首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Low non-freezing temperature is one of the major environmental factors affecting growth, development and geographical distribution of chilling-sensitive plants, Jatropha curcas is considered as a sustainable energy plants with great potential for biodiesel production. In this study, chilling shock at 5 °C followed by recovery at 26 °C for 4 h significantly improved survival percentage of J. curcas seedlings under chilling stress at 1 °C. In addition, chilling shock could obviously enhance the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), and the levels of antioxidants ascorbic acid (AsA) and glutathione (GSH), as well as the contents of osmolytes proline and betaine in leaves of seedlings of J. curcas compared with the control without chilling shock. During the process of recovery, GR activity, AsA, GSH, proline and betaine contents sequentially increased, whereas SOD, APX and CAT activities gradually decreased, but they markedly maintained higher activities than those of control. Under chilling stress, activities of SOD, APX, CAT, GR and GPX, and contents of AsA, GSH, proline and betaine, as well as the ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)] in the shocked and non-shock seedlings all dropped, but shocked seedlings sustained significantly higher antioxidant enzyme activity, antioxidant and osmolyte contents, as well as ratio of reduced antioxidants to total antioxidants from beginning to end compared with control. These results indicated that the chilling shock followed by recovery could improve chilling tolerance of seedlings in J. curcas, and antioxidant enzymes and osmolytes play important role in the acquisition of chilling tolerance.  相似文献   

2.
The possible role of zinc (Zn) to reverse the oxidative stress caused by mercury (Hg) was investigated in Pfaffia glomerata plantlets. Thirty-day-old acclimatized plantlets of P. glomerata were exposed to four treatments: control, 50 μM Zn, 50 μM Hg and 50 μM Zn + 50 μM Hg for 9 days. In Zn + Hg treatment, shoot and root Hg concentrations were 59 and 24% smaller than that plants exposed to 50 μM Hg added alone. An increase in the Zn concentration in the shoot of plants exposed to Zn + Hg occurred, although in the roots Zn concentration was not altered, when compared to the control. Fresh and dry weights, as well as the activity of δ-aminolevulinic acid dehydratase (δ-ALA-D) in Hg-treated plants were significantly reduced. Percentage survival, fresh and dry weights and δ-ALA-D activity of plants treated by 50 μM Zn + 50 μM Hg were greater than of that treated by Hg alone. Moreover, Zn treatment reduced the lipid peroxidation caused by Hg, being this effect related to increased root superoxide dismutase activity, and shoot catalase and ascorbate peroxidase activities. In conclusion, the presence of Zn in the substrate caused a significant reduction in the oxidative stress induced by Hg.  相似文献   

3.
The effect of mercury stress on antioxidant enzymes, lipid peroxidation, photosynthetic pigments, hydrogen peroxide content, osmolytes, and growth parameters in Tartary buckwheat were investigated. The effect of Hg-exposure was found to be time (15 and 30 days) and concentration (0, 25, 50, and 75 μM) dependent. Hg was readily absorbed by seedlings with higher content in roots and it resulted in reduction of root and shoot length. The root and shoot Hg uptakes were significantly and directly correlated with each other. However, the fresh mass and biomass increased up to 50 μM Hg-treatment at both time periods. A significant positive correlation was observed between biomass accumulation with relative water content. Hg levels were positively correlated with the production of hydrogen peroxide in leaves as evidenced by 3, 3-diaminobenzidine (DAB)-mediated tissue fingerprinting. The osmolyte levels in general were elevated except for proline and protein which showed a decline at 75 μM Hg-treatment at 30-days. Amongst the photosynthetic pigments, chlorophyll showed a decline while as carotenoid and anthocyanin levels were elevated. The activity of antioxidant enzymes such as ascorbate peroxidase (APX), guaiacol peroxidase (POD), glutathione reductase (GR), Glutathione-s-transferase (GST) and superoxide dismutase (SOD) were positively correlated with Hg-treatment except SOD, which declined at 75 μM Hg-treatment in 30-days old seedlings. Catalase (CAT) activity showed a positive correlation up to 50 μM Hg-treatment but at 75 μM Hg-stress it decreases at both 15 and 30 days.  相似文献   

