally expressed Shc adaptor homolog SCK1/SHC2 gene contains an unusually high number of minisatellites. In humans, twelve different minisatellite sequences are located in introns of SCK1/SHC2 and ten of them are highly polymorphic. Here we used primers developed for humans to screen ten intronic loci of SCK1/SHC2 in chimpanzee and gorilla, and undertook a comprehensive analysis of the genomic sequence to address the evolutionary events driving these variable repeats. All ten loci amplified in chimpanzee and gorilla contained hypervariable and low-variability minisatellites. The human polymorphic locus TR1 was monomorphic in chimpanzee and gorilla, but we detected polymorphic alleles in these apes for the human monomorphic TR7 locus. When we examined the repeat size among these hominoids, there was no consistent variation by length from humans to great apes. In spite of the inconsistent evolutionary dynamics in repeat length variation, exon 16 was highly conserved between humans and great apes. These results suggest that non-coding intronic minisatellites do not show a consistent evolutionary paradigm but evolved with different patterns among each minisatellite locus. These findings provide important insight for minisatellite conservation during hominoid evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号