首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of synthetic ATP analogs, containing active groups in the triphosphate moiety and in the 8-position of the nucleotide molecule, with highly purified Na, K-ATPase from the medullar layer of porcine kidney was studied. It was found that 11 out of 17 ATP analogs studied irreversibly inhibit the ATPase activity of the enzyme. The pH optimum of the enzyme inactivation by adenosine-5'-(beta-chloroethylphosphate) and adenosine-5'-(p-fluorosulfonylphenylphosphate) beside the pronounced protective effect of ATP suggests possible covalent blocking of histidine and dicarboxylic amino acid residues in the enzyme active center. The irreversible inhibition of the enzyme by "oxo-ATP" containing aldehyde groups in the modified ribose residue in the presence of sodium borohydride suggests a possible presence of the lysine residue epsilon-amino group in the ATP binding site of the enzyme. Na, K-ATPase was found to possess an inorganic phosphate binding site, which is specifically blocked by chloromethylphosphonic acid. the accessibility of this site for modification depends on ATP, NA+ and K+.  相似文献   

2.
Q F Ma  G L Kenyon  G D Markham 《Biochemistry》1990,29(6):1412-1416
The entire family of ATP analogues that are either mono- or disubstituted with imido and methylene bridges in the polyphosphate chain of ATP have been investigated as substrates and inhibitors of S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase). The disubstituted analogues adenosine 5'-(alpha,beta:beta,gamma-diimidotriphosphate) (AMPNPNP) and adenosine 5'-(alpha,beta:alpha,beta'-diimidotriphosphate) [AMP(NP)2] have been synthesized for the first time, and a new route to adenosine 5'-(alpha,beta:beta,gamma-dimethylenetriphosphate) (AMPCPCP) has been developed. S-Adenosylmethionine synthetase catalyzes a two-step reaction: the intact polyphosphate chain is displaced from ATP, yielding AdoMet and tripolyphosphate, followed normally, but not obligatorily, by the hydrolysis of the tripolyphosphate to pyrophosphate and orthophosphate. Uniformly, the imido mono- or disubstituted derivatives are both better substrates and better inhibitors than their methylene counterparts. AMPNPNP reacts rapidly to give a single equivalent of product per active site, but subsequent turnovers are at least 1000-fold slower, enabling it to be used to quantify enzyme active site concentrations. In contrast, AMPCPCP is not detectably a substrate (less than 10(-5)% of ATP). AMP(NP)2, a branched isomer of linear AMPNPNP, was not a substrate but was a linear competitive inhibitor, greater than 100 fold more potent than ADP, indicating a reasonable degree of bulk tolerance at the alpha-phosphoryl group binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A method for the preparation of a homogenous catalytic subunit of adenosine 3':5'-monophosphate-dependent protein kinase from pigeon breast muscle was developed. The molecular weight of the enzyme as determined by electrophoresis in the presence of sodium dodecyl sulfate was found to be 42000. The pH optimum of the catalytic subunit was around 8.0. The active site of the catalytic subunit was studied using some derivatives of ATP, containing different reactive groups in the triphosphate chain of the molecule. It may be assumed that the pH optimum of the enzyme inactivation by adenosine 5'-chloromethylpyrophosphonate and the protective effect of ATP suggest covalent binding of the imidazole ring in the enzyme active site. The kinetic mechanism of the protein kinase reaction was studied using the initial rate experiments and reaction product inhibition. The results obtained were consistent with a random Bi-Bi kinetic mechanism.  相似文献   

4.
J J Witt  R Roskoski 《Biochemistry》1975,14(20):4503-4507
Adenosine 3',5'-monophosphate (cAMP) dependent protein kinase (EC 2.7.1.37) catalyzes the phosphorylation of serine and threonine residues of a number of proteins according to the following chemical equation: ATP + protein leads to phosphoprotein + ADP. The DEAE-cellulose peak II holoenzyme from bovine brain, which is composed of regulatory and catalytic subunits, is resistant to ethoxyformic anhydride inactivation. After adding cAMP, the protein kinase becomes susceptible to ethoxyformic anhydride inhibition. Ethoxyformic anhydride (2mM) inhibits the enzyme 50% (5 min, pH 6.5, 30 degrees) in the presence of 10 muM cAMP, but less than 5% in its absence. The substrate, Mg2+-ATP, protects against inactivation suggesting that inhibition is associated with modification of the active site. Addition of regulatory subunit or Mg2+-ATP to the isolated catalytic subunit also prevents ethoxyformic anhydride inactivation. These results suggest that the regulatory subunit shields the active site of the catalytic subunit thereby inhibiting it. In contrast to the bovine brain or muscle DEAE-cellulose peak II holoenzyme, the bovine muscle peak I holoenzyme is susceptible to ethoxyformic anhydride inactivation in the absence of cAMP.  相似文献   

