首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Audition provides important cues with regard to stimulus motion although vision may provide the most salient information. It has been reported that a sound of fixed intensity tends to be judged as decreasing in intensity after adaptation to looming visual stimuli or as increasing in intensity after adaptation to receding visual stimuli. This audiovisual interaction in motion aftereffects indicates that there are multimodal contributions to motion perception at early levels of sensory processing. However, there has been no report that sounds can induce the perception of visual motion.

Methodology/Principal Findings

A visual stimulus blinking at a fixed location was perceived to be moving laterally when the flash onset was synchronized to an alternating left-right sound source. This illusory visual motion was strengthened with an increasing retinal eccentricity (2.5 deg to 20 deg) and occurred more frequently when the onsets of the audio and visual stimuli were synchronized.

Conclusions/Significance

We clearly demonstrated that the alternation of sound location induces illusory visual motion when vision cannot provide accurate spatial information. The present findings strongly suggest that the neural representations of auditory and visual motion processing can bias each other, which yields the best estimates of external events in a complementary manner.  相似文献   

2.

Background

Vision provides the most salient information with regard to the stimulus motion. However, it has recently been demonstrated that static visual stimuli are perceived as moving laterally by alternating left-right sound sources. The underlying mechanism of this phenomenon remains unclear; it has not yet been determined whether auditory motion signals, rather than auditory positional signals, can directly contribute to visual motion perception.

Methodology/Principal Findings

Static visual flashes were presented at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flash appeared to move by means of the auditory motion when the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the lateral auditory motion altered visual motion perception in a global motion display where different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception.

Conclusions/Significance

These findings suggest there exist direct interactions between auditory and visual motion signals, and that there might be common neural substrates for auditory and visual motion processing.  相似文献   

3.

Background

In contrast to traditional views that consider smooth pursuit as a relatively automatic process, evidence has been reported for the importance of attention for accurate pursuit performance. However, the exact role that attention might play in the maintenance of pursuit remains unclear.

Methodology/Principal Findings

We analysed the neuronal activity associated with healthy subjects executing smooth pursuit eye movements (SPEM) during concurrent attentive tracking of a moving sound source, which was either in-phase or in antiphase to the executed eye movements. Assuming that attentional resources must be allocated to the moving sound source, the simultaneous execution of SPEM and auditory tracking in diverging directions should result in increased load on common attentional resources. By using an auditory stimulus as a distractor rather then a visual stimulus we guaranteed that cortical activity cannot be caused by conflicts between two simultaneous visual motion stimuli. Our results revealed that the smooth pursuit task with divided attention led to significantly higher activations bilaterally in the posterior parietal cortex and lateral and medial frontal cortex, presumably containing the parietal, frontal and supplementary eye fields respectively.

Conclusions

The additional cortical activation in these areas is apparently due to the process of dividing attention between the execution of SPEM and the covert tracking of the auditory target. On the other hand, even though attention had to be divided the attentional resources did not seem to be exhausted, since the identification of the direction of the auditory target and the quality of SPEM were unaffected by the congruence between visual and auditory motion stimuli. Finally, we found that this form of task-related attention modulated not only the cortical pursuit network in general but also affected modality specific and supramodal attention regions.  相似文献   

4.

Background

Vision provides the most salient information with regard to stimulus motion, but audition can also provide important cues that affect visual motion perception. Here, we show that sounds containing no motion or positional cues can induce illusory visual motion perception for static visual objects.

Methodology/Principal Findings

Two circles placed side by side were presented in alternation producing apparent motion perception and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. When the flash onset was synchronized to tones of alternating frequencies, a circle blinking at a fixed location was perceived as lateral motion in the same direction as the previously exposed apparent motion. Furthermore, the effect lasted at least for a few days. The effect was well observed at the retinal position that was previously exposed to apparent motion with tone bursts.

Conclusions/Significance

The present results indicate that strong association between sound sequence and visual motion is easily formed within a short period and that, after forming the association, sounds are able to trigger visual motion perception for a static visual object.  相似文献   

5.
Shapiro A  Lu ZL  Huang CB  Knight E  Ennis R 《PloS one》2010,5(10):e13296

Background

The human visual system does not treat all parts of an image equally: the central segments of an image, which fall on the fovea, are processed with a higher resolution than the segments that fall in the visual periphery. Even though the differences between foveal and peripheral resolution are large, these differences do not usually disrupt our perception of seamless visual space. Here we examine a motion stimulus in which the shift from foveal to peripheral viewing creates a dramatic spatial/temporal discontinuity.

