首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 894 毫秒
1.
A protocol for the identification of N-homocysteinylation sites in plasma proteins is described. Human plasma or purified fibrinogen is subjected to trypsin digestion and analysis of N-Hcy-peptides by liquid chromatography/mass spectroscopy (LC/MS). Human fibrinogen is isolated from the plasma by the glycine precipitation method. Identification of N-Hcy-Lys-peptides in tryptic digests of in vivo-derived samples is facilitated by the use of N-Hcy-albumin and N-Hcy-fibrinogen synthesized in vitro from commercially available human proteins. This protocol allows identification of N-homocysteinylation sites at Lys4, Lys12, Lys137, and Lys525 in albumin directly in trypsin-digested human serum samples. N-Hcy-Lys562, N-Hcy-Lys344, and N-Hcy-Lys385 were identified in human fibrinogen from patients with cystathionine β-synthase deficiency. The protocol can be completed in 4 days.  相似文献   

2.
Liquid–liquid phase separation (LLPS) is a complex physicochemical phenomenon mediated by multivalent transient weak interactions among macromolecules like polymers, proteins, and nucleic acids. It has implications in cellular physiology and disease conditions like cancer and neurodegenerative disorders. Many proteins associated with neurodegenerative disorders like RNA binding protein FUS (FUsed in Sarcoma), alpha-synuclein (α-Syn), TAR DNA binding protein 43 (TDP-43), and tau are shown to undergo LLPS. Recently, the tau protein responsible for Alzheimer's disease (AD) and other tauopathies is shown to phase separate into condensates in vitro and in vivo. The diverse noncovalent interactions among the biomolecules dictate the complex LLPS phenomenon. There are limited chemical tools to modulate protein LLPS which has therapeutic potential for neurodegenerative disorders. We have rationally designed cyclic dipeptide (CDP)-based small-molecule modulators (SMMs) by integrating multiple chemical groups that offer diverse chemical interactions to modulate tau LLPS. Among them, compound 1c effectively inhibits and dissolves Zn-mediated tau LLPS condensates. The SMM also inhibits tau condensate-to-fibril transition (tau aggregation through LLPS). This approach of designing SMMs of LLPS establishes a novel platform that has potential implication for the development of therapeutics for neurodegenerative disorders.  相似文献   

3.
Amyloid-β (Aβ) and tau protein are two crucial hallmarks in Alzheimer’s disease (AD). Their aggregation forms are thought to be toxic to the neurons in the brain. A series of new 1,2,3,4-tetrahydro-1-acridone analogues were designed, synthesized, and evaluated as potential dual inhibitors for Aβ and tau aggregation. In vitro studies showed that compounds 2530 (20?μM) with N-methylation of the quinolone ring effectively inhibited Aβ1-42 aggregation by 84.7%–99.5% and tau aggregation by 71.2%–101.8%. Their structure-activity relationships are discussed. In particular, 30 could permeate the blood-brain barrier, bind to Aβ1-42 and tau, inhibit Aβ1-42 β-sheets formation, and prevent tau aggregation in living cells.  相似文献   

4.
The microtubule-associated protein tau plays a central role in the pathogenesis of Alzheimer disease (AD) and abnormally accumulates as neurofibrillary tangles; therefore, the pathways by which tau is degraded have been examined extensively. In AD brain tau is abnormally truncated at Asp421 (tauΔC), which increases its fibrillogenic properties and results in compromised neuronal function. Given the fact that the accumulation of tauΔC is a pathogenic process in AD, in this study we examined whether full-length tau and tauΔC are degraded through similar or different mechanisms. To this end a tetracycline-inducible model was used to show that tauΔC was degraded significantly faster than full-length tau (FL-tau). Pharmacological inhibition of the proteasome or autophagy pathways demonstrated that although FL-tau is degraded by the proteasome, tauΔC is cleared predominantly by macroautophagy. We also found that tauΔC binds C terminus of Hsp70-interacting protein more efficiently than tau. This interaction leads to an increased ubiquitylation of tauΔC in a reconstituted in vitro assay, but surprisingly, tau (full-length or truncated) was not ubiquitylated in situ. The finding that tauΔC and FL-tau are differentially processed by these degradation systems provides important insights for the development of therapeutic strategies, which are focused on modulating degradation systems to preferentially clear pathological forms of the proteins.  相似文献   