5.
2'-5' oligoadenylate (2-5 (A)) synthetases are major components of the antiviral pathways induced by interferons. In the presence of double-stranded RNA, they polymerize ATP to form 2-5 (A) oligomers that, in turn, activate the latent ribonuclease RNase L, causing mRNA degradation. These enzymes, unlike other nucleotidyl transferases, catalyze 2'-5', not 3'-5', phosphodiester bond formation between substrates bound to the acceptor and donor sites. Moreover, unlike other members of this extended family, the P69 isozyme of 2-5 (A) synthetase functions as a homodimer. Here, we report that the need for P69 dimerization is because of a crisscross enzyme reaction joining two substrate molecules bound to two opposite subunits. Consequently, although homodimers of mutants in the previously identified acceptor site, the donor site, or the catalytic site were inactive, selective heterodimers of the mutants were active because of subunit complementation. The catalytic site had to be present in the same subunit that contained the acceptor site, whereas the donor site had to be provided by the other subunit. These results allowed us to design a mutant protein that acted as a dominant-negative inhibitor of wt P69 but not of another isozyme of 2-5 (A) synthetase.  相似文献   

6.
Carbamyl phosphate synthetase from Escherichia coli has been shown to use only the A isomer of adenosine-5'-[2-thiotriphosphate] in both the ATPase reaction (MgATP HCO3- leads to MgADP + Pi) and the carbamyl phosphate synthesis reaction (2MgATP + HCO3- + L-glutamine leads to 2MgADP + Pi + carbamyl-P + L-glutamate). The B isomer was less than 5% as reactive. In the reverse reaction, only the A isomer of adenosine-5'-[2-thiotriphosphate] is synthesized from adenosine-5'-[2-thiodiphosphate] and carbamyl-P as determined by 31P NMR and a coupled enzymatic assay with Cd2+- hexokinase. It is therefore proposed that carbamyl phosphate synthetase uses the same diastereomer of MgATP at both ATP sites.  相似文献   

7.
The reaction of the phosphate residue transfer catalysed by histone kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) was studied. The phosphotransferase reaction was shown to obey the mechanism of ping-pong bi-bi type. After incubation of the catalytic subunit of histone kinase with [gamma-32P]ATP the incorporation of one mole of [32P]phosphage per mole of protein was observed. The tryptic [32P]phosphohistidine-containing peptide was isolated and its N-terminus and amino acid composition were determined. The 2',3'-dialdehyde derivative of ATP (oATP) was used as the affinity label for the catalytic subunit of cyclic-AMP-dependent histone kinase. The inhibitor formed an alidmine bond with epsilon-amino group of the lysine residue of the active site and was irreversibly bound to the enzyme after reduction by sodium borohydride with concurrent irreversible inactivation of the enzyme. After inactivation, about one mole of 14C-labelled inhibitor was incorporated per mole of the enzyme. ATP effectively protected the catalytic subunit of histone kinase against inactivation by oATP. Tryptic digestion of the enzyme-inhibitor complex led to the isolation of the 14C-labelled peptide of the active site of histone kinase. Basing on these results, the role of histidine and lysine residues in the active site of the catalytic subunit of histone kinase was suggested.  相似文献   

8.
In order to investigate the structure of the active site of the cAMP-dependent protein kinase catalytic subunit a synthesis of several previously unknown adenosine-5'-triphosphate (ATP) derivatives containing substituents of various nature at N(1), N(C6) and C(8) positions of the purine base was carried out. The interaction of these derivatives with a homogeneous preparation of the catalytic subunit of rabbit skeletal muscle cAMP-dependent protein kinase was investigated. All the nucleotide analogs were found to inhibit the enzyme activity; the inhibition was competitive with respect to ATP. It was assumed that the adenine moiety of the ATP molecule is bound to the active site of protein kinase by the hydrophobic interaction with the aromatic amino acid residues and by formation of the hydrogen bond between the exo-NH2-group of the substrate and a corresponding group of the enzyme. The "correct" binding of ATP to the enzyme active center is defined by the anti-conformation of the nucleotide.  相似文献   