4.
Research on heme oxygenase in plants has received consideration in recent years due to its several roles in development, defense, and metabolism during various environmental stresses. In the current investigation, the role of heme oxygenase (HO) 1 was evaluated in reducing heavy metal (Cd and Ni) uptake and alleviating Cd and Ni toxicity effects in the hydroponically grown seedlings of Vigna radiata var. PDM 54. Seedlings were subjected to Cd- and Ni-induced oxidative stress independently at different concentrations ranging from 10 to 100 μM. After 96 h (fourth day) of treatment, the stressed plants were harvested to study the cellular homeostasis and detoxification mechanism by examining the growth, stress parameters (LPX, H2O2 content), and non-enzymatic and enzymatic parameters (ascorbate peroxidase (APX), guaicol peroxidase (GPX), and catalase (CAT)) including HO 1. At 50 μM CdCl2 and 60 μM NiSO4, HO 1 activity was found to be highest in leaves which were 1.39 and 1.16-fold, respectively. The greatest HO 1 activity was reflected from the reduction of H2O2 content at these metal concentrations (50 μM CdCl2 and 60 μM NiSO4) which is correlated with the increasing activity of other antioxidant enzymes (CAT, APX). Thus, HO 1 works within a group that generates the defense machinery for the plant’s survival by scavenging ROS which is confirmed by a time-dependent study. Hence, it is concluded that seedlings of V. radiata were more tolerant towards metal-induced oxidative stress in which HO 1 is localized in its residential area (plastids).  相似文献   

5.
Toxicological and pharmacological studies demonstrated that the introduction of functional groups into the aromatic ring of diphenyl diselenide alter its effect. The aim of this study was to evaluate the in vitro effect of m-trifluoromethyl-diphenyl diselenide (m-CF3–C6H4Se)2, p-chloro-diphenyl diselenide (p-Cl–C6H4Se)2 and p-methoxyl-diphenyl diselenide (p-CH3O–C6H4Se)2 on δ-aminolevulinate dehydratase (δ-ALA-D) and Na+, K+-ATPase activities in rat brain homogenates. Diselenides inhibited δ-ALA-D activity (IC50 4–6 μM [concentration inhibiting 50%]), and dithiothreitol (DTT) restored the enzyme activity. ZnCl2 (100 μM) did not restore δ-ALA-D inhibition caused by (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2. Na+, K+-ATPase activity was more sensitive to (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2 (IC50 6 μM) than (p-CH3O–C6H4Se)2 and (PhSe)2 (IC50 45 and 31 μM, respectively). DTT restored the activity of Na+, K+-ATPase inhibited by diselenides. The effect of diselenides on Na+/K+-ATPase is dependent on their substitutions in the aromatic ring. The mechanism through which diselenides inhibit δ-ALA-D and Na+, K+-ATPase activities involves the oxidation of thiol groups.  相似文献   

6.
In vitro grown callus and seedlings of Brassica juncea were treated with equimolar concentrations of cadmium and compared for their respective tolerance to cadmium. Calli cultures were grown on Murashige and Skoog medium supplemented with α 6-benzyl aminopurine (200 µg L?1, naphthalene acetic acid 200 µg L?1) and 2,4-dichloro-phenoxy acetic acid (65 µg L?1) while the seedlings grown on Hoagland's nutrient solution have been carried out. Cellular homeostasis and detoxification to cadmium in B. juncea were studied by analyzing the growth in terms of fresh weight and dry weight, lipid peroxidation, proline accumulation, and antioxidative enzymes (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)). At 200 µM cadmium, callus and seedlings showed 73.61% and 74.76% reduction in tolerance, respectively. A significant increase in malondialdehyde (MDA) content was found in both calli and seedlings; however, the amount of MDA content was more in seedlings. Proline content increased on lower concentration of cadmium (up to 50 µM), and it further decreased (up to 200 µM). But the accumulation of proline was higher in callus cultures. The overall activity of antioxidative enzymes (SOD, CAT, and APX) was found to be higher in callus in comparison to seedlings of B. juncea. Callus and seedlings showed a significant (P?≤?0.5) increase in SOD activity in a concentration-dependent manner up to 50 µM cadmium concentration but decreased further. APX activity increased significantly at low cadmium levels but CAT activity decreased significantly throughout on increasing cadmium concentrations from 5 to 200 µM, respectively. Hence, it was observed that callus of B. juncea was more tolerant in comparison to seedlings exposed to equimolar concentrations of cadmium. Thus, from the present studies, it is concluded that calli were more tolerant toward cadmium-induced oxidative stress. Hence, it is suitable material for the study of cadmium tolerance mechanisms and for the manipulations within them for better understanding of cadmium detoxification strategies in B. juncea.  相似文献   