5.
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism lead to hyperhomocysteinemia (HHcy) and cause endothelial dysfunction, a hallmark of atherosclerosis. In addition to Hcy, related metabolites accumulate in HHcy but their role in endothelial dysfunction is unknown. Here, we examine how Hcy-thiolactone, N-Hcy-protein, and Hcy affect gene expression and molecular pathways in human umbilical vein endothelial cells. We used microarray technology, real-time quantitative polymerase chain reaction, and bioinformatic analysis with PANTHER, DAVID, and Ingenuity Pathway Analysis (IPA) resources. We identified 47, 113, and 30 mRNAs regulated by N-Hcy-protein, Hcy-thiolactone, and Hcy, respectively, and found that each metabolite induced a unique pattern of gene expression. Top molecular pathways affected by Hcy-thiolactone were chromatin organization, one-carbon metabolism, and lipid-related processes [?log(P value) = 20–31]. Top pathways affected by N-Hcy-protein and Hcy were blood coagulation, sulfur amino acid metabolism, and lipid metabolism [?log(P value)] = 4–11; also affected by Hcy-thiolactone, [?log(P value) = 8–14]. Top disease related to Hcy-thiolactone, N-Hcy-protein, and Hcy was ‘atherosclerosis, coronary heart disease’ [?log(P value) = 9–16]. Top-scored biological networks affected by Hcy-thiolactone (score = 34–40) were cardiovascular disease and function; those affected by N-Hcy-protein (score = 24–35) were ‘small molecule biochemistry, neurological disease,’ and ‘cardiovascular system development and function’; and those affected by Hcy (score = 25–37) were ‘amino acid metabolism, lipid metabolism,’ ‘cellular movement, and cardiovascular and nervous system development and function.’ These results indicate that each Hcy metabolite uniquely modulates gene expression in pathways important for vascular homeostasis and identify new genes and pathways that are linked to HHcy-induced endothelial dysfunction and vascular disease.  相似文献   

6.
Previous evidence from post-mortem Alzheimer disease (AD) brains and drug (especially rapamycin)-oriented in vitro and in vivo models implicated an aberrant accumulation of the mammalian target of rapamycin (mTor) in tangle-bearing neurons in AD brains and its role in the formation of abnormally hyperphosphorylated tau. Compelling evidence indicated that the sequential molecular events such as the synthesis and phosphorylation of tau can be regulated through p70 S6 kinase, the well characterized immediate downstream target of mTor. In the present study, we further identified that the active form of mTor per se accumulates in tangle-bearing neurons, particularly those at early stages in AD brains. By using mass spectrometry and Western blotting, we identified three phosphoepitopes of tau directly phosphorylated by mTor. We have developed a variety of stable cell lines with genetic modification of mTor activity using SH-SY5Y neuroblastoma cells as background. In these cellular systems, we not only confirmed the tau phosphorylation sites found in vitro but also found that mTor mediates the synthesis and aggregation of tau, resulting in compromised microtubule stability. Changes of mTor activity cause fluctuation of the level of a battery of tau kinases such as protein kinase A, v-Akt murine thymoma viral oncogene homolog-1, glycogen synthase kinase 3β, cyclin-dependent kinase 5, and tau protein phosphatase 2A. These results implicate mTor in promoting an imbalance of tau homeostasis, a condition required for neurons to maintain physiological function.  相似文献   

7.
EFhd2 is a conserved calcium‐binding protein, abundant within the central nervous system. Previous studies identified EFhd2 associated with pathological forms of tau proteins in the tauopathy mouse model JNPL3, which expresses the human tauP301L mutant. This association was validated in human tauopathies, such as Alzheimer's disease (AD). However, the role that EFhd2 may play in tauopathies is still unknown. Here, we show that EFhd2 formed amyloid structures in vitro, a capability that is reduced by calcium ions. Electron microscopy (EM) analyses demonstrated that recombinant EFhd2 formed filamentous structures. EM analyses of sarkosyl‐insoluble fractions derived from human AD brains also indicated that EFhd2 co‐localizes with aggregated tau proteins and formed granular structures. Immunohistological analyses of brain slices demonstrated that EFhd2 co‐localizes with pathological tau proteins in AD brains, confirming the co‐aggregation of EFhd2 and pathological tau. Furthermore, EFhd2's coiled‐coil domain mediated its self‐oligomerization in vitro and its association with tau proteins in JNPL3 mouse brain extracts. The results demonstrate that EFhd2 is a novel amyloid protein associated with pathological tau proteins in AD brain and that calcium binding may regulate the formation of EFhd2's amyloid structures. Hence, EFhd2 may play an important role in the pathobiology of tau‐mediated neurodegeneration.  相似文献   