Methodology/Principal Findings

The stimulus consists of a descending disk (global motion) with an internal moving grating (local motion). When observers view the disk centrally, they perceive both global and local motion (i.e., observers see the disk''s vertical descent and the internal spinning). When observers view the disk peripherally, the internal portion appears stationary, and the disk appears to descend at an angle. The angle of perceived descent increases as the observer views the stimulus from further in the periphery. We examine the first- and second-order information content in the display with the use of a three-dimensional Fourier analysis and show how our results can be used to describe perceived spatial/temporal discontinuities in real-world situations.

Conclusions/Significance

The perceived shift of the disk''s direction in the periphery is consistent with a model in which foveal processing separates first- and second-order motion information while peripheral processing integrates first- and second-order motion information. We argue that the perceived distortion may influence real-world visual observations. To this end, we present a hypothesis and analysis of the perception of the curveball and rising fastball in the sport of baseball. The curveball is a physically measurable phenomenon: the imbalance of forces created by the ball''s spin causes the ball to deviate from a straight line and to follow a smooth parabolic path. However, the curveball is also a perceptual puzzle because batters often report that the flight of the ball undergoes a dramatic and nearly discontinuous shift in position as the ball nears home plate. We suggest that the perception of a discontinuous shift in position results from differences between foveal and peripheral processing.  相似文献   

6.

Introduction

While the directionality of tactile motion processing has been studied extensively, tactile speed processing and its relationship to direction is little-researched and poorly understood. We investigated this relationship in humans using the ‘tactile speed aftereffect’ (tSAE), in which the speed of motion appears slower following prolonged exposure to a moving surface.

Method

We used psychophysical methods to test whether the tSAE is direction sensitive. After adapting to a ridged moving surface with one hand, participants compared the speed of test stimuli on the adapted and unadapted hands. We varied the direction of the adapting stimulus relative to the test stimulus.

Results

Perceived speed of the surface moving at 81 mms−1 was reduced by about 30% regardless of the direction of the adapting stimulus (when adapted in the same direction, Mean reduction = 23 mms−1, SD = 11; with opposite direction, Mean reduction = 26 mms−1, SD = 9). In addition to a large reduction in perceived speed due to adaptation, we also report that this effect is not direction sensitive.

Conclusions

Tactile motion is susceptible to speed adaptation. This result complements previous reports of reliable direction aftereffects when using a dynamic test stimulus as together they describe how perception of a moving stimulus in touch depends on the immediate history of stimulation. Given that the tSAE is not direction sensitive, we argue that peripheral adaptation does not explain it, because primary afferents are direction sensitive with friction-creating stimuli like ours (thus motion in their preferred direction should result in greater adaptation, and if perceived speed were critically dependent on these afferents’ response intensity, the tSAE should be direction sensitive). The adaptation that reduces perceived speed therefore seems to be of central origin.  相似文献   

7.

Background

Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset.

Methodology

Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as “virtual pitch”) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component.

Principal Findings

We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies.

Conclusions

Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex.  相似文献   

8.

Background

The timing at which sensory input reaches the level of conscious perception is an intriguing question still awaiting an answer. It is often assumed that both visual and auditory percepts have a modality specific processing delay and their difference determines perceptual temporal offset.

Methodology/Principal Findings

Here, we show that the perception of audiovisual simultaneity can change flexibly and fluctuates over a short period of time while subjects observe a constant stimulus. We investigated the mechanisms underlying the spontaneous alternations in this audiovisual illusion and found that attention plays a crucial role. When attention was distracted from the stimulus, the perceptual transitions disappeared. When attention was directed to a visual event, the perceived timing of an auditory event was attracted towards that event.

Conclusions/Significance

This multistable display illustrates how flexible perceived timing can be, and at the same time offers a paradigm to dissociate perceptual from stimulus-driven factors in crossmodal feature binding. Our findings suggest that the perception of crossmodal synchrony depends on perceptual binding of audiovisual stimuli as a common event.  相似文献   

9.
10.

Background

The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres.

Methods/Principal Findings

To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate.

Conclusions/Significance

These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization.  相似文献   

11.