7.
The effects of increasing arsenic (0, 10, 50, 100 mg L?1) and zinc (0, 50, 80, 120, 200 mg L?1) doses on germination and oxidative stress markers (H2O2, MDA, SOD, CAT, APX, and GR) were examined in two Brazilian savanna tree species (Anadenanthera peregrina and Myracrodruon urundeuva) commonly used to remediate contaminated soils. The deleterious effects of As and Zn on seed germination were due to As- and Zn-induced H2O2 accumulation and inhibition of APX and GR activities, which lead to oxidative damage by lipid peroxidation. SOD and CAT did not show any As- and Zn-induced inhibition of their activities as was seen with APX and GR. We investigated the close relationships between seed germination success under As and Zn stress in terms of GR and, especially, APX activities. Increased germination of A. peregrina seeds exposed to 50 mg L?1 of Zn was related to increased APX activity, and germination in the presence of As (10 mg L?1) was observed only in M. urundeuva seeds that demonstrated increased APX activity. All the treatments for both species in which germination decreased or was inhibited showed decreases in APX activity. A. peregrina seeds showed higher Zn-tolerance than M. urundeuva, while the reverse was observed with arsenic up to exposures of 10 mg L?1.  相似文献   

8.
Eruca sativa seedlings were treated with different Zn concentrations (0, 250, 500, 1,000, 2,000 μg g?1 dried growth medium) under controlled conditions. The seedlings were harvested 20 days after Zn treatment. Physiological parameters, such as root and shoot length, fresh and dry weight, were measured and Zn content of roots and shoots was determined. Furthermore, various biochemical parameters were studied on E. sativa leaves: enzymatic antioxidants, such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and non-enzymatic antioxidants, such as ascorbate, non-protein thiols. Malondialdehyde, which is an index of lipid peroxidation, was assayed. Zn treatment did not have any significant effect on fresh and dry weights, whereas 500 μg g?1 Zn increased root growth significantly (p < 0.05). Zn accumulated in roots 2–8 times more than it did in leaves. Lipid peroxidation increased in proportion with the increase in Zn. Although a decrease in SOD and CAT activities at increased Zn was found, a significant increase in APX and POD was observed at 500 and 1,000 μg g?1 Zn, respectively. In addition, an increase in the amounts of non-protein thiols and total AsA (Ascorbate) was observed with the increase in Zn.  相似文献   

9.
Jasmonic acid (JA), which is an important phytohormone, plays a key role in plant growth, development and stress responses. Here, Malus baccata Borkh. seedlings were used to study the mechanism by which JA alleviates the oxidative damage induced by low root-zone temperature (5 °C) through regulating the ascorbate–glutathione (AsA–GSH) cycle. The roots of M. baccata Borkh. were subjected to three treatments [5 °C, 5 °C + JA, and 5 °C + ibuprofen (IBU)] for 0, 12, 24, and 48 h. The results showed that treatment with low root-zone temperature could modulate the non-enzymatic and enzymatic components of the AsA–GSH cycle, significantly inducing the accumulation of MDA and H2O2. Additionally, the endogenous JA content changed dramatically, and the expression levels of the related genes [lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC)] showed different trends. In plants pretreated with JA, the endogenous JA content increased at 24 h, and the gene expression levels of LOX, AOS, and AOC were upregulated. We also found a marked increase in the activities of antioxidant enzymes [ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR)], a decrease in oxidized glutathione (GSSG) and an increased GSH/GSSG ratio, which resulted in lower MDA and H2O2 contents. Thus, the oxidative stress was alleviated. Plants pretreated with IBU experienced an opposite effect on the function of the AsA–GSH cycle and the gene expression in the JA synthesis route relative to those subjected to exogenous JA treatment, indicating that endogenous JA can alleviate oxidative damage by regulating the function of the AsA–GSH cycle under low root-zone temperature.  相似文献   