8.
A characteristic hallmark of Alzheimer’s Disease (AD) is the pathological aggregation and deposition of tau into paired helical filaments (PHF) in neurofibrillary tangles (NFTs). Oxidative stress is an early event during AD pathogenesis and is associated with tau-mediated AD pathology. Oxidative environments can result in the formation of covalent dityrosine crosslinks that can increase protein stability and insolubility. Dityrosine cross-linking has been shown in Aβ plaques in AD and α-synuclein aggregates in Lewy bodies in ex vivo tissue sections, and this modification may increase the insolubility of these aggregates and their resistance to degradation. Using the PHF-core tau fragment (residues 297 – 391) as a model, we have previously demonstrated that dityrosine formation traps tau assemblies to reduce further elongation. However, it is unknown whether dityrosine crosslinks are found in tau deposits in vivo in AD and its relevance to disease mechanism is unclear. Here, using transmission electron microscope (TEM) double immunogold-labelling, we reveal that neurofibrillary NFTs in AD are heavily decorated with dityrosine crosslinks alongside tau. Single immunogold-labelling TEM and fluorescence spectroscopy revealed the presence of dityrosine on AD brain-derived tau oligomers and fibrils. Using the tau (297–391) PHF-core fragment as a model, we further showed that prefibrillar tau species are more amenable to dityrosine crosslinking than tau fibrils. Dityrosine formation results in heat and SDS stability of oxidised prefibrillar and fibrillar tau assemblies. This finding has implications for understanding the mechanism governing the insolubility and toxicity of tau assemblies in vivo.  相似文献   

9.
BackgroundAlzheimer's disease (AD) is a major form of dementia. Many evidence-based clinical trials have been performed, but no effective treatment has yet been developed. This suggests that our understanding of AD patho-mechanisms is still insufficient. In particular, the pathological roles of posttranslational modifications including glycosylation have remained poorly understood, but recent advances in glycobiology technology have gradually revealed that sugar modifications of AD-related molecules are profoundly involved in the onset and progression of this disease.Scope of reviewWe summarize the roles of N-glycans in AD pathogenesis and progression, particularly focusing on key AD-related molecules, including amyloid precursor protein (APP), α-, β-, and γ-secretases, and tau.Major conclusionsBiochemical, genetic and pharmacological studies have gradually revealed how N-glycans regulate AD development and progression through functional modulation of the key glycoproteins. These findings suggest that further glycobiology approaches in AD research will reveal novel glycan-based drug targets and early biomarkers of AD. However, N-glycan structures of these molecules in physiological and disease conditions and their precise functions are still largely unclear. Deeper glycobiology studies will be needed to reveal how AD pathology is regulated by glycosylation.General significanceIt is now known that N-glycans play significant roles in AD development. However, specific pathological functions of particular glycan epitopes on each AD-related glycoprotein are still poorly understood. Future glycobiology studies with more sensitive glycoproteomic techniques and a wider variety of chemical glycosylation inhibitors could contribute to the development of novel glycan-based AD therapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.  相似文献   

10.
Homocysteine (Hcy) and its metabolites Hcy-thiolactone, N-Hcy-protein, and S-Hcy-protein are implicated in vascular and neurological diseases. However, quantification of these metabolites remains challenging. Here I describe streamlined assays for these metabolites based on their conversion to Hcy-thiolactone. Free Hcy-thiolactone is extracted from the urine with chloroform/methanol. Total Hcy is converted to Hcy-thiolactone in the presence of 1 N HCl. Major urinary protein (MUP)-bound S-linked Hcy is liberated from the protein by reduction with dithiothreitol and converted to Hcy-thiolactone. Acid hydrolysis of MUP with 6 N HCl liberates N-linked Hcy as Hcy-thiolactone, which is then extracted with chloroform/methanol. Ferritin is used as an N-Hcy-protein standard and an authentic Hcy-thiolactone is used to monitor the efficiency of extraction. Hcy-thiolactone (free, derived from total Hcy, or from MUP-bound N-linked or S-linked Hcy) is separated by a cation exchange high-performance liquid chromatography, post-column derivatized with o-phthaldialdehyde, and quantified by fluorescence. Using these assays with as little as 2–20 μL of urine I show that MUP carry N-linked and S-linked Hcy and that N-Hcy-MUP and S-Hcy-MUP and Hcy-thiolactone are severely elevated in cystathionine β-synthase-deficient mice. These assays will facilitate examination of the role of protein-related Hcy metabolites in health and disease.  相似文献   