9.
S-peptide (residues 1--14) analogues in which the active histidine-12 residue is replaced by Npi-methyl-L-histidine, Ntau-methyl-L-histidine and beta-(pyrid-3-yl)-L-alanine were synthesized and tested for their capacity to bind to S-protein and to activate it. The results show that both imidazolyl nitrogen atoms are required for optimal catalytic functioning, Ntau being essential to the catalytic reaction itself, Npi playing a role in keeping the imidazole ring in the correct position.  相似文献   

10.
Mammalian brain microtubules are sensitive to cyclic AMP in vitro   总被引:2,自引:0,他引:2  
Microtubules assembled in vitro with ATP were depolymerized by the addition of cyclic AMP, which correlates with a stimulation of the endogeneous phosphorylation reaction. When assembled with GTP, however, microtubules were only sensitive to cyclic AMP when ATP was present. This nucleoside triphosphate induced the disassembly of microtubules in a concentration-dependent, cyclic nucleotide-stimulated manner. Since UTP, CTP and the nonhydrolyzable ATP analog adenosine-5'-(beta, gamma-methylene)triphosphate were without comparable effect, it was assumed that phosphorylation of the microtubule-associated proteins may represent a physiological mechanism by which microtubules in the living cell respond to external stimuli.  相似文献   

11.
2'-O-Chloroacetyl cyclic AMP, 2'-O-acrylyl cyclic AMP and N-6, 2'-O-diacrylyl cyclic AMP were synthesized by the reaction of cyclic AMP with chloroacetic and acrylic anhydrides, respectively. Selective O-deacylation of N-6, 2'-O-diacrylyl cyclic AMP yielded N-6 -monoacrylyl cyclic AMP. In the reaction of gamma-mercaptobutyric acid with 8-bromo cyclic AMP, 8-(gamma-carboxypropylthio) cyclic AMP was obtained. The compounds synthesized and other cyclic AMP analogues (8-bromo cyclic AMP and adenosine 3', 5'-cyclic sulphate) were tested for ability to interact with the highly purified pig brain histone kinase. All compounds under study were found to be activators of the enzyme. The highest activating potency was manifested by 8-bromo cyclic AMP and 8-(gamma-carboxypropylthio) cyclic AMP; adenosine 3', 5'-cyclic sulphate was the least potent in this respect. All compounds were shown to inhibit binding of cyclic [-3-H]AMP to histone kinase. The inhibition was competitive with respect to cyclic AMP in all cases. All compounds, except for 2'-O-chloroacetyl cyclic AMP may indicate the formation of a covalent bond between this analogue and the enzyme. These findings suggest that an active site of the regulatory subunit of the histone kinase contains at least three specific areas responsible for cyclic AMP binding.  相似文献   

12.
The inhibiting effect of adenosine, AMP, ADP, ATP, gamma-thio ATP (I), beta,gamma-imine ATP (II), beta,gamma-methylene ATP (III), P1,P3-di(adenosine-5') triphosphate (IV), P1,P4-di(adenosine-5') tetraphosphate (V) and adenosine 5'-tetraphosphate (VI) on the first step of the T4 RNA ligase reaction was studied. All the compounds tested, with the exception of adenosine, appeared to be competitive inhibitors of the first step of the enzymatic reaction. The inhibition constants (Ki) for the ATP analogs were determined. The data obtained suggest that the efficiency of inhibition depends on the number of phosphate groups and on the structure of ATP analogs. All the compounds under study (I-VI), except for AMP and ADP, form covalent AMP-RNA ligase complexes.  相似文献   