10.
A study was conducted to find out the role of ascorbic acid (AsA) in modulating growth and different physio-biochemical attributes of canola plants under well-watered as well as water-deficit conditions. Drought stress imposed on 60 % field capacity significantly decreased the shoot and root fresh and dry weights, leaf chlorophyll contents, shoot and root P, root K+, and activity of CAT enzyme, while increased chlorophyll a/b contents, MDA, NPQ, leaf total phenolics, free proline and GB contents in both canola cultivars. Foliar-applied varying levels (50, 100 and 150 mg L?1) of AsA enhanced shoot and root fresh and root dry weights, qN, NPQ, shoot and root P, AsA as well as the activity of POD enzyme particularly under drought stress conditions. Of both canola cultivars, cv. Dunkeld was higher in shoot fresh weights, ETR and F v /F m, MDA, proline and GB contents, and POD activity, however, cv. Cyclone in total phenolics and qN under well-watered and water-deficit conditions. Overall, the foliar-applied AsA had a positive effect, though not marked, on salt sensitive cv. Cyclone in terms of improved growth and other attributes, whereas exogenously applied AsA had a non-significant effect on relatively salt tolerant cv. Dunkeld.  相似文献   

11.
Water deficit for rice is a worldwide concern, and to produce drought-tolerant varieties, it is essential to elucidate molecular mechanisms associated with water deficit tolerance. In the present study, we investigated the differential responses of nonenzymatic antioxidants ascorbate (AsA), glutathione (GSH), and their redox pool as well as activity levels of enzymes of ascorbate–glutathione cycle in seedlings of drought-sensitive rice (Oryza sativa L.) cv. Malviya-36 and drought-tolerant cv. Brown Gora subjected to water deficit treatment of ?1.0 and ?2.1 MPa for 24–72 h using PEG-6000 in sand cultures. Water deficit caused increased production of reactive oxygen species such as O2??, H2O2, and HO? in the tissues, and the level of production was higher in the sensitive than the tolerant cultivar. Water deficit caused reduction in AsA and GSH and decline in their redox ratios (AsA/DHA and GSH/GSSG) with lesser decline in tolerant than the sensitive seedlings. With progressive level of water deficit, the activities of monodehydroascorbate reductase, dehydroascorbate reductase, ascorbate peroxidase (APX), and glutathione transferase increased in the seedlings of both rice cultivars, but the increased activity levels were higher in the seedlings of drought-tolerant cv. Brown Gora compared to the sensitive cv. Malviya-36. Greater accumulation of proline was observed in stressed seedlings of tolerant than the sensitive cultivar. In-gel activity staining of APX revealed varying numbers of their isoforms and their differential expression in sensitive and tolerant seedlings under water deficit. Results suggest that an enhanced oxidative stress tolerance by a well-coordinated cellular redox state of ascorbate and glutathione in reduced forms and induction of antioxidant defense system by elevated activity levels of enzymes of ascorbate–glutathione cycle is associated with water deficit tolerance in rice.  相似文献   

12.
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.  相似文献   

13.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

14.
Arsenic-induced oxidative stress in chickpea was investigated under glasshouse conditions in response to application of arsenic and phosphorus. Three levels of arsenic (0, 30 and 60 mg kg?1) and four levels of P (50, 100, 200, and 400 mg kg?1) were applied to soil-grown plants. Increasing levels of both arsenic and P significantly increased arsenic concentrations in the plants. Shoot growth was reduced with increased arsenic supply regardless of applied P levels. Applied arsenic induced oxidative stress in the plants, and the concentrations of H2O2 and lipid peroxidation were increased. Activity of superoxide dismutase (SOD) and concentrations of non-enzymatic antioxidants decreased in these plants, but activities of catalase (CAT) and ascorbate peroxidase (APX) were significantly increased under arsenic phytotoxicity. Increased supply of P decreased activities of CAT and APX, and decreased concentrations of non-enzymatic antioxidants, but the high-P plants had lowered lipid peroxidation. It can be concluded that P increased uptake of arsenic from the soil, probably by making it more available, but although plant growth was inhibited by arsenic the P may have partially protected the membranes from arsenic-induced oxidative stress.  相似文献   