11.
The accumulation and aggregation of phosphorylated tau proteins in the brain are the hallmarks for the onset of Alzheimer's disease (AD). In addition, disruptions in circadian rhythms (CRs) with altered sleep-wake cycles, dysregulation of locomotion, and increased memory defects have been reported in patients with AD. Drosophila flies that have an overexpression of human tau protein in neurons exhibit most of the symptoms of human patients with AD, including locomotion defects and neurodegeneration. Using the fly model for tauopathy/AD, we investigated the effects of an exposure to dim light at night on AD symptoms. We used a light intensity of 10 lux, which is considered the lower limit of light pollution in many countries. After the tauopathy flies were exposed to the dim light at night for 3 days, the flies showed disrupted CRs, altered sleep-wake cycles due to increased pTau proteins and neurodegeneration, in the brains of the AD flies. The results indicate that the nighttime exposure of tauopathy/AD model Drosophila flies to dim light disrupted CR and sleep-wake behavior and promoted neurodegeneration.  相似文献   

12.
Homocysteine (Hcy) metabolites, Hcy-thiolactone and N-Hcy-proteins, have been linked to the pathology of human cardiovascular and neurodegenerative diseases. Hcy-thiolactone is generated in an error-editing reaction in protein biosynthesis when Hcy is selected in place of methionine by methionyl-tRNA synthetase. N-Hcy-protein, in which Hcy is linked via isopeptide bond to ε-amino group of a protein lysine residue, forms in a post-translational reaction of Hcy-thiolactone with proteins. Here, we identify a novel metabolite, Nε-Hcy-Lys, in human and mouse plasma, and show that this metabolite is elevated in genetic (cystathionine β-synthase deficiency in humans and mice, methylenetetrahydrofolate reductase deficiency in mice) or dietary (high Met diet in mice) deficiencies in Hcy metabolism. We also show that Nε-Hcy-Lys is generated by proteolytic degradation of N-Hcy-protein in mouse liver extracts. Our data indicate that free Nε-Hcy-Lys is an important pathology-related component of Hcy metabolism in humans and mice.  相似文献   

13.
14.
15.
Hyperhomocysteinemia (Hhcy) may induce memory deficits with β‐amyloid (Aβ) accumulation and tau hyperphosphorylation. Simultaneous supplement of folate and vitamin B12 partially restored the plasma homocysteine level and attenuated tau hyperphosphorylation, Aβ accumulation and memory impairments induced by Hhcy. However, folate and vitamin B12 treatment have no effects on Hhcy which has the methylenetetrahydrofolate reductase genotype mutation. In this study, we investigated the effects of simultaneous supplement of betaine on Alzheimer‐like pathological changes and memory deficits in hyperhomocysteinemic rats after a 2‐week induction by vena caudalis injection of homocysteine (Hcy). We found that supplementation of betaine could ameliorate the Hcy‐induced memory deficits, enhance long‐term potentiation (LTP) and increase dendritic branches numbers and the density of the dendritic spines, with up‐regulation of NR1, NR2A, synaptotagmin, synaptophysin, and phosphorylated synapsin I protein levels. Supplementation of betaine also attenuated the Hcy‐induced tau hyperphosphorylation at multiple AD‐related sites through activation protein phosphatase‐2A (PP2A) with decreased inhibitory demethylated PP2AC at Leu309 and phosphorylated PP2AC at Tyr307. In addition, supplementation of betaine also decreased Aβ production with decreased presenilin‐1 protein levels. Our data suggest that betaine could be a promising candidate for arresting Hcy‐induced AD‐like pathological changes and memory deficits.  相似文献   