Background

We physically interact with external stimuli when they occur within a limited space immediately surrounding the body, i.e., Peripersonal Space (PPS). In the primate brain, specific fronto-parietal areas are responsible for the multisensory representation of PPS, by integrating tactile, visual and auditory information occurring on and near the body. Dynamic stimuli are particularly relevant for PPS representation, as they might refer to potential harms approaching the body. However, behavioural tasks for studying PPS representation with moving stimuli are lacking. Here we propose a new dynamic audio-tactile interaction task in order to assess the extension of PPS in a more functionally and ecologically valid condition.

Methodology/Principal Findings

Participants vocally responded to a tactile stimulus administered at the hand at different delays from the onset of task-irrelevant dynamic sounds which gave the impression of a sound source either approaching or receding from the subject’s hand. Results showed that a moving auditory stimulus speeded up the processing of a tactile stimulus at the hand as long as it was perceived at a limited distance from the hand, that is within the boundaries of PPS representation. The audio-tactile interaction effect was stronger when sounds were approaching compared to when sounds were receding.

Conclusion/Significance

This study provides a new method to dynamically assess PPS representation: The function describing the relationship between tactile processing and the position of sounds in space can be used to estimate the location of PPS boundaries, along a spatial continuum between far and near space, in a valuable and ecologically significant way.  相似文献   

12.
Kim J  Park S  Blake R 《PloS one》2011,6(5):e19971

Background

Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits.

Methodology/Findings

In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task.Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophrenia patients was not selective to biological or scrambled motion.

Conclusion

Schizophrenia is accompanied by difficulties discriminating biological from non-biological motion, and associated with those difficulties are altered patterns of neural responses within brain area STSp. The perceptual deficits exhibited by schizophrenia patients may be an exaggerated manifestation of neural events within STSp associated with perceptual errors made by healthy observers on these same tasks. The present findings fit within the context of theories of delusion involving perceptual and cognitive processes.  相似文献   

13.
Kim RS  Seitz AR  Shams L 《PloS one》2008,3(1):e1532

Background

Studies of perceptual learning have largely focused on unisensory stimuli. However, multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. Here, we examine the effect of auditory-visual congruency on visual learning.

Methodology/Principle Findings

Subjects were trained over five days on a visual motion coherence detection task with either congruent audiovisual, or incongruent audiovisual stimuli. Comparing performance on visual-only trials, we find that training with congruent audiovisual stimuli produces significantly better learning than training with incongruent audiovisual stimuli or with only visual stimuli.

Conclusions/Significance

This advantage from stimulus congruency during training suggests that the benefits of multisensory training may result from audiovisual interactions at a perceptual rather than cognitive level.  相似文献   

14.

Background

Mutations that cause learning and memory defects in Drosophila melanogaster have been found to also compromise visual responsiveness and attention. A better understanding of attention-like defects in such Drosophila mutants therefore requires a more detailed characterization of visual responsiveness across a range of visual parameters.

Methodology/Principal Findings

We designed an automated behavioral paradigm for efficiently dissecting visual responsiveness in Drosophila. Populations of flies walk through multiplexed serial choice mazes while being exposed to moving visuals displayed on computer monitors, and infra-red fly counters at the end of each maze automatically score the responsiveness of a strain. To test our new design, we performed a detailed comparison between wild-type flies and a learning and memory mutant, dunce 1. We first confirmed that the learning mutant dunce 1 displays increased responsiveness to a black/green moving grating compared to wild type in this new design. We then extended this result to explore responses to a wide range of psychophysical parameters for moving gratings (e.g., luminosity, contrast, spatial frequency, velocity) as well as to a different stimulus, moving dots. Finally, we combined these visuals (gratings versus dots) in competition to investigate how dunce 1 and wild-type flies respond to more complex and conflicting motion effects.

Conclusions/Significance

We found that dunce 1 responds more strongly than wild type to high contrast and highly structured motion. This effect was found for simple gratings, dots, and combinations of both stimuli presented in competition.  相似文献   

15.

Background

Visually determining what is reachable in peripersonal space requires information about the egocentric location of objects but also information about the possibilities of action with the body, which are context dependent. The aim of the present study was to test the role of motor representations in the visual perception of peripersonal space.