15.
The present study was designed to examine whether exogenous sodium nitroprusside (SNP) supplementation has any ameliorating action against PEG-induced osmotic stress in Zea mays cv. FRB-73 roots. Twenty percent or 40 % polyethylene glycol (PEG6000; ?0.5 MPa and ?1.76 MPa, respectively) treatment alone or in combination with 150 and 300 μM SNP was applied to hydroponically grown maize roots for 72 h. Although only catalase (CAT) activity increased when maize roots were exposed to PEG-induced osmotic stress, induction of this antioxidant enzyme was inadequate to detoxify the extreme levels of reactive oxygen species, as evidenced by growth, water content, superoxide anion radical (O 2 ?? ), hydroxyl radical (OH?) scavenging activity, and TBARS content. However, supplementation of PEG-exposed specimens with SNP significantly alleviated stress-induced damage through effective water management and enhancement of antioxidant defense markers including the enzymatic/non-enzymatic systems. Exogenously applied SNP under stress resulted in the up-regulation of glutathione peroxidase (GPX), glutathione S-transferase (GST), ascorbate peroxidase (APX), glutathione reductase (GR), total ascorbate, and glutathione contents involved in ascorbate–glutathione cycle. On the other hand, growth rate, osmotic potential, CAT, APX, GR, and GPX increased in maize roots exposed to both concentrations of SNP alone, but activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase decreased. Based on the above results, an exogenous supply of both 150 and 300 μM SNP to maize roots was protective for PEG-induced toxicity. The present study provides new insights into the mechanisms of SNP (NO donor) amelioration of PEG-induced osmotic stress damages in hydroponically grown maize roots.  相似文献   

16.
Plant growth promoting bacteria (PGPB) may help to reduce the toxicity of heavy metals on plants growing in polluted soils. In this work, Sulla coronaria inoculated with four Cd resistant bacteria (two Pseudomonas spp. and two Rhizobium sullae) were cultivated in hydroponic conditions treated by Cd; long time treatment 50 µM CdCl2 for 30 days and short time treatment; 100 µM CdCl2 for 7 days. Results showed that inoculation with Cd resistant PGPB enhanced plant biomass, thus shoot and root dry weights of control plants were enhanced by 148 and 35% respectively after 7 days. Co-inoculation of plants treated with 50 and 100 µM Cd increased plant biomasses as compared to Cd-treated and uninoculated plants. Cadmium treatment induced lipid peroxidation in plant tissues measured through MDA content in short 7 days 100 µM treatment. Antioxidant enzyme studies showed that inoculation of control plants enhanced APX, SOD and CAT activities after 30 days in shoots and SOD, APX, SOD, GPOX in roots. Application of 50 µM CdCl2 stimulated all enzymes in shoots and decreased SOD and CAT activities in roots. Moreover, 100 µM of CdCl2 increased SOD, APX, CAT and GPOX activities in shoots and increased significantly CAT activity in roots. Metal accumulation depended on Cd concentration, plant organ and time of treatment. Furthermore, the inoculation enhanced Cd uptake in roots by 20% in all treatments. The cultivation of this symbiosis in Cd contaminated soil or in heavy metal hydroponically treated medium, showed that inoculation improved plant biomass and increased Cd uptake especially in roots. Therefore, the present study established that co-inoculation of S. coronaria by a specific consortium of heavy metal resistant PGPB formed a symbiotic system useful for soil phytostabilization.  相似文献   