16.
The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.  相似文献   

17.
The histopathological characteristics of Alzheimer’s disease (AD) are amyloid-β (Aβ) containing plaques and neurofibrillary tangles (NFTs) as well as neuronal and synaptic loss. Until today, the underlying mechanisms of the interplay of plaques and tangles remained unresolved. There is increasing evidence that mitochondrial dysfunction might be a possible link, as revealed by studies in several APP and tau transgenic mouse models. Recently, we examined mitochondrial function in a novel triple transgenic mouse model (pR5/APP/PS2)—tripleAD mice—that combines both pathologic features of the disease in brain. Using comparative, quantitative proteomics (iTRAQ) and mass spectroscopy, we found a massive deregulation of 24 proteins, of which one third were mitochondrial proteins mainly related to complexes I and IV of the oxidative phosphorylation system (OXPHOS). Remarkably, deregulation of complex I was related to tau, whereas deregulation of complex IV was Aβ dependent, both at the protein and activity levels. The tripleAD mice showed synergistic effects of Aβ and tau already at the age of 8 months, resulting in a depolarized mitochondrial membrane potential. At 12 months, the strongest defects on OXPHOS, synthesis of ATP and reactive oxygen species, were exhibited in the tripleAD mice, again emphasizing synergistic, age-associated effects of Aβ and tau in impairing mitochondria. This review highlights the convergence of Aβ and tau on mitochondria and establishes a molecular link in AD pathology in vivo.  相似文献   

18.
The triple-transgenic Alzheimer (3 × Tg-AD) mouse expresses mutant PS1M146V, APPswe, and tauP301L transgenes and progressively develops plaques and neurofibrillary tangles with a temporal- and region-specific profile that resembles the neuropathological progression of Alzheimer''s disease (AD). In this study, we used proteomic approaches such as two-dimensional gel electrophoresis and mass spectrometry to investigate the alterations in protein expression occurring in the brain and cerebellum of 3 × Tg-AD and presenilin-1 (PS1) knock-in mice (animals that do not develop Aβ- or tau-dependent pathology nor cognitive decline and were used as control). Finally, using the Ingenuity Pathway Analysis we evaluated novel networks and molecular pathways involved in this AD model. We identified several differentially expressed spots and analysis of 3 × Tg-AD brains showed a significant downregulation of synaptic proteins that are involved in neurotransmitter synthesis, storage and release, as well as a set of proteins that are associated with cytoskeleton assembly and energy metabolism. Interestingly, in the cerebellum, a structure not affected by AD, we found an upregulation of proteins involved in carbohydrate metabolism and protein catabolism. Our findings help to unravel the pathogenic brain mechanisms set in motion by mutant amyloid precursor protein (APP) and hyperphosphorylated tau. These data also reveal cerebellar pathways that may be important to counteract the pathogenic actions of Aβ and tau, and ultimately offer novel targets for therapeutic intervention.  相似文献   

19.
In Alzheimer''s disease (AD), deposition of pathological tau and amyloid-β (Aβ) drive synaptic loss and cognitive decline. The injection of misfolded tau aggregates extracted from human AD brains drives templated spreading of tau pathology within WT mouse brain. Here, we assessed the impact of Aβ copathology, of deleting loci known to modify AD risk (Ptk2b, Grn, and Tmem106b) and of pharmacological intervention with an Fyn kinase inhibitor on tau spreading after injection of AD tau extracts. The density and spreading of tau inclusions triggered by human tau seed were unaltered in the hippocampus and cortex of APPswe/PSEN1ΔE9 transgenic and AppNL-F/NL-F knock-in mice. In mice with human tau sequence replacing mouse tau, template matching enhanced neuritic tau burden. Human AD brain tau-enriched preparations contained aggregated Aβ, and the Aβ coinjection caused a redistribution of Aβ aggregates in mutant AD model mice. The injection-induced Aβ phenotype was spatially distinct from tau accumulation and could be ameliorated by depleting Aβ from tau extracts. These data suggest that Aβ and tau pathologies propagate by largely independent mechanisms after their initial formation. Altering the activity of the Fyn and Pyk2 (Ptk2b) kinases involved in Aβ-oligomer–induced signaling, or deleting expression of the progranulin and TMEM106B lysosomal proteins, did not alter the somatic tau inclusion burden or spreading. However, mouse aging had a prominent effect to increase the accumulation of neuritic tau after injection of human AD tau seeds into WT mice. These studies refine our knowledge of factors capable of modulating tau spreading.  相似文献   

20.
Homocysteine (Hcy) is incorporated into protein via a reaction of the thioester Hcy-thiolactone with ε-amino group of a protein lysine residue generating N-Hcy-protein. This reaction impairs and alters protein’s function and has been implicated in atherothrombotic disease. Here, we describe new high-performance liquid chromatography assays for the determination of Hcy-thiolactone, protein N-linked Hcy, and Hcy based on an on-column derivatization with o-phthaldialdehyde and fluorescence detection. The on-column derivatization generates narrow peaks, which allows fast run times (3–5 min) and facilitates determination of N-linked Hcy directly from acid hydrolysates of plasma protein. Utility of these assays was demonstrated with human urine and plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号