Methodology

Seven healthy participants underwent a TMS study while performing a right-left decision (control) task or perceptually judging whether a visual target was reachable or not with their right hand. An actual grasping movement task was also included. Single pulse TMS was delivered 80% of the trials on the left motor and premotor cortex and on a control site (the temporo-occipital area), at 90% of the resting motor threshold and at different SOA conditions (50ms, 100ms, 200ms or 300ms).

Principal Findings

Results showed a facilitation effect of the TMS on reaction times in all tasks, whatever the site stimulated and until 200ms after stimulus presentation. However, the facilitation effect was on average 34ms lower when stimulating the motor cortex in the perceptual judgement task, especially for stimuli located at the boundary of peripersonal space.

Conclusion

This study provides the first evidence that brain motor area participate in the visual determination of what is reachable. We discuss how motor representations may feed the perceptual system with information about possible interactions with nearby objects and thus may contribute to the perception of the boundary of peripersonal space.  相似文献   

16.

Objective

Vection, a feeling of self-motion while being physically stationary, and postural sway can be modulated by various visual factors. Moreover, vection and postural sway are often found to be closely related when modulated by such visual factors, suggesting a common neural mechanism. One well-known visual factor is the depth order of the stimulus. The density, i.e. number of objects per unit area, is proposed to interact with the depth order in the modulation of vection and postural sway, which has only been studied to a limited degree.

Methods

We therefore exposed 17 participants to 18 different stimuli containing a stationary pattern and a pattern rotating around the naso-occipital axis. The density of both patterns was varied between 10 and 90%; the densities combined always added up to 100%. The rotating pattern occluded or was occluded by the stationary pattern, suggesting foreground or background motion, respectively. During pattern rotation participants reported vection by pressing a button, and postural sway was recorded using a force plate.

Results

Participants always reported more vection and swayed significantly more when rotation was perceived in the background and when the rotating pattern increased in density. As hypothesized, we found that the perceived depth order interacted with pattern density. A pattern rotating in the background with a density between 60 and 80% caused significantly more vection and postural sway than when it was perceived to rotate in the foreground.

Conclusions

The findings suggest that the ratio between fore- and background pattern densities is an important factor in the interaction with the depth order, and it is not the density of rotating pattern per se. Moreover, the observation that vection and postural sway were modulated in a similar way points towards a common neural origin regulating both variables.  相似文献   

17.

Background

To investigate, by means of fMRI, the influence of the visual environment in the process of symbolic gesture recognition. Emblems are semiotic gestures that use movements or hand postures to symbolically encode and communicate meaning, independently of language. They often require contextual information to be correctly understood. Until now, observation of symbolic gestures was studied against a blank background where the meaning and intentionality of the gesture was not fulfilled.

Methodology/Principal Findings

Normal subjects were scanned while observing short videos of an individual performing symbolic gesture with or without the corresponding visual context and the context scenes without gestures. The comparison between gestures regardless of the context demonstrated increased activity in the inferior frontal gyrus, the superior parietal cortex and the temporoparietal junction in the right hemisphere and the precuneus and posterior cingulate bilaterally, while the comparison between context and gestures alone did not recruit any of these regions.

Conclusions/Significance

These areas seem to be crucial for the inference of intentions in symbolic gestures observed in their natural context and represent an interrelated network formed by components of the putative human neuron mirror system as well as the mentalizing system.  相似文献   

18.

Background

The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.

Methodology/Findings

We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.

Conclusions/Significance

These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions.  相似文献   

19.

Background

Observers misperceive the location of points within a scene as compressed towards the goal of a saccade. However, recent studies suggest that saccadic compression does not occur for discrete elements such as dots when they are perceived as unified objects like a rectangle.

Methodology/Principal Findings

We investigated the magnitude of horizontal vs. vertical compression for Kanizsa figure (a collection of discrete elements unified into single perceptual objects by illusory contours) and control rectangle figures. Participants were presented with Kanizsa and control figures and had to decide whether the horizontal or vertical length of stimulus was longer using the two-alternative force choice method. Our findings show that large but not small Kanizsa figures are perceived as compressed, that such compression is large in the horizontal dimension and small or nil in the vertical dimension. In contrast to recent findings, we found no saccadic compression for control rectangles.

Conclusions

Our data suggest that compression of Kanizsa figure has been overestimated in previous research due to methodological artifacts, and highlight the importance of studying perceptual phenomena by multiple methods.  相似文献   

20.

Background

How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object''s stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information.

Methodology/Principal Findings

In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity).

Conclusions/Significance

Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号