17.
A hydroponic experiment was carried out to characterize the oxidative stress responses of two potato cultivars (Solanum tuberosum L. cvs. Asterix and Macaca) to cadmium (Cd). Plantlets were exposed to four Cd levels (0, 50, 100, 150 and 200 μM) for 7 days. Cd concentration was increased in both roots and shoot. Number of sprouts and roots was not decreased, whereas Cd treatment affected the number of nodal segments. Chlorophyll content and ALA-D activity were decreased in both cultivars, whereas carotenoids content was decreased only in Macaca. Cd caused lipid peroxidation in roots and shoot of both cultivars. Protein oxidation was only verified at the highest Cd level. H2O2 content was increased in roots and shoot of Asterix, and apparently, a compensatory response between roots and shoot of Macaca was observed. SOD activity was inhibited in roots of Asterix at all Cd treatments, whereas in Macaca it was only increased at two highest Cd levels. Shoot SOD activity increased in Asterix and decreased in Macaca. Root CAT activity in Asterix decreased at 100 and 150 μM, whereas in Macaca it decreased only at 50 μM. Shoot CAT activity was decreased in Macaca. Root AsA content in Macaca was not affected, whereas in shoot it was reduced at 100 μM and increased at 200 μM. Cd caused increase in NPSH content in roots and shoot. Our results suggest that Cd induces oxidative stress in both potato cultivars and that of the two cultivars, Asterix showed greater sensitivity to Cd levels.  相似文献   

18.

Aims

The effect of different MeJA doses applied prior to or simultaneously with toxic Al on biochemical and physiological properties of Vaccinium corymbosum cultivars with contrasting Al resistance was studied.

Methods

Legacy (Al-resistant) and Bluegold (Al-sensitive) plants were treated with and without toxic Al under controlled conditions: a) without Al and MeJA, b) 100 μM Al, c) 100 μM Al + 5 μM MeJA, d) 100 μM Al + 10 μM MeJA and e) 100 μM Al + 50 μM MeJA. MeJA was applied to leaves 24 h prior to or simultaneously with Al in nutrient solution. After 48 h, Al-concentration, lipid peroxidation (LP), H2O2, antioxidant activity, total phenols, total flavonoids, phenolic compounds and superoxide dismutase activity (SOD) of plant organs were analyzed.

Results

Al-concentrations increased with Al-treatment in both cultivars, being Al, LP and H2O2 concentrations reduced with low simultaneous MeJA application. Higher MeJA doses induced more oxidative damage than the lowest. Legacy increased mainly non-enzymatic compounds, whereas Bluegold increased SOD activity to counteract Al3+.

Conclusions

Low MeJA doses applied simultaneously with Al3+ increased Al-resistance in Legacy by increasing phenolic compounds, while Bluegold reduced oxidative damage through increment of SOD activity, suggesting a diminution of its Al-sensitivity. Higher MeJA doses could be potentially toxic. Studies are needed to determine the molecular mechanisms involved in the protective MeJA effect against Al-toxicity.
  相似文献   

19.
The effect of 0.5–1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate–glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200–400 mM NaCl compared to the control. Superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100–400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O 2 ·? accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.  相似文献   

20.
Taking into account that oxidative stress is among the factors causing cancer-related death; chemoprevention which consists in using antioxidant substances such as phenolics could prevent cancer formation and progression. In the present study, phenolic contents and antioxidant activities of methanolic extracts from the halophyte Tamarix gallica shoots were determined. Moreover, the anticancer effect of this species on human colon cancer cells and the likely underlying mechanisms were also investigated. Shoot extracts showed an appreciable total phenolic content (85 mg GAE/g DW) and a high antioxidant activity (IC50 = 3.3 μg/ml for DPPH test). At 50 and 100 μg/ml, shoot, leaf, and flower extracts significantly inhibited Caco-2 cell growth. For instance, almost all plant part extracts inhibited cell growth by 62 % at the concentration 100 μg/ml. DAPI staining results revealed that these extracts decrease DNA synthesis and confirm their effect on Caco-2 cells proliferation, principally at 100 μg/ml. More importantly, cell mitosis was arrested at G2/M phase. The changes in the cell-cycle-associated proteins (cyclin B1, p38, Erk1/2, Chk1, and Chk2) are correlated with the changes in cell cycle distribution. Taken together, our data suggest that T. gallica is a promising candidate species to be used as a source of anticancer biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号