13.
8-Azido-adenosine 5'-triphosphate (n8(3)ATP) appeared to be a suitable photoaffinity label for the protein kinase dependent on adenosine 3':5'-monophosphate (cAMP). It competes with ATP for the high-affinity ATP site in the undissociated form of the kinase and in the phosphotransferase reaction catalyzed by the catalytic subunit. Furthermore, it is accepted as a substrate in the phosphotransfer reaction. n8(3)ATP incorporated into the holoenzyme is covalently bound irradiation. Protection experiments with ATP indicated that this covalent attachment occurs in the high-affinity ATP site of the enzyme. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate shows that n8(3)ATP is bound to the catalytic subunit. After irradiation the enzyme was dissociated by cAMP. Proportional to the incorporated [gamma-32P]n8(3)ATP, a loss in phosphotransferase activity was found. These results support our model that both ATP sites coincide with respect to their adenine binding part. Thus binding of the regulatory subunit to the catalytic subunit would then transform the low-affinity catalytically active ATP site into a high-affinity inactive site.  相似文献   

14.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2.  相似文献   

15.
When aqueous solutions of adenosine-5'-mono-, di-, or triphosphates are treated with a water soluble carbodiimide the major product is the expected diadenosine-5'-5'-polyphosphate. The yields of these pyrophosphates are greatly increased in the presence of the Mg2+ ion. Adenosine-5'-tetraphosphate behaves differently. The major product is adenosine-5'-monophosphate. We believe that this hydrolysis occurs via a cyclic trimetaphosphate intermediate.  相似文献   

16.
Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 ? (1 ?=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,β-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.  相似文献   

17.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

18.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

19.
The unadenylylated, manganese form of glutamine synthetase (L-glutamate: ammonia ligase (ADP forming), EC 6.3.1.2 from Escherichia coli catalyzes a novel, AMP-dependent (reversible) synthesis of pyrophosphate and L-glutamate from orthophosphate and L-glutamine: Formula (See Text). The hydrolysis of the L-glutamine amide bond is coupled to the stoichiometric synthesis of pyrophosphate, although as PPi accumulates, additional hydrolysis of L-glutamine occurs in a secondary reaction catalyzed by the [manganese x enzyme x AMP x PPi] complex. The synthesis of PPi probably occurs at the subunit catalytic site in the positions normally occupied by the beta, gamma-phosphates of ATP. To promote PPi synthesis, AMP apparently binds to the subunit catalytic site rather than to the allosteric inhibitor site; equilibrium binding results suggest that Pi directs the binding of AMP to the active site. In this reaction, Mg2+ will not substitute for Mn2+, and adenylylated glutamine synthetase is inactive. Pyrophosphate is synthesized by the unadenylylated, manganese enzyme at approximately 2% of the rate of that of ATP in the reverse biosynthetic reaction. If P1 is replaced by arsenate, the enzymatic rate of the AMP-supported hydrolysis of L-glutamine is 100-fold faster than is PPi synthesis and is one-half the rate of the ADP-supported, irreversible arsenolysis of L-glutamine. This latter activity also is supported by GMP and IMP, suggesting that the catalytic site of glutamine synthetase has a rather broad specificity for the nucleotide base. The reactions supported by AMP directly relate to the mechanism of glutamine synthetase catalysis.  相似文献   

20.
A mechanism of activation of the ATP.Mg-dependent protein phosphatase (FC.M) has been proposed (Jurgensen, S., Shacter, E., Huang, C. Y., Chock, P. B., Yang, S.-D., Vandenheede, J. R., and Merlevede, W. (1984) J. Biol. Chem. 259, 5864-5870) in which a transient phosphorylation by the kinase FA of the modulator subunit (M) is the driving force for the transition of the inactive catalytic subunit (FC) into its active conformation. Incubation of FC.M with kinase FA and Mg2+ and adenosine 5'-(gamma-thio)triphosphate results in thiophosphorylation of M and also a conformational change in the phosphatase catalytic subunit; however, the enzyme remains inactive. Proteolysis of this inactive, thiophosphorylated complex causes proteolytic destruction of the modulator subunit and yields an active phosphorylase phosphatase species. Similar treatment of the native inactive enzyme does not yield active phosphatase. Evidence is presented, suggesting that a molecule of modulator is bound at an "inhibitory site" on the native enzyme. This modulator does not prevent the conformational change in the phosphatase catalytic subunit upon incubation with kinase FA and ATP.Mg but does partially inhibit the expression of the phosphorylase phosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号